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The effect of galactoglucomannan oligosaccharides (GGMOs) compared with chemically modified oligosaccharides, GGMOs-g
(with reduced number of D-galactose side chains) and GGMOs-r (with reduced reducing ends) on mung bean (Vigna radiata
(L.) Wilczek) adventitious roots formation, elongation, and anatomical structure have been studied. All types of oligosaccharides
influenced adventitious root formation in the same way: stimulation in the absence of exogenous auxin and inhibition in the
presence of exogenous auxin. Both reactions are probably related with the presence/content of endogenous auxin in plant cuttings.
However, the adventitious root length was inhibited by GGMOs both in the absence as well as in the presence of auxin (IBA or
NAA), while GGMOs-g inhibition was significantly weaker compared with GGMOs. GGMOs-r were without significant difference
on both processes, compared with GGMOs. GGMOs affected not only the adventitious root length but also their anatomy in
dependence on the combination with certain type of auxin. The oligosaccharides influenced cortical cells division, which was
reflected in the cortex area and in the root diameter. All processes followed were dependent on oligosaccharides chemical structure.
The results suggest also that GGM-derived oligosaccharides may play an important role in adventitious roots elongation but not
in their formation.

1. Introduction

The research in the recent years has focused on ascertain-
ment of various plant growth regulators or some chemical
products influence on growth and development of agri-
cultural plants [1, 2]. Mung bean is in tropical countries
a common and widely cultivated nutritious legume crop
with antioxidant activity [3], seedlings of which have been
used as a model to examine adventitious root formation
[4, 5]. Adventitious root formation is important for the
vegetative propagation of plants and their growth. Various
plant growth regulators have been tested for rooting of mung
bean hypocotyl cuttings [5–7]. Besides growth regulators,
oligosaccharides isolated from plant cell walls are the most
important factors acting in plant growth and development
[8]. Xylooligosaccharides stimulate, for example, the rooting

of birch and black pine shoots [9] and induce callus forma-
tion and somatic embryogenesis in explants of common mal-
low (Malva silvestris L.) and cotton [10]. Oligogalacturonides
support root elongation growth of lettuce [11] and were
shown to promote cytokinin-induced vegetative shoot for-
mation from tobacco leaf explants [12]. Trisaccharide frag-
ment of xyloglucan stimulated callus growth and increased
the number of embryos in suspension culture of cotton [13].
Hepta- and octa-saccharide (linear oligomers composed of
glucose and mannose) isolated from the water extract of
the rhizomes of Paris polyphylla var. yunnanensis stimulated
shoot formation of P. polyphylla var. yunnanensis and root
hairs growth of Panax japonicus var. major [14]. A pen-
tasaccharide synthesized by Paris polyphylla var. yunnanensis
showed a significant stimulus on tobacco seedling growth
[15].
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Figure 1: Effect of GGMOs, GGMOs-g, and GGMOs-r alone, and in combination with IBA or NAA on mung bean adventitious root
elongation. Control—without any plant growth regulators. Different letters above bars indicate significant differences at P < 0.05 according
to LSD test.

Galactoglucomannan oligosaccharides (GGMOs) de-
rived from plant cell walls galactoglucomannan influence
growth, developmental processes, and defence reactions in
plant cells [16–18]. GGMOs showed inhibition effect on
elongation growth of pea and spruce stem segments induced
by auxins and gibberellin at very low concentrations [19,
20] and their inhibitory effect depended on their chemical
structure [20, 21]. GGMOs also inhibited adventitious root
formation and elongation of mung bean hypocotyl cuttings
in the presence of auxins [22]. Morphology and anatomy
of in vitro cultivated Karwinskia humboldtiana root culture
was examined, and the results have shown a dependency on
GGMOs concentration and interaction with certain type of
auxin [23]. However, the effect of chemically modified forms
of GGMOs on adventitious root formation and elongation
in plant cuttings has not been studied yet. Therefore, the aim
of our work was to compare the effect of GGMOs and their
modified forms GGMOs-r (with reduced reducing ends) and
GGMOs-g (with reduced number of D-galactose side chains)
alone, or in combination with auxins (IBA or NAA) on
mung bean adventitious roots formation, elongation, and
their anatomy.

2. Materials and Methods

2.1. Preparation of Galactoglucomannan Oligosaccharides
(GGMOs). GGMOs with d.p. 4–8 were obtained from
spruce galactoglucomannan by partial acid hydrolysis as
described previously [24]. Galactoglucomannan consists of a
backbone of (1 → 4)-linked β-D-mannopyranosyl and β-D-
glucopyranosyl residues distributed at random, having single

stubs of (1 → 6)-linked α-D-galactopyranosyl residues
attached to both mannosyl and glucosyl residues, with
slightly preferred substitution of mannosyl residues. GGMOs
consist of galactose (4.5%), glucose (21.1%), and mannose
(70.4%). Galactoglucomannan oligomers (d.p. 4–8) were
composed of tetramers (46%), pentamers (28%), hexamers
(12%), heptamers (9%), and octamers (5%). Their number-
average molecular mass (Mn) was calculated to be 827.

2.2. Preparation of Partly Degalactosylated Galactoglucoman-
nan Oligosaccharides (GGMOs-g). GGMOs-g, with reduced
number of D-galactose units to about 50%, were prepared
by treatment of GGMOs with purified α-galactosidase (EC
3.2.1.22) from coffee beans (Sigma Aldrich, St. Louis, MO,
USA) as described previously [25]. Monosaccharide analysis
of GGMOs-g by glucose revealed the presence of galactose
(2.4%), glucose (21.6%), and mannose (72.0%) residues.
Not complete splitting of side chains (deglycosylation only
to 47%) is a phenomenon, which may occur by exoenzymes
digestion, in this case by the cleavage of α-linked galactose
residues with α-galactosidase. The most plausible causes for
this state are inhibition of the reaction by the end product,
or steric properties of the molecule. The structural features
of the individual oligomers in this mixture did not change in
comparison with GGMOs.

2.3. Preparation of Modified Oligosaccharides (GGMOs-r).
Modified oligosaccharides GGMOs-r (with reduced reducing
ends) were prepared by method described previously [26].
GGMOs of d.p. 4–8 were dissolved in distilled water and
treated with 2 M solution of NaBH4. Excess of reagent
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Figure 2: Effect of GGMOs, GGMOs-r, and GGMOs-g alone, and in combination with IBA or NAA on the rooting and adventitious root
elongation of mung bean hypocotyl cuttings. K: control, without any plant growth regulators, A: GGMOs, B: GGMOs-r, C: GGMOs-g, bar
= 1 cm.

was destroyed by Dowex (H+), filtered, concentrated to
dryness, and the boric acid was removed by codistillation
with methanol. Modified oligosaccharides were dissolved in
distilled water and freeze-dried. The mutual ratio of single
oligomers in GGMOs-r was the same as in nonmodified
GGMOs.

2.4. Plant Material and Growth Conditions. Seeds of mung
bean (Vigna radiata (L.) Wilczek var. Emmerald) (Breeding
Station Co., Horná Streda, Slovakia) were soaked in water
for 3 hours and sown on cellulose wadding. The seeds were
kept in the thermostat for 72 hours at 27 ± 1◦C, 80% relative
humidity in the dark. Uniform seedlings with 6-7 cm long
hypocotyls were cut 5 cm below the cotyledons and roots
were removed. For precise dosing, the bases of hypocotyl
cuttings were immersed for 24 h in test solutions according
to effective and simple method for promoting adventitious
root formation [6, 7]. The following treatments were used:
IBA and NAA in 10−4 M concentration either alone or in
combination with GGMOs and/or with their modified form
(10−8 M). IBA, NAA, and GGMOs in their most effective
concentrations tested previously were applied [22]. For
control variant, distilled water was used. After the treatment

with test solutions, cuttings were grown in the substrate
(wet sand + peat in the ratio 3 : 1). This substrate is suitable
for easy extraction of roots, which is needed for structural
studies. Cultivation conditions were the following: 27 ± 1◦C,
60–70% relative humidity, 12 h photoperiod, irradiance of
180 μmol m−2 s−1, and daily watering to maintain constant
water saturation of the substrate at cca 75%. Number
and length of adventitious roots and their anatomy were
determined after six days of growth.

2.5. Microscopy. For light microscopy, root segments (3.5–
4 mm from the apex in the case of roots treated in
GGMOs/GGMOs-g alone or in combination with IBA, and
1 mm from the apex in the case of roots treated in NAA
or GGMOs/GGMOs-g in combination with NAA) were
fixed in 5% glutaraldehyde and postfixed in 0.5% osmium
tetroxide, both in 0.1% sodium cacodylate buffer (pH 7.2).
The samples were dehydrated in ethanol and propylene
oxide, embedded in Spurr medium, and cut with glass
knives using Tesla BS 490 ultramicrotome. Semithin sections
made at the distance 3 mm from the root apex were stained
with toluidine blue and basic fuchsin [27]. Microscopic
samples were recorded with digital camera Sony Exwave
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Figure 3: Cross sections of mung bean adventitious roots. Control—without any plant growth regulators, rh—rhizodermis, cor—cortex,
en—endodermis, cc—central cylinder, bar = 100 μm.

HAD. Adventitious root morphometric parameters were
determined by Lucia image analysis system (Lucia 4.8, 1991–
2002 Laboratory Imaging, Prague, Czech Republic). Diame-
ter of roots (μm), area of rhizodermis, cortex, endodermis,
central cylinder (μm2), and number of primary cortical cells
were measured on the root cross sections.

2.6. Statistical Analysis. The values represent the means of
three separate experiments with 15 samples per treatment.
The data were evaluated by analysis of variance (ANOVA),

and comparisons between the mean values were made by
least significant difference (LSD) test at P < 0.05, and
standard error (SE) was calculated.

3. Results and Discussion

3.1. Root Formation and Elongation. GGMOs stimulated
adventitious roots formation in the absence of auxins,
though their effect was weaker compared with IBA and NAA
(Table 1). On the contrary, in the presence of exogenous
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Table 1: Effect of GGMOs, GGMOs-g, and GGMOs-r alone, and
in combination with IBA or NAA on mung bean adventitious root
formation. Control—without any plant growth regulators. Means
followed by the same letters are not significantly different at P <
0.05 according to LSD test.

Adventitious roots number

Control 10.26± 0.04 a

GGMOs 13.82± 1.20 b

GGMOs-r 13.93± 0.65 b

GGMOs-g 13.41± 0.05 b

IBA 55.71± 0.96 c

IBA + GGMOs 49.23± 0.54 d

IBA + GGMOs-r 46.00± 1.80 d

IBA + GGMOs-g 48.13± 1.97 d

NAA 50.20± 1.37 d

NAA + GGMOs 40.62± 2.49 e

NAA + GGMOs-r 40.40± 2.21 e

NAA + GGMOs-g 40.31± 3.05 e

auxin GGMOs inhibited adventitious roots formation. All
forms of oligosaccharides influenced adventitious roots
formation in the same range, no significant differences
were determined. Effect of GGMOs on adventitious root
formation was independent on their chemical structure.

On the other hand, GGMOs and GGMOs-r inhibited
root elongation in the absence, as well as in the presence
of IBA or NAA, while GGMOs-g inhibition was signifi-
cantly weaker compared with GGMOs (Figure 1). Moreover,
GGMOs-g + IBA and IBA stimulated adventitious root
elongation compared with the control (Figures 1 and 2). The
impact of GGMOs and their modified forms on adventitious
root elongation in the presence of IBA or NAA may be
connected with the distinct action of these auxins in the
rooting process [28, 29], as well as with their interaction
with oligosaccharides used [30]. In addition to this, both
reactions (formation and elongation of roots) are probably
related with the presence or content of endogenous auxin
in such plant cuttings. The reducing ends of GGMOs did
not influence their action in root elongation growth similarly
as reducing ends of glucan and chitin oligosaccharides did
not affect their biological activity [31, 32], while Spiro et
al. [33] observed that the modification at the reducing end
of oligogalacturonides influenced in different ways their
biological activity in morphogenic bioassays. It seems that
the inhibitory effect of GGMOs on root elongation could
be related to the presence of galactosyl side chains likewise
their inhibitory effect in pea stem segments [20]. Similarly,
the stimulating or inhibiting effects of oligogalacturonides
on root formation in thin-layer explants of buckwheat were
dependent on the monosaccharide content [34]. The biolog-
ical activity of xyloglucan oligosaccharides in plant growth
and development was dependent also on their chemical
structure [35, 36]. It is evident that the GGMOs chemical
structure influences their action in elongation growth of

aboveground plant parts [20] and of roots but has no effect
on root formation.

3.2. Root Anatomy. Differences in structural aspects of
adventitious roots were compared from samples cultured in
the presence of auxins, GGMOs, GGMOs-g, and under the
coaction of auxins with GGMOs or GGMOs-g. The impact
of GGMOs-r on adventitious root structure is not shown
because GGMOs-r did not influence the root elongation
compared with GGMOs. After the GGMOs treatment, it has
been ascertained that the diameter of roots, cortex area and
central cylinder, and the number of cortical cells decreased
in comparison with the control, though in GGMOs-g treated
roots these parameters were higher compared to GGMOs
treatment (Table 2, Figure 3). From results obtained, it can
be supposed that GGMOs inhibit not only adventitious
root elongation but also the enlargement of root diameter
connected with the inhibition of cortical cells division.

The effect of GGMOs in the presence of both types
of auxin on adventitious root anatomy was significantly
different in comparison with the previous experiment.
GGMOs + IBA increased the diameter of roots, cortex area
and central cylinder, and the number of cortical cells in
comparison with IBA-treated roots (Table 2, Figure 3). The
diameter of roots, cortex area and central cylinder, and
the number of cortical cells was significantly lower in the
presence of GGMOs-g + IBA compared with GGMOs + IBA.
Adventitious roots treated with GGMOs + NAA were larger
in diameter, cortex area and central cylinder, and number
of cortical cells compared to NAA. Treatment of GGMOs-
g + NAA increased the diameter of roots, cortex area, and
the number of cortical cells in comparison with GGMOs
+ NAA. From results obtained, it can be supposed that
GGMOs influence cortical cell division likewise in the case
of GGMOs action in zinnia xylogenic cultures [37]. The
impact of GGMOs on cortical cell division in the presence
of different types of auxin is dependent on the chemical
structure of oligosaccharides, but probably also on different
mechanisms of action of certain type of auxin [38–40].

From our results, it can be concluded that galactose side
chains can notably modify the biological activity of GGMOs
in elongation of adventitious roots, but not in their forma-
tion. The anatomy of adventitious roots affected by GGM-
derived oligosaccharides of different chemical structure and
combination with certain auxin was then reflected in the root
diameter resulting from variations mainly in the cell number
and the dimension of cortex area.

Abbreviations

d.p.: Degree of polymerisation
GGM: Galactoglucomannan
GGMOs: Galactoglucomannan oligosaccharides
GGMOs-g: GGMOs with reduced number of

D-galactose side chains
GGMOs-r: GGMOs with reduced reducing ends
IBA: Indole-3-butyric acid
NAA: 1-naphthaleneacetic acid.
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Table 2: Effect of GGMOs, GGMOs-g alone, or in combination with IBA or NAA on the root diameter, area of rhizodermis, cortex,
endodermis, central cylinder, and number of cortical cells of mung bean adventitious roots. Particular tissues were measured on transversal
root sections. Means in each column followed by the same letters are not significantly different at P < 0.05 according to LSD test.

Root Area of rhizodermis Area of cortex Area of endodermis Area of central cylinder Number of

diameter (μm) (1000 μm2) (1000 μm2) (1000 μm2) (1000 μm2) cortical cells

Control 643.1 ± 7.8 a 23.84 ± 1.06 a 259.51 ± 4.40 a 5.44 ± 0.92 a 25.54 ± 2.66 a 411.5 ± 14.5 a

GGMOs 518.2 ± 14.2 b 21.57 ± 3.47 a 153.31 ± 3.65 b 4.71 ± 0.52 ab 18.19 ± 0.59 b 244.0 ± 2.3 b

GGMOs-g 644.4 ± 9.1 a 22.88 ± 2.37 a 249.01 ± 4.11 ac 6.27 ± 0.62 a 23.65 ± 1.15 a 319.3 ± 15.3 c

IBA 422.4 ± 1.4 c 15.01 ± 0.27 b 106.89 ± 4.20 d 2.91 ± 0.10 b 8.21 ± 0.17 d 186.0 ± 6.0 d

IBA + GGMOs 469.9 ± 7.7 d 15.40 ± 1.60 b 135.19 ± 3.71 b 3.42 ± 0.10 b 12.18 ±1.14 c 247.3 ± 6.8 b

IBA + GGMOs-g 426.5 ± 0.9 c 13.73 ± 0.92 b 108.40 ± 1.64 d 3.20 ± 0.08 b 10.95 ± 0.42 ad 197.7 ± 6.3 d

NAA 596.4 ± 13.2 e 23.48 ± 1.60 a 224.44 ± 7.38 c 8.94 ± 0.25 c 31.87 ± 1.77 e 294.3 ± 5.8 c

NAA + GGMOs 655.4 ± 20.2 a 28.84 ± 1.17 c 307.59 ± 1.65 e 9.07 ± 1.24 c 37.26 ± 0.80 f 357.0 ± 15.2 e

NAA + GGMOs-g 761.5 ± 34.4 f 32.09 ± 1.14 c 426.84 ± 2.49 f 8.61 ± 0.77 c 38.89 ± 0.07 f 398.3 ± 22.3 a
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and plant oligosaccharides on root formation and elongation
growth of mung bean hypocotyls,” Plant Growth Regulation,
vol. 46, no. 1, pp. 1–9, 2005.
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