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Abstract: We propose a deep neural network (DNN) to determine the matching circuit parameters
for antenna impedance matching. The DNN determines the element values of the matching circuit
without requiring a mathematical description of matching methods, and it approximates feasible
solutions even for unimplementable inputs. For matching, the magnitude and phase of impedance
should be known in general. In contrast, the element values of the matching circuit can be determined
only using the impedance magnitude using the proposed DNN. A gamma-matching circuit consisting
of a series capacitor and a parallel capacitor was applied to a conventional inverted-F antenna
for impedance matching. For learning, the magnitude of input impedance S11 of the antenna was
extracted according to the element values of the matching circuit. A total of 377 training samples and
66 validation samples were obtained. The DNN was then constructed considering the magnitude
of impedance S11 as the input and the element values of the matching circuit as the output. During
training, the loss converged as the number of epochs increased. In addition, the desired matching
values for unlearned square and triangular waves were obtained during testing.

Keywords: antenna impedance matching; artificial neural network; deep learning; input impedance (S11)

1. Introduction

The most recent electronic devices support wireless communication, for which an an-
tenna operating at a specific frequency band must be used. As the resonant frequency
of an antenna is affected by its shape and surrounding materials in a device, the antenna
must be modified whenever the device design is changed. To avoid antenna redesign,
commercial communication devices can be used. However, such devices often include
bulky external dipole antennas. In addition, the required operation frequency may not
be available because commercial devices are intended for predefined frequencies, such as
the ISM (industrial, scientific, and medical) band. If an antenna with a fixed shape could
automatically operate at the desired frequency, the development time of wireless devices
could be notably reduced along with the development cost of antennas.

Antennas used to tune the resonant frequency can be divided into reconfigurable and
tunable antennas. Reconfigurable antennas [1–5] adjust the resonant frequency by changing
their shape through a switch. Thus, small antennas or multiband antennas should often be
reconfigurable given the difficulty to obtain a wide bandwidth. For instance, the tuning
of the resonant frequency while reducing the size of a slot loop antenna has been achieved
by using varactor diodes [3]. In addition, selection of the LTE (Long Term Evolution) band
of 1.8 or 2.6 GHz has been achieved by inserting a PIN diode at the end of a loop antenna [4].
A reconfigurable antenna can change its radiation pattern by modifying its structure,
providing high radiation efficiency depending on its shape. However, reconfigurable
antennas are generally difficult to design given their complex structure.

On the other hand, tunable antennas operate at various frequency bands by changing
the element values in the matching circuit [6–12]. As their structure is fixed and only the ele-
ment values in the matching circuit change to obtain a resonant frequency, tunable antennas
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are simple to design. By applying a tunable matching circuit to an ultrawideband antenna,
resonant frequencies from 1.8 to 2.8 GHz have been set at applied voltages from 0 to 23 V [9].
In addition, a tunable matching circuit has been applied to provide the required service
frequency bandwidths for small antennas [12]. However, tunable antennas deliver sub-
optimal efficiency due to losses in the matching elements at any operating frequency [10].
To improve performance and properly tune the resonant frequency, the magnitude and
phase of the antenna impedance should be accurately determined. In addition, the factor
causing the change in the resonant frequency over the range of element values should be
identified. Despite their simple structure, tunable antennas must be carefully designed
by considering the antenna characteristics for the matching circuit.

Recently, machine learning has been applied to optimize antenna performance [13–19]
and implement impedance matching [20–22]. A machine learning method can determine
the element values without requiring a mathematical description of the matching cir-
cuit. In wireless power transmission, a neural network has recently been used to achieve
the maximum efficiency [20,21]. Specifically, the matching element value according to
the impedance of a wireless power transfer (WPT) coil was learned, and matching was per-
formed automatically based on the measured impedance. The efficiency can be maximized
by automatically compensating the matching value according to the distance between
WPT coils. To date, however, no machine learning method has been devised for antenna
impedance matching.

We propose a deep learning method that determines the element values of the match-
ing circuit for a given magnitude of input impedance S11. The input is only the impedance
magnitude, and the output is the corresponding element values of the matching circuit. Un-
like the conventional approach, the proposed method determines the appropriate matching
element values, and it can solve even unimplementable input impedances.

The remainder of this paper is organized as follows. Section 2 presents the an-
tenna structure and matching circuit used in this study. Section 3 describes the method
for acquiring input impedance S11 according to the capacitor values of the matching cir-
cuit. In Section 4, we introduce the proposed deep neural network (DNN) for antenna
impedance matching. Section 5 reports the deep learning results and presents the corre-
sponding discussion. Finally, we draw conclusions in Section 6.

2. Antenna and Matching Circuit

Figure 1 shows the antenna structure to simulate the matching circuit effect. The basic
structure is an inverted-F antenna, which is the most common type for mobile devices.
The resonant frequency of the inverted-F antenna is determined by the length of the
antenna, and the matching of the antenna is determined by the distance between the feeding
point and the shorting stub. In general, the inverted F antenna is designed in the form
of a meander line to include the length of the antenna in a narrow space in order to
lower the resonant frequency. However, if there is not enough space for metal patterning,
a matching circuit should be used to adjust the resonance frequency. The antenna is
patterned on an FR4 substrate with a dielectric constant of 4.3 and a thickness of 1 mm.
The obtained inverted-F antenna has a length of 28 mm and a height of 10 mm from
the ground. The line width is 1 mm, and the shorting stub at the left end is connected
to the ground. The feeding point is 2 mm from the shorting stub. The matching circuit
is directly connected to the feeding point. The dimensions of the antenna are arbitrary.
If there is no matching circuit, the antenna resonates at 1.9 GHz. The resonant frequency
of the antenna can be tuned from 0.9 to 1.4 GHz using a matching circuit.
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Figure 1. Antenna structure for impedance simulation.

We performed simulations using Ansys HFSS (3D high-frequency simulation soft-
ware). Figure 2 shows input impedance S11 of the antenna without a matching circuit on
the Smith chart and the real part and imaginary part of the impedance for the frequency
range of 0.8–1.5 GHz. As can be seen from Figure 2b, the imaginary part has values higher
than 50 ohm as positive values. This means that in order to make resonance, the imaginary
part should be compensationed through capacitors. The antenna impedances at the lowest
and highest frequencies are located in the upper-right corner of the Smith chart. Therefore,
the impedance can be matched by combining a series capacitor and a parallel capacitor,
as shown in the gamma-matching circuit of Figure 3. Impedance matching is possible
at the designed frequencies according to the capacitor values. Specifically, we used a series
capacitor CS of 0.9–3.3 pF and parallel capacitor CP of 1–15 pF.
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Figure 3. Gamma-matching circuit.

Matching should be applied for the capacitor values to match at the lowest and
highest resonant frequencies of 0.9 and 1.4 GHz, respectively. For resonance at 1.4 GHz,
the values of the series (CS) and parallel (CP) capacitors should be 0.9 and 3 pF, respectively.
For resonance at 0.9 GHz, the respective values should be 3 and 20 pF. These values
for the matching circuit were determined by mathematical calculations based on accurate
information about the real and imaginary parts of the antenna impedance.

Although it is possible to measure S11 including its real and imaginary parts by using
a network analyzer, expensive equipment is required. Instead, we propose a method for de-
termining the matching element values using the S11 magnitude in a DNN. As the magni-
tude does not include phase information, an accurate matching value cannot be determined
mathematically. However, through learning, the proposed method determines the match-
ing element values solely from the input impedance magnitude.

3. Data Acquisition

The effectiveness of machine learning depends on the availability of large amounts
of data. However, manually obtaining input impedance S11 according to the matching
element values is time-consuming. Therefore, automated data acquisition should be
performed. To this end, we linked MathWorks MATLAB and Ansys HFSS. In MATLAB,
series capacitor CS and parallel capacitor CP were set as variables, and these values were
linked with HFSS. According to the matching element values, the S11 magnitude was
extracted as a text file. The matching element values for training are listed in Table 1,
and those for validation are listed in Table 2. The magnitude of input impedance S11 is
a scalar value ranging from 0 to 1 over 401 datapoints, corresponding to a frequency range
from 0.8 to 1.5 GHz. For the training data, as 13 series capacitors and 29 parallel capacitors
were used, 13 × 29 = 377 samples were obtained. In addition, the validation samples
were 11 × 10 = 110. The postprocessing time to obtain S11 per setting of matching element
values was 12 s, taking approximately 90 min to obtain all the training and validation
samples. Figure 4 shows the S11 magnitude for all the training (Figure 4a) and validation
(Figure 4b) samples. It is important to match the antenna impedance at the designed
resonant frequency. The reason for graphing all samples in Figure 4 is to indicate that
the resonant frequency of validation samples is different from the resonant frequency
of the training samples. This is to investigate how well the DNN learns for these different
resonant frequencies.

Table 1. Capacitor values in matching circuit for training.

Element Values (pF) No. Cases

Series capacitor CS 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3 13

Parallel capacitor CP
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9,

9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15 29
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Table 2. Capacitor values in matching circuit for validation.

Element Values (pF) No. Cases

Series capacitor CS 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3 11
Parallel capacitor CP 1.1, 1.7, 2.3, 3.7, 5.5, 7.5, 9.5, 11.5, 13.5, 16 10
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4. DNN Modeling and Training

Deep learning allows us to obtain the correct output for both learned data and previ-
ously unseen data. We used high-level Keras API in TensorFlow 2.0 to construct a DNN
using Python. Figure 5 shows the structure of the proposed DNN. The input for deep
learning is S11, whose magnitude is generally expressed in decibels. For implementation,
the S11 magnitude was converted into a scalar value to normalize the input. In this study,
the number of input samples was 401, with values ranging from 0 to 1 corresponding to
frequencies from 0.8 to 1.5 GHz. The DNN output is given by the values of the series and
parallel capacitors. As these values influence each other in the matching circuit, we con-
sidered two branches followed by addition (ADD layer) to reflect the influence, as shown
in Figure 5. Each output value of the DNN for the corresponding capacitor value was
obtained from one layer. As the DNN output should also be normalized, each capacitor
value should be weighted. Input impedance S11 is highly sensitive to small values of the
series capacitor. Therefore, we use the reciprocal of the series capacitor value as output.
On the other hand, the value of the parallel capacitor was weighted by 0.1, as a larger
value has a greater influence on the impedance. As a result, the weighted values of the two
capacitors for training ranged from 0 to 1.5. The activation function of the output layer
was linear, and the remaining layers used rectified linear unit (ReLU) activation to prevent
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the vanishing gradient problem. Each stage in the DNN implements a dense layer that
fully connects the input and output neurons. As processing through the layers proceeded,
the number of output neurons decreased. The number of neurons is expressed as a number
in parentheses under the layer in Figure 5. The ADD layer functions to add two input
values. RMSProp was used as the optimizer for learning DNN. The RMSProp does not
simply accumulate gradients, but uses an exponentially weighted moving average to reflect
the latest gradients larger. The loss function for DNN training was based on the mean
squared error to perform optimization via root mean square propagation. The learning
rate was set to 0.00005. For the DNN, 377 samples (Table 1) were used for training, and
110 samples (Table 2) were used for validation. Training proceeded for 2000 epochs with
a batch size of 10.
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Figure 5. Architecture of the proposed DNN for antenna impedance matching.

The loss throughout training is shown in Figure 6. As training proceeds, the loss
values converged at 0.0010 for training and 0.013 for validation. In this study, it took
approximately 10.5 min to train the DNN in a computer equipped with an Intel(R) Xeon(R)
processor at 2.30 GHz and 16 GB memory.
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5. Simulation Results and Discussion

To validate the proposed DNN, two test sets with ground truths (i.e., calculated values)
were considered. The selected capacitor values in the matching circuit are listed in Table 3.
Samples with S11 magnitude up to 0.3 were selected, as antenna design requires S11 to be
small. The S11 magnitudes from the test sets were used as input for the proposed DNN to
obtain the corresponding capacitor values as outputs, as listed in Table 3. The capacitor
values obtained from the DNN have some errors with respect to the calculated values.
To analyze the effect of this error on antenna impedance matching, we conducted a simu-
lation using the output capacitor values in HFSS. Figure 7 shows the comparison of S11
between the ground truths and DNN predictions, which are very similar.

Table 3. Capacitor values in matching circuit for validation.

Ground Truth DNN Output Sample

CS = 1.2 pF CS = 1.2191441 pF
14CP = 5.5 pF CP = 5.201703 pF

CS = 1.8 pF CS = 1.8085649 pF
45CP = 7.5 pF CP = 7.569376 pF
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Using the trained DNN, the output was derived using ideal S11 patterns that cannot
be implemented in practice as inputs. Table 4 lists the DNN outputs for three ideal patterns.
The first ideal pattern is a square wave with S11 having magnitudes of 0.3 in 0.9–1.0 GHz
and 0.97 in the other frequencies. The second ideal pattern is a triangular wave with the S11
magnitude decreasing linearly from 1.1 GHz until a minimum value of 0.3 at 1.15 GHz and
then increasing linearly up to 1.2 GHz with a magnitude of 0.99. The third ideal pattern is
also a square wave, but in a frequency range of 1.3–1.4 GHz. Figure 8 shows the comparison
between the ideal S11 patterns and the simulated S11 patterns that use the output matching
values obtained from the DNN. The DNN provides appropriate matching values for an
ideal input. For the first, second, and third ideal patterns, the resonant frequencies were 0.95,
1.16, and 1.34 GHz, respectively. However, a completely consistent solution is infeasible
because ideal patterns cannot be implemented in practice. Nevertheless, the DNN manages
to determine the matching element values that approximate the desired S11 waveform.
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Table 4. Capacitor values obtained from DNN for ideal inputs.

Ideal Waveform DNN Output Sample Number

Square (0.9–1.0 GHz) CS = 2.74568 pF
CP = 13.05057 pF 1

Triangular (1.1–1.2 GHz) CS = 1.5721719 pF
CP = 13.184719 pF 2

Square (1.3–1.4 GHz) CS = 1.0054374 pF
CP = 7.1495605 pF 3

Sensors 2021, 21, x FOR PEER REVIEW 8 of 10 
 

 

Figure 7. Comparison of results from ground truth and DNN output. 

Table 4. Capacitor values obtained from DNN for ideal inputs. 

Ideal Waveform DNN Output Sample Number 

Square (0.9–1.0 GHz) 
CS = 2.74568 pF  

CP = 13.05057 pF 
1 

Triangular (1.1–1.2 GHz) 
CS = 1.5721719 pF 

CP = 13.184719 pF 
2 

Square (1.3–1.4 GHz) 
CS = 1.0054374 pF 

CP = 7.1495605 pF 
3 

 

Figure 8. Comparison of ideal S11 waveform with that obtained from DNN results. 

Machine learning has been applied for impedance matching using neural networks, 

as listed in Table 5. However, those applications consider frequencies in the order of meg-

ahertz, which is relatively lower than the gigahertz band required for antenna impedance 

matching. Moreover, those applications are limited to implementable impedance patterns. 

On the other hand, the proposed DNN can perform antenna impedance matching in the 

gigahertz frequency band. Unlike conventional methods, it uses only the magnitude in-

stead of the complex impedance value to learn antenna matching values. Moreover, rea-

sonable capacitor values for antenna impedance matching can be obtained even for S11 

magnitudes that cannot be implemented in practice. In reference papers [20,21], matching 

values for ideal inputs were not presented. 

  

Figure 8. Comparison of ideal S11 waveform with that obtained from DNN results.

Machine learning has been applied for impedance matching using neural networks,
as listed in Table 5. However, those applications consider frequencies in the order of mega-
hertz, which is relatively lower than the gigahertz band required for antenna impedance
matching. Moreover, those applications are limited to implementable impedance patterns.
On the other hand, the proposed DNN can perform antenna impedance matching in the
gigahertz frequency band. Unlike conventional methods, it uses only the magnitude
instead of the complex impedance value to learn antenna matching values. Moreover,
reasonable capacitor values for antenna impedance matching can be obtained even for S11
magnitudes that cannot be implemented in practice. In reference papers [20,21], matching
values for ideal inputs were not presented.

Table 5. Comparison of machine learning methods for impedance matching.

Study Method Array
Geometry

Neural
Network Size Application Network

Type

[20]
Back-

propagation
neural network

1D 5 (3 hidden
layers)

Wireless
power

transfer

Gamma
matching

[21] Feedforward
neural network 1D 12 (10 hidden

layers)

Wireless
power

transfer

Three
cascading

L-type stages

This
study DNN 1D 12 Antenna Gamma

matching

This study applied deep learning to antenna matching through simulation. For ex-
perimental verification, it is necessary to implement the tunable matching network with
a control circuit including a DNN, and the magnitude of the S11 should be measured
at the rear end of the matching circuit using a device that can measure the reflection co-
efficient. Using the switching value of tunable matching circuit and magnitude of the
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measured impedance, the applicability of the proposed DNN can be verified experimen-
tally. It is also necessary to research whether the matching value is properly found when
there is noise in the impedance data. The practical performance of the deep learning
method in selecting the value of the matching circuit element is an interesting future work.

6. Conclusions

We proposed a DNN to determine the capacitor values in the circuit for antenna
impedance matching. The matching circuit consists of a series capacitor and a parallel
capacitor and is intended for an inverted-F antenna, which is often used in small wireless
devices. S11 data were acquired by simulating the antenna structure for various capacitor
values. Then, the DNN was constructed using the S11 magnitude as input and the capacitor
values of the matching circuit as outputs. After training on 377 training samples and
64 validation samples, the DNN achieved a loss of 0.001. The trained DNN was then applied
to S11 magnitudes of ideal square and triangular waves. The simulated S11 obtained from
DNN outputs shows the desired resonant frequency even for physically impossible patterns,
suggesting that deep learning can be used for robust antenna impedance matching.
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