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Abstract: Thermostability is a protein property that impacts many types of studies, including
protein activity enhancement, protein structure determination, and drug development. However,
most computational tools designed to predict protein thermostability require tertiary structure data
as input. The few tools that are dependent only on the primary structure of a protein to predict its
thermostability have one or more of the following problems: a slow execution speed, an inability to
make large-scale mutation predictions, and the absence of temperature and pH as input parameters.
Therefore, we developed a computational tool, named KStable, that is sequence-based, computationally
rapid, and includes temperature and pH values to predict changes in the thermostability of a protein
upon the introduction of a mutation at a single site. KStable was trained using basis features and
minimal redundancy–maximal relevance (mRMR) features, and 58 classifiers were subsequently tested.
To find the representative features, a regular-mRMR method was developed. When KStable was
evaluated with an independent test set, it achieved an accuracy of 0.708.

Keywords: protein thermostability; single-site mutations; machine learning; feature selection;
hill-climbing algorithm

1. Introduction

A mutation in a protein may alter its function and/or stability via a change in conformation.
Because stability is an important characteristic of proteins that impacts, for example, drug development,
protein structure determination, and enzyme mechanics and dynamics, knowledge of a protein’s
stability is often required for industrial and research applications. Previously, to acquire information on
the stability of a protein, complicated and expensive experiments were performed. Recently, however,
bioinformatics, biomathematics, and biostatistics have been used to predict mutagenesis-induced
changes in protein stability [1,2]. The predictive accuracy of such computational tools has benefited
from recent experimental thermodynamic studies, which have provided a large dataset, including
structural and functional information, important for stability prediction [3].
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The currently available computational tools used to predict changes in protein stability are of
three types. First are the tools that use protein structures. These tools may incorporate various energy
functions, and generally are very accurate owing to the abundant amount of information that the
characterized structure surrounding the mutation site provides [4–11]. Second are tools that use the
protein sequences and the physicochemical properties of the residues. Because the tertiary structures
of most proteins have not been elucidated, tools that rely exclusively on sequence data can be used in
more cases than can those that rely only on structural data. However, because sequences by themselves
do not provide structural data, the inherent accuracy of such tools is generally less than that required
for stability prediction [12–17]. Third are the tools that integrate a variety of predictive methods.
These tools use machine-learning algorithms to produce a single, accurate prediction based on multiple
output data [18–21].

Because it has been difficult to improve the accuracy of algorithms using only sequence
information for prediction, such programs might be improved with the use of other available
information concerning the stability of a targeted protein. Addition of thermostability information
should also improve the accuracy of integrated predictive tools that use sequence-based information.
Development of new computational methods that allow for prediction of changes in protein
thermostability should involve new input features and learning algorithms that are not currently used.
Structure-based prediction tools usually use previously developed energy-based functions as input
and support-vector machines or neural networks as learning algorithms. In the absence of structural
information, sequence-based prediction tools use the amino-acid composition, physicochemical
properties of the residues, and evolution information derived from the protein sequence as input and a
support-vector machine as the learning algorithm. The tool MuStab was the first to include feature
selection as a third computational element [22,23].

Herein, we describe a new computational tool, named KStable, to predict changes in protein
thermostability upon mutation using sequence-based information. This method was trained using two
types of input data: basis features and minimal redundancy–maximal relevance (mRMR) features [24].
The basis features include the location of the mutation, the wild-type and replacement amino acids,
and experimental information, including temperature and pH. The mRMR features are the various
physicochemical characteristics selected by the mRMR-feature selection method [24,25], which is
based on the filter approach. Compared with the wrapper approach, feature selection methods
based on a filter approach usually cannot identify and eliminate redundant features, whereas mRMR
can select feature sets with maximum correlations and minimum redundancies. Three types of
features, namely 2-mRMR, diff-mRMR, and all-mRMR, were included in the development of KStable.
To enhance and validate the effectiveness of the mRMR-feature selection method, we developed the
regular-mRMR method and used the hill-climbing algorithm [26] to produce the best combination of
features. For development of the learning algorithm, 58 machine-learning classifiers in seven categories
(bayes, function, lazy, meta, misc, rules, and trees) in Weka [27,28] were tested for model selection.
The version of KStar [29] that used the lazy category was chosen because it had the best performance.

The performance of KStable is better than that of any other tool used to predict changes in
thermostability based on sequence information, with the exception of EASE-MM [13]. KStable also
performs better than certain structure-based tools. KStable has an important advantage over EASE-MM
in that it incorporates temperature and pH values as inputs. Moreover, the average prediction time
for each inputted mutation is 10 min for EASE-MM but < 1 min for KStable. To compare other
feature-selection methods that use the filter approach, we also assessed the effects of the 30 most
important features during the training of KStable. KStable is available at http://predictor.nchu.edu.
tw/KStable.

http://predictor.nchu.edu.tw/KStable
http://predictor.nchu.edu.tw/KStable
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2. Materials and Methods

The workflow that developed KStable is diagramed in Figure 1. After collecting and processing
data from Prothem, we assessed which basis and mRMR features and which of 58 machine-learning
classifiers should be incorporated to maximize the accuracy of KStable.
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2.1. Dataset

The training set that consisted of data related to changes in protein thermostability induced by
single mutations was retrieved from Protherm [30]. Only Protherm data that fulfilled the following four
criteria were included: (1) proteins with a single mutation, (2) inclusion of temperature and pH values,
(3) no missing attributes at each mutation site, and (4) inclusion of free-energy differences (∆∆G). The
resulting dataset, denoted S2864, that was used for training contained information for 868 stabilizing
mutations (positive mutations) and 1996 destabilizing mutations (negative mutations). To eliminate
possible bias in the training set induced by different numbers of positive and negative mutations,
we created three datasets with ratios of 1:1, 1:1.5, and 1:2 of positive to negative mutations, each of
which included all positive mutations. For each dataset, the destabilizing mutations were randomly
selected and then tested for predictive accuracy 10 times, and the results are shown in Supplementary
Table S6. We found that the positive to negative ratio of 1:2 resulted in the best Matthews correlation
coefficient (MCC); therefore, the final training set, S2605, contained data for 868 positive and 1737
negative mutations. The resulting model then underwent a 10-fold cross-validation using the training
set. An independent test set, denoted S438, was assembled by randomly selecting data for 146 positive
and 292 negative mutations from test datasets in I-Mutant 2.0 [4] and PoPMuSiC [6]. Before randomly
selecting these mutations, the data within I-Mutant 2.0 and PoPMuSiC were compared with the data
in S2605 to eliminate redundant or conflicting data. The temperature values in S438 ranged from 5 to
65 ◦C and the pH values from 2.7 to 9.2.

2.2. Features

We included two types of features: basis and mRMR. Basis features are those that could be
processed without feature selection (see below for details). mRMR features are the physicochemical
attributes of amino acids, e.g., hydrophobicity and side-chain size, that would be selected by mRMR
before processing to reduce computational load.
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Basis features are defined as the wet-chemistry experimental characteristics used to determine
stability, i.e., a wild-type residue and its replacement, location of the mutated residue, temperature,
and experimental pH values. For the mRMR features, 544 physicochemical attributes of amino acids
were retrieved from the AAindex database [31]. Because similar values included in the database
may increase computational complexity, we calculated Pearson correlation coefficients between each
attribute. The attributes with a correlation coefficient < 0.8 were retained. After filtering the attributes
in this manner, their number was reduced to 371. Three types of features were generated from these
attributes: (1) a total of 742 2-mRMR-type features, containing encoded amino-acid attributes for the
wild-type and mutant proteins; (2) a total of 371 diff-mRMR-types features, containing numerical
differences between amino-acid attributes of the wild-type and mutant proteins; and (3) a total of 1113
all-mRMR-type features, containing the 2-mRMR-type and diff-mRMR-type features.

2.3. mRMR Feature Selection

Redundancy and similar relationships between features will diminish the power of a tool meant
to predict the effect a mutation will have on stability; in addition, a large number of features will
increase computation time and computational complexity. Therefore, which features are selected must
be carefully considered when training a prediction tool.

To date, the most widely used methods for feature selection have been InfoGain, which selects
features that have the greatest weight at nodes on a decision-type tree, and Chi-Square, which uses a
probability density function to select features. Peng and colleagues introduced the mRMR method for
feature selection, which is more accurate than previous methods [24]. For mRMR feature selection,
the method first compares the relevancy pairwise between features, corrects the results, and then
compares the similarity between features. Relevant features that have corrected results are divided by
their similarity to other features, with this value being the mRMR score that is used during training.
This calculation ensures that the prediction method has the maximum relevance for the corrected
results and minimum interference between features. The mRMR score is calculated by combining
Equations (1) and (2) to produce Equation (3).

Max D =
1
|S|∑i∈S

I(i; c) (1)

Min R =
1

|S|2 ∑
i,j∈S

I(i; j) (2)

where S represents the feature set, c represents the target feature, I(i;c) represents the relevance between
feature i and target feature c, and I(i;j) represents the relevance between features i and j.

mRMR = D/R (3)

All features are ranked according to their mRMR scores. Features with greater mRMR scores have
a greater priority during construction of the model.

2.4. Regular-mRMR Feature Selection

Because a positive mutation to negative mutation ratio of 1:2 was used, some of the negative data
in dataset S2864 were not included in training dataset S2605. Therefore, whether the data in S2605
were fully representative of the data in S2864 was uncertain. To address this issue, we developed the
regular-mRMR method, which includes the following procedures.

1. Create N feature sets denoted as PT1~N by randomly selecting 868 samples N times from all data
in S2864 (868 positive mutations and 1996 negative mutations).

2. Perform mRMR-feature selection on each PT feature set.
3. For each feature j, calculate the weight ki,j according to its mRMR score rank of each PTj, with n

being the number of features to be chosen (Equation (4) below).
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4. The significance score Sj is defined by the average ki,j (Equation (5) below). The priority of each
feature is determined by the significance score.

The voting method is an ensemble method that improves the accuracy of a prediction model,
without needing a complex computation algorithm, by combining multiple prediction results [32].
The voting method can also be used to select a machine-learning model [33]. The weighted voting
model of regular-mRMR is based on the voting method.

ki,j = (n− posj(PTi) + 1) (4)

Sj = Avg
n

∑
i=1

ki,j (5)

In Equation (4), n is the number of features used, which is an arbitrary number. posj(PTi) represents
the ranking of feature j in the i-th feature set PTi. We first selected five feature sets PT1–5 (N = 5),
and, for each feature set, we selected the 50 highest-score features from mRMR for regular-mRMR.
For the high-scoring features, 65% have mRMR scores > 0.4; therefore, we set n to 30. For each feature
j, a weight value k was determined by the rank of its mRMR score. When feature j had the first rank
in the dataset, its k value was 30, and when feature j had the n-th rank in the dataset, its k value was
31 − n. For each type of 2-mRMR, diff-mRMR, and all-mRMR feature, five feature sets were generated,
and Sj was calculated for each set (Equation (5)). The priorities of their mRMR features were then
adjusted according to the Sj value generated from the regular-mRMR values.

2.5. Hill-Climbing Algorithm

Our prediction model was constructed using basis features and regular-mRMR features. To select
an adequate number of features from the regular-mRMR datasets, a hill-climbing algorithm was
used [34]. For this algorithm, only the nodes closest to the current node are included in the comparison,
and the search proceeds only when a new solution is better than the current node. Despite the speed
and simplicity of the hill-climbing algorithm, it may not select the best solution for the model because
the search may stop at a local, but not global, maximum. To prevent this problem, we started the
hill-climbing procedure using the results calculated with the basis features, which improved the ability
of the algorithm to reach the global maximum, thereby improving the accuracy of the method. Weka
was used for the selection of classifiers, and we tested 58 classifiers for their performance in the basis
feature set. The testing results for the classifiers are illustrated in Supplementary Figure S1.

During the training of the classifiers, the feature with the greatest current score from the
regular-mRMR test was added into the training set, and if it improved the MCC, the feature was
retained as a classifier; otherwise, the feature was eliminated. The procedure was repeated until all
features had been tested. The hill-climbing algorithm is given as Supplementary Algorithm S1.

2.6. Evaluation

To assess the predictive performance of each classifier, we used the equations given below. TP, FP,
FN, and TN represent true positive, false positive, false negative, and true negative values, respectively.
Sensitivity (Sn), also denoted the true positive rate, reflects the percentage of correct predictions of
changes in protein thermostabilities induced by mutations. Specificity (Sp), also denoted the true
negative rate, reflects the percentage of correct predictions for destabilizations. Accuracy (ACC) is used
to assess the overall predictive power of the prediction tool. MCC values range from −1 to 1, with a
value of 1 representing a completely correct prediction, a value of 0 representing a random prediction,
and a value of −1 representing exactly the opposite prediction, e.g., prediction of a destabilizing
mutation when the mutation is stabilizing.

Sn =
TP

TP + FN
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Sp =
TN

TN + FP

ACC =
TN + TP

TN + FN + TP + FP

MCC =
(TP× TN)− (FP× FN)√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)

3. Results and Discussion

3.1. Ranking Features in the PT Files by mRMR

The 2-mRMR-type features were denoted with an initial “V” and are shown in Supplementary
Tables S1 and S4. Among these features, V645 was ranked first in four of the five tests run by mRMR.
The priority rankings of the diff-mRMR-type features, denoted with an initial “M”, are also shown
in Supplementary Tables S2 and S4. Among these features, M324 was ranked first in all five tests.
Priority feature rankings achieved by regular-mRMR are shown in Supplementary Tables S3 and S4.
M324, the most important feature in the diff-mRMR rankings, also ranked first among the all-mRMR
features. However, other top-ranking all-mRMR-type features were ordered differently than in the
other feature lists. For example, the feature V651, which ranked second in the all-mRMR list, ranked
fifth in the 2-mRMR list. The feature V645, which ranked first in the 2-mRMR list, was not present in
the all-mRMR list as it had a rank number > 30. Because there were marked differences in the rankings
of the features in the all-mRMR lists and the other two lists, we needed to determine which feature list
to use. Because the final model needed to incorporate all possible useful features, only those in the
all-mRMR list were used in the construction of the final model.

3.2. Classifier Selection

The initial models were constructed with 58 different classifiers and trained with the basis features in
the S2605 training set. The prediction qualities were evaluated via a 10-fold cross-validation. The results
are shown in Supplementary Table S5. Seven types of classifiers were tested: bayes, function, lazy, meta,
misc, rules, and trees. The classifiers that performed the best achieved an ACC < 0.8 and an MCC < 0.5
and were meta-type classifiers with 12 having an ACC > 0.7 and 7 having an MCC > 0.4.

The six best-performing algorithms are listed in Table 1 with their classifier. For the functional-type
classifier, the algorithm that performed the best was LIBSVM [35], which achieved an ACC of
0.78 and an MCC of 0.43. For the tree-type classifier, the algorithm that performed the best was
RandomForest [36], which achieved an ACC of 0.78 and an MCC of 0.47. The second best-performing
tree-type algorithm was RandomTree [37], which achieved an ACC of 0.77 and an MCC of 0.45. For the
meta-type classifier, the algorithm that performed the best was RotationForest [38], which achieved an
ACC of 0.8 and an MCC of 0.51. For the lazy-type classifier, the algorithm that performed the best was
KStar, which achieved an ACC of 0.81 and an MCC of 0.54. We chose KStar as our classifier for use in
KStable because it had the best performance overall.

Table 1. The performance of the best classifiers in S2605.

Category Classifier ACC MCC

function LIBSVM 0.781 0.436
lazy KStar 0.817 0.547
meta RotationForest 0.805 0.513
rules PART 1 0.788 0.478
trees RandomForest 0.784 0.474
trees RandomTree 0.774 0.459

1 PART: partial decision trees.
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3.3. Basis Features Found Based on the Hill-Climbing Algorithm

The prediction models constructed using the hill-climbing algorithm with the regular-mRMR
features are listed in Table 2. The basis model was constructed using only the basis features and had an
ACC of 0.818 and an MCC of 0.562. After the addition of the first ranked feature from the regular-mRMR
list of ranked features, M324, the ACC and MCC values decreased to 0.810 and 0.562, respectively.
The poorer performance may have been caused by incompatibility between data selected from and not
selected from the mRMR list. The incompatibility problem was partially solved by the addition of the
mRMR feature V651. After the addition of V651, the ACC increased to 0.822, the MCC increased to 0.590,
and the Sn value increased from 0.656 to 0.677. However, the Sp value was still less than that found
using the model trained with only the basis features (0.894 compared with 0.906). The addition of the
features V453 and M149 resulted in an improved Sn (0.708), ACC (0.827), and MCC (0.607). The addition
of other features to a hill-climbing run did not exceed an ACC of 0.827 and an MCC of 0.607; therefore,
KStable incorporated the features Basis, V651, V453, and M149 for construction.

Table 2. Performance of the hill-climbing procedure when regular-mRMR (redundancy–maximal
relevance) features were combined with the basis features.

Feature Combination Sn Sp ACC MCC

Basis 0.641 0.906 0.818 0.578
Basis + M324 0.656 0.887 0.810 0.562
Basis + V651 0.677 0.894 0.822 0.590

Basis + V651 + V453 0.687 0.888 0.821 0.590
Basis + V651 + V453 + M149 0.708 0.887 0.827 0.607

3.4. Comparison of mRMR with Other Feature-Selection Methods

To compare the effects of regular-mRMR with other feature-selection methods, the top-30 ranked
features were selected by the Infogain- and ChiSquared-Attribute Evaluation algorithms, under the
same conditions used for the development of KStable. The selected features were then tested using
hill-climbing, and the results revealed that the use of regular-mRMR achieved greater ACC and MCC
values compared with the other two feature-selection methods (the results are given in Table 3).

Table 3. Comparison of feature-selection methods.

Method Sn Sp ACC MCC

Regular-mRMR 0.708 0.887 0.827 0.607
InfoGain 0.683 0.896 0.825 0.597

ChiSquared 0.692 0.890 0.824 0.598

3.5. Comparison of KStable with Other Predictors

Test set S438 was used to compare the performance of KStable with those of 13 other predictors
(Table 4). The predictors EASE-MM, I-Mutant2.0_seq, INPS_seq, iPTREE-STAB, and MUpro require
only a sequence as input. Only I-Mutant 2.0_seq, iPTREE-STAB, and KStable use temperature and
pH data. The accuracy of pH–temperature ranges is shown in Table S7, and the results of Table
S7 indicate that KStable has a more stable prediction ability than the other sequence-based tools.
AUTO-MUTE SVM, AUTO-MUTE RF, CUPSAT, DUET, I-Mutant2.0, MAESTRO, mCSM, PoPMuSiC,
SDM, and SDM2 require structural data from the Protein Data Bank. KStable achieved an ACC of
0.708, an MCC of 0.298, an Sn of 0.411, and an Sp of 0.856 in S438. Compared with the other five
sequence-based tools, the Sn, ACC, and MCC values of KStable were smaller than only those of
EASE-MM, which achieved Sn, ACC, and MCC values of 0.658, 0.724, and 0.402, respectively. Despite
being the best-performing sequence-based method, EASE-MM had the smallest Sp (0.757), and, owing
to inclusion of position-specific scoring matrix-based evolution information, secondary structure
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prediction data from SPIDER, and disordered-region prediction data from SPINE-D, EASE-MM
required more computational time than the other models. Moreover, among the six sequence-based
methods, only KStable, I-Mutant 2.0_seq, and iPTREE-STAB included temperature and pH data
as input, and KStable performed better than I-Mutant 2.0_seq. iPTREE-STAB achieved an MCC of
0.271—nearly the same as KStable—but had a worse Sn value (0.178). Compared with methods that
require structural data, the Sp value calculated by KStable was smaller than only those of SDM (0.733)
and SDM2 (0.616).

Because EASE-MM takes secondary structure and accessible surface area into account,
to thoroughly compare the performances of EASE-MM and KStable, we examined the prediction results
of both methods as a function of the secondary structural and accessible surface area information
obtained from AUTO-MUTE. The results are shown in Table 5. We found that, when a mutation
site is part of a coil or buried, KStable had better MCC and Sp values than EASE-MM. In addition,
EASE-MM performed better for mutation sites located in strands than in helices, which is consistent
with previous data.

Table 4. Comparison of prediction results with the use of S438.

Method Sn Sp ACC MCC

Sequence-based

KStable 0.411 0.856 0.708 0.298
EASE-MM 0.658 0.757 0.724 0.402

I-Mutant2.0_seq 0.185 0.918 0.674 0.151
INPS_seq 0.260 0.901 0.687 0.211

iPTREE-STAB 0.233 0.949 0.710 0.271
MUpro 0.267 0.901 0.689 0.218

Structure-based

AUTO-MUTE SVM 0.075 0.969 0.671 0.101
AUTO-MUTE RF 0.137 0.976 0.696 0.222

CUPSAT 0.342 0.747 0.612 0.093
DUET 0.308 0.962 0.744 0.382

I-Mutant2.0 0.233 0.918 0.689 0.210
MAESTRO 0.342 0.921 0.728 0.334

mCSM 0.212 0.979 0.724 0.325
PoPMuSiC 0.247 0.955 0.719 0.302

SDM 0.733 0.736 0.735 0.448
SDM2 0.616 0.774 0.721 0.384

Table 5. Comparison of performances by KStable and EASE-MM, as correlated with secondary
structures and solvent accessibility.

Structure * Method Sn Sp ACC MCC

Coil KStable 0.444 0.818 0.636 0.284
EASE-MM 0.571 0.682 0.628 0.255

Helix KStable 0.400 0.806 0.661 0.222
EASE-MM 0.750 0.676 0.702 0.409

Strand KStable 0.348 0.924 0.830 0.308
EASE-MM 0.652 0.873 0.837 0.474

Buried KStable 0.419 0.903 0.777 0.368
EASE-MM 0.500 0.835 0.748 0.339

Surface KStable 0.315 0.725 0.514 0.044
EASE-MM 0.796 0.549 0.676 0.357

Under surface KStable 0.567 0.831 0.747 0.405
EASE-MM 0.733 0.708 0.716 0.414

* Structures defined by AUTO-MUTE.
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3.6. Feature Analysis

The mRMR features V651 (β-sheet propensities derived from designed sequences), V453 (relative
preference value at N), and M149 (transfer energy from an organic solvent/water) proved to be
beneficial for the predictive power of KStable, when included in the hill-climbing model. Of all
30 potential mRMR features selected using the all-mRMR-type features, only four, V651, V453,
V117, and V157, are features selected for the wild-type amino acid at the potential mutation site.
The remaining 26 features are selected for the differences between the mutant and wild-type amino
acids; that is, they are the diff-mRMR-type features. Notably, none of the included features are directly
related to the mutant amino acid. Among the three characteristics included in the final KStable
model, two are features of the wild-type amino acid, and only one involves a difference between the
mutant and wild-type amino acids, which showed that, although the inclusion of diff-mRMR-type
features in the regular-mRMR test yielded a better score than when 2-mRMR features were used,
using diff-mRMR-type features did not necessarily improve the final model.

4. Conclusions

We developed KStable to predict changes in the thermostability of a protein upon mutation of a
single residue in its sequence. KStable was trained using the following data: ∆∆G, temperature, and pH
values; identities of the mutation site, and wild-type and mutant residues; and 544 physicochemical
attributes of amino acids. The basis features, ∆∆G, temperature, pH, wild-type and mutant residues,
and mutation site were processed without feature selection for training. The physicochemical attributes
of the amino acids (the mRMR features) were first selected by the regular-mRMR method, which is
based on the mRMR method and includes a procedure to eliminate possible conflicting characteristics
in the training set and find representative features for the native data space. Compared with Infogain
and ChiSquared, regular-mRMR achieved better ACC and MCC values for the feature selections.

Compared with other prediction models that require only sequence data as input, the MCC
value of KStable was worse for only that of EASE-MM, whereas it was better than those of four
other models. However, because EASE-MM includes a position-specific scoring matrix based on
evolution information, secondary-structure prediction data from SPIDER, and disordered-region
prediction data from SPINE-D, its computational feature-encoding time was greater than that for
KStable. Moreover, EASE-MM does not use input based on pH and temperature conditions. However,
protein thermostability changes are important for drug design and industrial applications [39,40].
KStable aims to rapidly predict the thermal stability of a target protein in various environments.
Therefore, the purpose of EASE-MM is different from that of KStable; thus, the functionality of
EASE-MM cannot be directly compared with that of KStable. Building a high-performance method
for the prediction of protein thermal stability changes using sequence-based data is more difficult
than that using structure-based data. One possible reason for this is that a prediction based on protein
structure considers long-range interactions of the polypeptide chain [41]. However, compared with
other prediction models that require structural data, KStable achieved a larger MCC value than four
structural-data-requiring models and a better Sn value than eight structural-based models (only SDM
and SDM2 yielded better values). We find KStable to be an accurate and fast computational tool that
includes environmental conditions as input and can predict the thermostabilities of target proteins
that have mutated at single sites.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/12/
988/s1. Table S1: The selected features of 2-mRMR by mRMR for five tests. Table S2: The selected features of
diff-mRMR by mRMR for five tests. Table S3: The 30 highest-ranked mRMR features selected by regular-mRMR
feature selection for the three feature types of 2-mRMR, diff-mRMR, and all-mRMR. Table S4: The AAIndex
coding with diff-mRMR and 2-mRMR. Table S5: The comparison of classifiers in seven major categories. Table
S6: The performance of the ratios of positive and negative data, P: positive data; N: negative data. Figure S1:
The evaluation and comparison of the classifiers’ performance. Algorithm S1: the Hill-Climbing algorithm used
in KStable.
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