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Abstract

When exact values of model parameters in systems biology are not available from experiments, they need to be inferred so
that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with
Markov chain Monte Carlo (MCMC) is a useful method. Biological experiments are often performed with cell population, and
the results are represented by histograms. On another front, experiments sometimes indicate the existence of a specific
bifurcation pattern. In this study, to deal with both type of such experimental results and information for parameter
inference, we introduced functions to evaluate fitness to both type of experimental results, named quantitative and
qualitative fitness measures respectively. We formulated Bayesian formula for those hybrid fitness measures (HFM), and
implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback.
Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them with both
qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network
previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and
irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters
that have the experimental estimates were inferred without these data and the results were consistent with the
experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed
down the acceptable range of parameters. Taken together, our approach could reliably infer the kinetic parameters of the
target systems.
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Introduction

In computational systems biology, mathematical models of gene

regulatory networks or signal transduction networks are often

represented by ordinary and partial differential equations. In these

equations, there are kinetic parameters which characterize

strengths of interactions or rates of biochemical reactions.

However, all the values of kinetic parameters in the model are

not always available from previous experiments and literatures. In

these cases, unknown kinetic parameters need to be inferred so

that the model simulation reproduces the known experimental

phenomena. Parameter inference is very important for the

mathematical modeling of biological phenomena, because it is

known that network structures (network motifs) alone do not

always determine the response or function of that network [1]. To

infer unknown parameters, there are various methods used in

systems biology [2]. Evolutionary strategy is one of the methods for

parameter inference by iterative computation [3] and has already

been used to estimate kinetic parameters of the mathematical

models of metabolic pathway [4], circadian clock system of

Arabidopsis [5] and mammal [6]. Simulated annealing [7] is an

optimization algorithm and has already been used for parameter

estimation of a biochemical pathway [8]. Although these methods

are useful, they do not give us the information about credibility

and uncertainty of unknown parameters with the distributions of

unknown parameters.

In this respect, Bayesian statistics is a powerful method for

parameter inference giving us the information about credibility

and uncertainty of unknown parameters as a credible interval of

posterior distribution. However, posterior distributions in Bayesian

statistics are often difficult to obtain analytically. In these cases,

Markov chain Monte Carlo methods (MCMC) [9,10] can be used

to obtain samples from posterior distributions. In conventional

MCMC, explicit evaluation of a likelihood function is needed to

evaluate a posterior distribution. Otherwise, when the likelihood

function is analytically or computationally intractable, approxi-

mate Bayesian computation (ABC) [11] MCMC can be used.

ABC-MCMC can evaluate posterior distribution without explicit

evaluation of a likelihood function, but with simulation-based

approximations in its algorithm [12]. ABC was implemented not

only in MCMC but also in sequential Monte Carlo methods

(SMC) [13,14]. ABC-SMC has already been applied for param-

eter inference and model selection in systems biology [14–18].
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Biological experiments are often performed with cell popula-

tion, and the results are represented by histograms. For example,

delay time and switching time of caspase activation after TRAIL

treatment in apoptosis signal transduction pathway were repre-

sented by histograms [19]. Here, we call this kind of experimental

result or data as a quantitative condition. On another front,

experiments or observations sometimes indicate the existence of a

specific bifurcation pattern. For example, experiments about RB-

E2F pathway in cell cycle regulatory system and mitochondrial

apoptosis signal transduction pathway indicate that those pathway

work as bistable switches [20,21]. Bistability indicates the existence

of saddle-node bifurcation in mathematical modeling. Here, we

call this kind of experimental result or data as a qualitative

condition. In this study, to utilize those conditions for parameter

inference, we introduce and call the functions which can evaluate

the fitness to those conditions as quantitative and qualitative fitness

measures respectively. Although conventional MCMC and ABC-

MCMC evaluate posterior distribution with and without explicit

evaluation of a likelihood function, respectively, none of these

MCMC algorithms evaluate posterior distribution in the case that

the experiments for parameter inference are a mixture of

quantitative and qualitative conditions.

To overcome this problem, we formulated Bayesian formula for

hybrid fitness measures (HFM) and implemented it to MCMC.

We named the method MCMC-HFM which can deal with the

mixture of qualitative and quantitative fitness measures. We first

tested the MCMC-HFM to a kinetic toy model with a positive

feedback. Starting with an assumed set of parameters that satisfies

qualitative condition, we generated kinetic data with some noise.

Using the generated data and qualitative condition, we tried to

infer the kinetic parameters mainly related to the positive

feedback. As the result, MCMC-HFM could reliably infer the

kinetic parameters with use of both qualitative and quantitative

fitness measures. Next, we applied the MCMC-HFM to a

mathematical model of apoptosis signal transduction network,

which was proposed before [22]. We tried to infer the kinetic

parameters which are especially related to the implicit positive

feedback because it is known to be important for characteristic

system properties such as bistability and irreversibility of output

[22]. As the result, MCMC-HFM could also reliably infer the

kinetic parameters, especially those of which have experimental

estimates without using these data and the results were consistent

with experiments. We also examined 95% credible intervals of

inferred parameter distributions, and tried to gain deeper

understanding of the implicit positive feedback for bistability,

irreversibility, and characteristic dynamics of output in the

apoptosis model. This analysis allowed us to specify the important

kinetic parameter and corresponding biochemical process for

characteristic system properties. These results indicate that

MCMC-HFM is a useful method for parameter inference and

system analysis.

Methods

We explain the derivation of MCMC-HFM algorithm. In

Bayesian statistics, under given a likelihood function P(xo|h) and a

prior distribution p(h), a posterior distribution p(h| xo) is

represented as follows:

p hjxo

� �
!P xojhð Þp hð Þ

Here, h is parameters and xo is observed data. For computation

of a posterior distribution, MCMC can be used and it generates

samples from a posterior distribution. Conventional MCMC

Metropolis-Hastings algorithm [9,10] is as follows:

MCMC algorithm

MC1. Initialize hi i = 0.

MC2. Propose a candidate value h*,q(h|hi) where q is a

proposal distribution.

MC3. Set hi+1 = h* with probability following a.

a~a hi,h
�ð Þ~ min 1,

P xojh�ð Þp h�ð Þq hijh�ð Þ
P xojhið Þp hið Þq h�jhið Þ

� �

otherwise set hi+1 = hi.

MC4. If i,N, increment i = i+1 and go to MC2.

MCMC algorithm is designed as the stationary distribution is

consistent with the target posterior distribution p(h|xo). As shown

above, conventional MCMC needs explicit evaluation of a

likelihood function P(xo|h) to judge whether a candidate value

h* is acceptable or not in step MC3. Conventional MCMC can be

used in the case that the deviation between the experimental time

series data and the simulated time series data is evaluated by

probability distributions. For example, Eydgahi et al. used

Gaussian distribution to evaluate the deviation [23]. They set

the negative logarithm of the likelihood is correspondent to the

chi-squared function which equals to the sum of squared

differences between experimental data and simulated data at each

time point. In contrast, ABC-MCMC evaluates a posterior

distribution without explicit evaluation of a likelihood function,

but with simulation-based approximations. Thus, ABC-MCMC is

useful when the likelihood function is analytically or computa-

tionally intractable. ABC-MCMC algorithm is as follows:

ABC-MCMC algorithm

ABC1. Initialize hi i = 0.

ABC2. Propose a candidate value h*,q(h|hi) where q is a

proposal distribution.

ABC3. Simulate a data set x*,P(x|h*).

ABC4. Set hi+1 = h* with probability following a.

a~a hi,h
�ð Þ~ min 1,

p h�ð Þq hijh�ð ÞI(r(xo,x � )ƒe)

p hið Þq h�jhið ÞI(r(xo,xi)ƒe)

� �

otherwise set hi+1 = hi.

ABC5. If i,N, increment i = i+1 and go to ABC2.

Here, I(C) is an indicator function which I(C) = 1 if a condition

C is true, and 0 otherwise. r is a distance function and e is a

tolerance [12]. In ABC-MCMC algorithm, likelihood ratio

P(xo|h*)/P(xo|hi) is approximated to I(r(xo, x*)#e))/I(r(xo,

xi)#e)). Thus, likelihood ratio is coarsely approximated by 1 if

simulated data and observed data are sufficiently ‘‘close’’, and 0

otherwise [13]. ABC-MCMC can be used when an experimental

data is a time series of protein concentration or gene expression

level. The algorithm judges whether a simulated time series data

with a model under h is close enough to the experimental time

series data or not. Toni et al. applied ABC-SMC algorithm for

parameter inference of the repressilator model comparing time

series data [14]. The idea and manner of ABC-MCMC, which

judge the acceptance of parameters by all-or-none manner, might

be intuitively applied when an experimental result support the

existence of a specific phenomenon. In this case, unknown

parameters are judged whether they reproduce the observed

experimental phenomenon or not by all-or-none manner. An

example is the case that an experimental result supports the

existence of some specific bifurcation patterns such as saddle-node

bifurcation or Hopf bifurcation in a mathematical model [24–27].

Parameter Inference with Mixed Fitness Measures
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In this case, existence of a specific bifurcation pattern is judged by

all-or-none manner. However, both MCMC and ABC-MCMC

algorithms cannot, at least in these forms, deal with a mixture of

quantitative and qualitative conditions. Thus, extensions and

heuristic assumptions of these algorithms are needed to overcome

this problem.

For this purpose, firstly, we consider the case that we have

qualitatively different experiment data obtained in the same

system. When we want to obtain a posterior distribution of

parameters h by n qualitatively different experiments, X1,…,Xn,

the posterior distribution are represented as follows:

p hjX1,:::,Xnð Þ!P X1,:::,Xnjhð Þp hð Þ

~P XnjXn{1,:::,X1,hð Þ::::P X2jX1,hð ÞP X1jhð Þp hð Þ

Here, n indicates the number of different experiments.

Likelihood P(X1,…,Xn|h) can be decomposed into a multiplica-

tion of conditional probabilities. In this manner, we can utilize a

number of different experimental data. In this study, we want to

use both quantitative condition i.e. experimental data represented

by histogram and qualitative condition i.e. experimental data

which indicate the existence of specific bifurcation pattern. Then,

we utilize the above idea, a multiplication of conditional

probabilities, and employ an assumption to deal with both

quantitative and qualitative conditions. A posterior distribution

conditioned by a multiple quantitative and qualitative conditions is

assumed as follows:

p hjC1,:::,Cm,Zmz1,:::,Znð Þ!

fquant Znð Þ:::fquant Zmz1ð Þfqual Cmð Þ:::fqual C1ð Þp hð Þ

Here, we assumed and changed a likelihood term to a

multiplication of a number of quantitative fitness measures (fquant)

and qualitative fitness measures (fqual). In the equation, Z indicates

a quantitative condition and C indicates qualitative condition.

fquant(Z) is a quantitative fitness measure to a quantitative

condition Z and fqual(C) is a qualitative fitness measure to a

qualitative condition C. Rigorously speaking, fitness measures are

not conditional probabilities. They are defined functions to

evaluate the fitness of simulated data to experimental data. For

a concrete evaluation of fitness, above equation is changed as

follows:

fquant Znð Þ:::fquant Zmz1ð Þfqual Cmð Þ:::fqual C1ð Þp hð Þ

~fquant zn hð Þð Þ:::fquant zmz1 hð Þð ÞI Cm hð Þð Þ:::I C1 hð Þð Þp hð Þ

Here, quantitative fitness measures are changed to functions of

z(h). z is a concrete value calculated by numerical simulation under

h. Depending on a value of simulated z(h), fquant compare it to the

experimental data represented by a histogram and returns a

specific value. In this setting, we set fquant(z (h)) is the value of

‘‘Frequency’’ at the corresponding class in a histogram of

experimentally observed z. Quantitative fitness measures are

changed to functions of condition C. Depending on a satisfaction

of a condition C under parameters h, fqual returns a specific value.

As a default, we assumed fqual(C) equals to I(C(h)), indicator

function. For example, when Hopf bifurcation is observed in

numerical simulation under parameters h, I(C(h)) equals to 1,

otherwise 0. In this example, a condition C equals to ‘‘existence of

Hopf bifurcation’’. We implemented this formula to the MCMC

algorithm and then we could obtain MCMC-HFM algorithm as

follows:

MCMC-HFM algorithm

HFM1. Initialize hi i = 0.

HFM2. Propose a candidate value h*,q(h|hi) where q is a

proposal distribution.

HFM3. Simulate whether Cj (j = 1,m) are satisfied or not

under h*.

HFM4. Set hi+1 = h* with probability following a.

a~a hi ,h
�ð Þ~

min 1,
fquant zn h�ð Þð Þ:::fquant zmz1 h�ð Þð ÞI Cm h�ð Þð Þ:::I C1 h�ð Þð Þp h�ð Þq hijh�ð Þ
fquant zn hið Þð Þ:::fquant zmz1 hið Þð ÞI Cm hið Þð Þ:::I C1 hið Þð Þp hið Þq h�jhið Þ

� �

Otherwise set hi+1 = hi.

HFM5. If i,N, increment i = i+1 and go to HFM2.

MCMC-HFM algorithm is designed as the stationary distribu-

tion is consistent with the target distribution fquant(zn(h))…f-

quant(zm+1(h))I(Cm(h))…I(C1(h))p(h), with all qualitative conditions

C1,…,Cm are satisfied. This was demonstrated in Text S1. By

MCMC-HFM, we can deal with mixture of quantitative and

qualitative fitness measures. Actually, about qualitative fitness

measures, assumption of fitness measure may not be needed by

setting a prior distribution to a distribution which satisfies

qualitative conditions. However, for clarity of our idea and

method, we introduced qualitative fitness measures.

Results

Flow of parameter inference
In this section, we explain the flow of parameter inference

(Figure 1) before detailed explanations. To show the efficiency of

the use of hybrid fitness measures for parameter inference by

MCMC-HFM, we applied the method to one test and one

application. The test is done about a simple kinetic toy model and

the application is done about an apoptosis signal transduction

network.

In the test, we set the model and qualitative condition used for

parameter inference by ourselves (box with dotted line in Figure 1).

In addition, we prepared quantitative fitness measures fquant(z) by

following procedures (dotted arrows in Figure 1). We set a vector

of ‘‘true’’ parameters hanswer satisfying qualitative condition. Then

we generated distribution of observables by simulating the toy

model with some noise into the model. We set the distribution of

observables to fquant(z). Given the toy model, assumed qualitative

conditions, and a simulated quantitative fitness (box with bold line

in Figure 1), we performed MCMC-HFM and obtained distribu-

tions of parameters used for inference (bold arrows in Figure 1).

The inferred parameters are compared with the ‘‘true’’ param-

eters.

In the application, we employed the apoptosis model of Legewie

et al. ’s [22]. Their model exhibits bistability and irreversibility,

which we set as the qualitative conditions for parameter inference.

As a quantitative fitness, we used the experimental data, instead of

generation by simulations. Thus, in the application, we inferred

distributions of parameters that fit with experiments by MCMC-

HFM (flow from box with bold line to bold arrows).

Parameter Inference with Mixed Fitness Measures
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Test
Mathematical model of a kinetic toy model. As a test, we

first applied MCMC-HFM to infer kinetic parameters of a simple

kinetic toy model (Figure 2A). This system contains only one

variable ‘‘Y’’ that corresponds to a protein. In the model, the

protein is synthesized by zero-order reaction, and degraded by

first-order reaction. In addition, the protein can enhance its own

expression, forming a positive feedback represented by a Hill

function. The ordinary differential equation of the model is

d½Y�
dt

~ks�kd ½Y�zkp
½Y�n

Knz½Y�n

In the right hand side, the first term corresponds to synthesis of

Y, the second term corresponds to degradation of Y, and the last

term corresponds to the positive feedback. The synthesis rate

constant, ks, is the input to the system. When other constants are

set to the values hanswer = (kd,kp,K) = (1.0,1,0,0.5), and the Hill

coefficient is set to n = 5, the concentration of Y (represented as

[Y]) shows bistability and irreversibility (Figure 2B). Here, hanswer is

the three dimensional vector of parameters. We note that we did

not specifically define the unit of time, [Y] and parameters for

simplicity. Those two features, bistability and irreversibility, were

used as qualitative conditions for the parameter inference. In the

application of MCMC-HFM to this model, we inferred the three

constants, kd, kp and K. Here, the Hill coefficient was fixed to

n = 5 for simplification of the problem.

Generation of quantitative fitness measures in the kinetic

toy model. To show the efficiency of the use of hybrid fitness

measures, in addition to qualitative conditions i.e. bistability and

irreversibility, we needed to prepare experimental results used as

quantitative fitness measures. When the input is set to ks = 1.0 over

a whole time-series simulation, [Y] is produced and reaches to the

almost saturated level by time = 10 with hanswer (Figure 2C). Based

on this result, we decided to generate quantitative fitness measures

i.e. histograms related to time series of Y production and amount

of Y. In concrete terms, we decided to generate and use the data

‘‘execution time of Y production’’ and ‘‘concentration of Y at time

= 100’’ as quantitative fitness. The concrete definition of

‘‘execution time of Y’’ is that the time when [Y] reached the

90% of its maximum value in dynamics simulation or bifurcation

analysis (‘‘Te’’ in Figure 2C). The concrete definition of

‘‘concentration of Y at time = 100’’ is that the value of [Y] at

time = 100 in dynamics simulation. To generate histograms of

these two observables from the kinetic toy model with the ‘‘true’’

parameters values hanswer, we performed simulations for 10000

times by adding Gaussian noise into the model. When mean and

variance of Gaussian noise was set to 0 and 1 respectively,

execution time and concentration of Y at time = 100 showed

variation as shown in histograms in Figure 2D and E respectively.

In this case study, we used these histograms as quantitative fitness

measures for parameter inference. This setting and usage of

histograms for parameter inference will be reasonable because

experiments often performed in cell population and their results

are sometimes shown by histograms [19].

Application of MCMC-HFM to the kinetic toy model. For

parameter inference, we used four types of information, ‘‘bist-

ability of Y’’ abbreviated as ‘‘B’’, irreversibility of Y abbreviated as

‘‘I’’, execution time of Y abbreviated as ‘‘Te’’ and ‘‘concentration

of Y at time = 100’’ abbreviated as ‘‘[Y]time = 100’’. For the

application of MCMC-HFM, ‘‘B’’ and ‘‘I’’ are qualitative

conditions. In contrast, ‘‘Te’’ and ‘‘[Y]time = 100’’ are quantitative

conditions. Therefore, we assigned ‘‘B’’ as C1, ‘‘I’’ as C2, ‘‘Te’’ as

Z3, and ‘‘[Y]time = 100’’ as Z4 in MCMC-HFM algorithm (about the

assignment to these symbols, see Methods section). Conditions C1

and C2 were judged by bifurcation analysis. The concrete

definition of the condition C1 is that, there are two stable steady

states and one unstable steady state when ks = 0.2 (‘‘ks0.2’’ in

Figure 2B). There is one stable steady state when ks = 0.3 (‘‘ks0.3’’

in Figure 2B). There is one stable steady state when ks = 1.0 (‘‘ks1’’

in Figure 2B). When all of them are satisfied, fqual(C1) = I(C1(h))

equals to 1, and 0 otherwise. Concrete definition of the condition

C2 is that, in addition of the condition C1, there are two stable

steady states and one unstable steady state when ks = 0.0 (‘‘ks0’’ in

Figure 2B). When all of them are satisfied, fqual(C2) = I(C2(h))

equals to 1, and 0 otherwise. In this case study, we used the

histogram of ‘‘execution time of Y’’ (Figure 2D) as one quantitative

fitness measure fquant(Z3) = fquant(z3(h)), and the histogram of

‘‘concentration of Y at time = 100’’ (Figure 2E) as another

quantitative fitness measure fquant(Z4) = fquant(z4(h)). z3(h) and

z4(h) were calculated by dynamics simulation under parameters

h. In this setting, fquant(z3(h)) is the value of ‘‘Frequency’’ at the

corresponding class of calculated z3(h) in figure 2D, and fquant(z4(h))

is the value of ‘‘Frequency’’ at the corresponding class of

calculated z4(h) in figure 2E. In bifurcation analysis, steady states

concentrations of Y was calculated by solving the simultaneous

equation obtained by setting the ordinary differential equation

equals to zero with the standard Newton-Raphson method. Local

stabilities of all the steady states were determined by evaluating

eigenvalues of Jacobian matrices which were obtained by

linearization of ordinary differential equation. In dynamics

simulation, the ordinary differential equation was numerically

solved by the fourth-order Runge-Kutta method with a time step

of 0.01. Total calculation time was 100 (10000 steps). Initial

concentration of Y in dynamics calculation was set to

[Y]time = 0 = 0.

The prior distributions of parameters were set to follow the

uniform distributions on a common logarithmic scale. Upper

bound and lower bound were set to tenfold and one-tenth of the

values of ‘‘true’’ parameter vector hanswer respectively. Uniform

distribution of kinetic parameters on a logarithmic scale has been

used in robustness analysis in systems biology [28].

In the MCMC-HFM algorithm, the proposal distribution was

set as the uniform distribution. Newly proposed parameter h’ is

Figure 1. Flow chart of parameter inference. Flow chart of
parameter inference. Dotted arrows and box with dotted line
correspond to a preparation process of quantitative fitness fquant(z)
specifically for the kinetic toy model. Bold arrows and box with bold line
correspond to a general parameter inference process by MCMC-HFM.
doi:10.1371/journal.pone.0074178.g001

Parameter Inference with Mixed Fitness Measures
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proposed by using unit random number ‘‘r’’ as follows.

h0~hz(r� 0:5)|sq

Here, h is a vector consisting of common logarithm of kinetic

parameters, and sq was set to 0.5 in this case study. Perturbation

of kinetic parameter on a logarithmic scale has also been used in

robustness analysis in systems biology [29].

In each step of MCMC-HFM, one of kinetic parameters was

randomly chosen and perturbed by the proposal distribution

q(h’|h). We performed totally 3.36106 Monte Carlo steps. The

first 0.36106 steps were thrown away as the so-called burn-in

period. Of the remaining 3.06106 steps, we recorded data every 3

steps, so that we collected totally 106 data points for the parameter

inference. From them, we can draw discrete marginal probability

distributions as illustrated in Figure S1.

Parameter inference by posterior distribution for the

kinetic toy model. To investigate the efficiency of the use of

hybrid fitness, we conducted the parameter inference tests using

different combination of fitness, comparing these results. First, we

used only the both two types of the qualitative conditions, i.e.,

‘‘BI’’. Second, we used the two types of qualitative conditions and

the one quantitative condition, ‘‘BITe’’. Third, we used

‘‘BI[Y]time = 100’’. Lastly, we used all the four conditions,

‘‘BITe[Y]time = 100’’.

In the present MCMC simulations, we define the representative

parameter values of inference by the values at the mode, the peak

of each marginal distribution (red arrows in Figure 3). We also

calculated 95% credible intervals of each inferred parameter.

Upper bound and lower bound of 95% credible interval were

defined as external regions of bounds contain 2.5% data

respectively. The common logarithm of the ratio of upper bound

and lower bound of 95% credible interval was shown in Figure 4.

A wider interval indicates lower credibility of the inferred value.

We first look into the parameter inference with ‘‘BI’’

(Figure 3.A). Figure 3.A showed that MCMC-HFM with ‘‘BI’’

well inferred (red arrow) the ‘‘true’’ values (the red bar) in all three

parameters. However, the distributions of parameters were very

wide which indicates the credibility of parameter inference is very

low (Figure 4). In three parameters, kp favored relatively larger

values (Figure 3.A-b). This indicates that positive feedback needs

to be strong to achieve bistability and irreversibility.

Figure 2. Mathematical model of the kinetic toy model. (A) Schematic diagram of the kinetic toy model. Y is a variable (protein). Arrows direct
to Y represents production process. An arrow from Y represents degradation process. A lined circle represents a pool of Y. Equations correspond to
the terms in the ordinary differential equation of the model. (B) Bifurcation diagram of the model. Red colored lines indicate stable steady states and
the blue colored line indicates unstable steady state with ‘‘true’’ values of kinetic parameters hanswer. ‘‘ks0’’, ‘‘ks0.2’’, ‘‘ks0.3’’ and ‘‘ks1’’ indicate the ks

values (ks = 0, 0.2, 0.3, 1.0 respectively) used as the conditions to infer kinetic parameters. (C) Time series of [Y]. Te represents ‘‘execution time of Y
production’’. (D) Distribution of ‘‘execution time of Y production’’ abbreviated as ‘‘Te’’. (E) Distribution of ‘‘concentration of Y at time = 100’’
abbreviated as ‘‘[Y]time = 100’’.
doi:10.1371/journal.pone.0074178.g002

Parameter Inference with Mixed Fitness Measures
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Next, we address the parameter inference with ‘‘BITe’’

(Figure 3.B). MCMC-HFM well inferred the ‘‘true’’ values of kd

and K. The variability of kd and K clearly decreased (Figure 3.B-a,

B-c, Figure 4), which indicates the credibility of kd and K inference

get higher by the usage of quantitative condition, ‘‘Te’’. However,

MCMC-HFM could not well infer the ‘‘true’’ value of kp and the

credibility of kp inference did not change (Figure 3.B-b, Figure 4).

These results indicate that to reproduce the histogram of execution

time in Figure 2.D, the degradation rate of Y (kd) and the working

threshold of positive feedback (K) needed to be restricted, but not

the strength of positive feedback (kp).

Next, we address the parameter inference with ‘‘BI[Y]time = 100’’

(Figure 3.C). MCMC-HFM well inferred the ‘‘true’’ values of kd

and K, and the variability of their distributions decreased, but not

so much as ‘‘BITe’’ did (Figure 3.C-a, C-c, Figure 4). kp was still

not so well inferred and had low credibility of inference

(Figure 3.C-b, Figure 4). Thus, independent usage of quantitative

condition, ‘‘Te’’ and ‘‘[Y]time = 100’’, did not well infer kp.

However, when both of quantitative conditions were used with

qualitative conditions ‘‘BI’’, MCMC-HFM could infer all three

parameters well (red arrows in Figure 3.D) with higher credibility

(Figure 4) than independent usage of quantitative condition as

shown in Figure 3.B and 3.C. This result may be interpreted as

follows. The information ‘‘Te’’ restrict kd and K as shown in

Figure 3.B, then additional information ‘‘[Y]time = 100’’ could

restrict kp. Thus, to infer the strength of positive feedback kp with

high credibility, the usage of both quantitative fitness measures is

necessary.

If we changed the histograms in Figure 2.D and E to the

histograms generated by adding much weaker Gaussian noise

(variance was changed from 1 to 0.01) into the model, better

inference with high credibility was accomplished (Figure 3.E,

Figure 4).

Taken together, MCMC-HFM estimated the ‘‘true’’ values of

kinetic parameters hanswer very well with use of hybrid fitness

measures. In addition, we could confirm that kinetic parameters

were inferred to reproduce the histograms of ‘‘Te’’ and

‘‘[Y]time = 100’’ (Figure S2). Thus, MCMC-HFM could reliably

infer the ‘‘true’’ values of kinetic parameters to reproduce the used

histograms i.e. quantitative fitness measures for parameter

inference. Generally, although the inferred range of parameter

varies depending on the case, comparison of MCMC simulations

in Figure 3 clarified that, with more types of fitness, we can narrow

down acceptable range of parameters more. Thus, ability of

hybrid use of quantitative and qualitative fitness measures by

MCMC-HFM is indeed useful.

Application
Mathematical model of apoptosis signal transduction

network. As an application, we applied MCMC-HFM to infer

kinetic parameters of the previously constructed Legewie et al. ’s

mathematical model of apoptosis signal transduction network

(Figure 5.A, B) [22]. There are many mathematical models of

apoptosis signal transduction network [19,21,28,30–35] and

related networks for cell fate decision [36–43]. In some of these

models, bistability and irreversibility of output, such as caspase-3

which is an important enzyme for execution of apoptosis [44–46],

are prominent characteristics of the system. Experimentally, it is

known that activated caspase-3 level rises rapidly over a 10 , 20

minutes period (here named ‘‘execution time’’ Te in Figure 5.D)

after mitochondrial outer membrane permeabilization (MOMP),

which is the phenomenon that apoptotic signal is transmitted from

mitochondria to cytoplasm [33]. In addition, the duration from

the start to the finish of caspase-3 activation, named ‘‘switching

time’’ Ts (Figure 5.D), varies among cell to cell, but is independent

of the strength of death stimulus [19]. Legewie et al. ’s model

satisfies bistability and irreversibility of caspase-3 level (Figure 5.C),

and caspase-3 activation occurs within 20 minutes (Figure 5.D) by

using the kinetic parameters in their work [22]. However, several

kinetic parameters in Legewie et al. ’s model had not yet been

determined experimentally. Thus, we decided to apply MCMC-

HFM to their model.

In Legewie et al.’s model, input stimulus is Apaf-1 (represented

as ‘‘A’’ in Figure 5.A) and output is active caspase-3 (represented

as ‘‘C3*’’ in Figure 5.A). All biochemical reactions are represented

by ordinary differential equations. In the application of MCMC-

HFM to Legewie et al.’s model, we used the same ordinary

differential equations described in their paper [22]. The model

totally consists of 13 variables and 41 kinetic parameters. Legewie

et al. revealed that so-called implicit positive feedback, which

XIAP binds both caspase-3 and caspase-9 (Figure 5.B), plays an

important role for bistability and irreversible activation of caspase-

3. Thus, we tried to infer especially five kinetic parameters,

association rate constant (kasso) between XIAP and five caspases

which are directly related to implicit positive feedback. Here,

dissociation rate constants of XIAP-caspase complexes and other

kinetic parameters were fixed to the values in their paper [22] for

simplification of the problem.

Application of MCMC-HFM to the apoptosis model. For

parameter inference, we used four types of information, ‘‘bist-

ability of caspase-3’’ abbreviated as ‘‘B’’, ‘‘irreversible activation of

caspase-3’’ abbreviated as ‘‘I’’, ‘‘switching time of caspase-3

activation’’ abbreviated as ‘‘Ts’’, and ‘‘execution time of caspase-3

activation’’ abbreviated as ‘‘Te’’. For the application of MCMC-

HFM, ‘‘B’’ and ‘‘I’’ are qualitative conditions. On the other hand,

‘‘Ts’’ and ‘‘Te’’ are quantitative conditions. Therefore, we assigned

‘‘B’’ as C1, ‘‘I’’ as C2, ‘‘Ts’’ as Z3 and ‘‘Te’’ as Z4 in MCMC-HFM

algorithm.

Conditions C1 and C2 were judged by bifurcation analysis. The

concrete definition of the condition C1 is that, there are two stable

steady states and one unstable steady state when Apaf-1 = 2.0

[nM], and active caspase-3 concentration of lower stable steady

state is below 1.0 [nM] and higher stable steady state is over 1.0

[nM] (‘‘A2’’ in Figure 5.C). There is one stable steady state when

Apaf-1 = 20.0 [nM] and activated caspase-3 concentration is over

1.0 [nM] (‘‘A20’’ in Figure 5.C). There are stable steady states

when Apaf-1 = 0.001 [nM] and active caspase-3 concentration of

lower stable steady state is below 1.0 [nM] (‘‘A0.001’’ in Figure 5.C).

The criterion of activated caspase-3 concentration 1.0 [nM] comes

from the fact that this concentration is considered to be high

enough for caspase-3 to cleave 106–107 molecules of cellular

substrate within several hours when a cell volume is 1 picoliter

[31,33,47]. When all of them are satisfied, fqual(C1) = I(C1(h))

equals to 1, and 0 otherwise. Concrete definition of the condition

C2 is that, in addition of the condition C1, there are two stable

steady states and one unstable steady state when Apaf-1 = 0.001

[nM], and active caspase-3 concentration of lower stable steady

state is below 1.0 [nM] and higher stable steady state is over 1.0

[nM] (‘‘C0.001’’ in Figure 5.C). When all of them are satisfied,

fqual(C2) = I(C2(h)) equals to 1, and 0 otherwise.

Quantitative conditions, ‘‘switching time of caspase-3 activa-

tion’’ and ‘‘execution time of caspase-3 activation’’ were calculated

by dynamics simulation. The concrete definition of ‘‘switching

time of caspase-3 activation’’ is that the duration from the time

when active caspase-3 concentration reached the 2.5% of its

maximum value to the time when active caspase-3 concentration

reached the 97.5% of its maximum value. The maximum value of

active caspase-3 was chosen as the maximum concentration in
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Figure 3. Marginal probability distributions of parameters in the kinetic toy model. Probability distributions with ‘‘BI’’ (A), those with
‘‘BITe’’ (B), those with ‘‘BI[Y]time = 100’’ (C), those with ‘‘BITe[Y]time = 100’’ (D) and those with ’’BITe[Y]time = 100’’ with weaker noise in quantitative fitness (E).
Red bars represent the ‘‘true’’ values or parameters. Red arrows indicate the modes.
doi:10.1371/journal.pone.0074178.g003

Parameter Inference with Mixed Fitness Measures

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e74178



each dynamics simulation and bifurcation analysis. The mean

values of switching time in cell population are 19 to 27 minutes

and standard deviations are 7.7 to 13 minutes, slightly differ

depending on the strength of apoptotic stimulus, TRAIL

concentration, as experimentally shown in Albeck’s study [19].

The histogram of switching time was also shown in Albeck’s study.

However, they did not show the frequency of each class in the

histogram explicitly. Thus, we needed to approximate the

histogram of switching time. Because switching time is always

larger than 0, log-normal distribution or gamma distribution can

be used for approximation of the histogram. In this study, we

adopted a log-normal distribution to mimic the switching time

histogram. This is because it is known that skewed distributions

often closely fit the log-normal distributions, and there are many

examples across the sciences [48]. Assumed quantitative fitness

measures of switching time is as follows:

fquant Z3ð Þ~fquant z3 hð Þð Þ~ 1

z3

ffiffiffiffiffiffi
2p
p

ss

exp {
ln z3{msð Þ2

2s2
s

( )

Here ms and ss were set as the expected value of z3 equals to 23

minutes and the standard deviation equals to 10 minutes

(Figure 5.E). Numerically calculated switching time under

parameters h, z3(h), is a variable of the quantitative fitness

measure. The concrete definition of ‘‘execution time of caspase-3

activation’’ is that the time when active caspase-3 concentration

reached the 90% of its maximum value in each dynamics

simulation or bifurcation analysis. Experimentally, it is known

that active caspase-3 level rises rapidly over a 10,20 minutes

period after MOMP [33]. However, there is no available

histogram data of the distribution of execution time of caspase-3

activation. Thus, we adopted the log-normal distribution in the

same way as the switching time. Assumed quantitative fitness

measures of execution time is as follows:

fquant Z4ð Þ~fquant z4 hð Þð Þ~ 1

z4

ffiffiffiffiffiffi
2p
p

se

exp {
ln z4{með Þ2

2s2
e

( )

Here me and se were set as the expected value of z4 equals to 15

minutes and the standard deviation equals to 3 minutes, as most of

parameter vectors reproduce 10,20 minutes for execution time of

caspase-3 (Figure 5.F) [33]. Numerically calculated execution time

under parameters h, z4(h), is a variable of the quantitative fitness

measure.

In bifurcation analysis, steady states concentrations of all

proteins were calculated by solving the simultaneous equations

obtained by setting all the ordinary differential equations equals to

zero with the standard Newton-Raphson method. Local stabilities

of all the steady states were determined by evaluating eigenvalues

of Jacobian matrices which were obtained by linearization of

ordinary differential equations. In dynamics calculation, the

ordinary differential equations were numerically solved by the

fourth-order Runge-Kutta method with a time step of 0.01. Total

calculation time was 500 (50000 steps). Initial condition of the

apoptosis model in dynamics calculation was shown in Table S1.

The prior distributions of parameters were set to follow the

uniform distributions on a common logarithmic scale. Upper

bound and lower bound were set to tenfold and one-tenth of the

values used in Legewie et al.’s paper [22] respectively.

In MCMC-HFM algorithm, the proposal distribution was set as

the uniform distribution. Newly proposed parameter h’ is

proposed by using unit random number ‘‘r’’ as follows.

h0~hz(r� 0:5)|sq

Here, h is a vector consisting of common logarithm of kinetic

parameters, and sq was set to 1.0 in this case study.

In each step of MCMC-HFM, one of kinetic parameters was

randomly chosen and perturbed by the proposal distribution

q(h’|h). We performed totally 5.56106 Monte Carlo steps. The

first 0.56106 steps were thrown away as the so-called burn-in

period. Of the remaining 5.06106 steps, we recorded data every 5

steps, so that we collected totally 106 data points for the parameter

inference. From them, we can draw discrete marginal probability

distributions as illustrated in Figure S3.

Parameter inference by posterior distribution for the

apoptosis model. To investigate roles of each type of fitness on

parameters, we conducted the parameter inference using one to

four types of fitness, comparing these results. First, we used only

the first type of qualitative condition, i.e., ‘‘B’’. Second, we used

the two types of qualitative conditions, ‘‘BI’’. Third, we used the

two types of qualitative conditions and the one quantitative

condition, ‘‘BITs’’. Fourth, we used ‘‘BITe’’. Lastly, we used all the

four conditions, ‘‘BITsTe’’.

In the present MCMC simulations, we also define the

representative parameter values of inference by the values at the

mode, the peak of each marginal distribution (red arrows in

Figure 6–10). We note that, of the five parameters, two

parameters, XIAP-C3* association rate constant (represented as

kasso (X-C3*)) and kasso (X-C9) are experimentally characterized

[49,50] (values indicated by a red bar in Figure 6, 7), whereas the

other three kinetic parameters have no experimental data and

were assumed as the same values as that of kasso (X-C9) in the

reference [22] (values indicated by a green bar in Figure 8–10).

Specifically, we first look into the parameter inference of kasso

(X-C3*). Figure 6 A and B showed that MCMC-HFM with ‘‘B’’ or

‘‘BI’’ did not well infer (the red arrow) the experimentally

characterized value (the red bar). On the other hand, MCMC-

HFM with ‘‘BITs’’ and ‘‘BITe’’ (Figure 6.C D) inferred the value

very close to the experimentally characterized value. Furthermore,

Figure 4. 95% credible intervals of inferred parameters in the
kinetic toy model. The 95% credible intervals are represented by
common logarithm of the ratio of upper bound and lower bound of
95% credible intervals. Blue bars represent the case with ‘‘BI’’. Red bars
represent the case with ‘‘BITe’’. Green bars represent the case with
‘‘BI[Y]time = 100’’. Magenta bars represent the case with ‘‘BITe [Y]time = 100’’.
Cyan bars represent the case with ‘‘BITe [Y]time = 100’’ with weaker noise
in quantitative fitness.
doi:10.1371/journal.pone.0074178.g004
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MCMC-HFM with ‘‘BITsTe’’ inferred the experimental value

perfectly (Figure 6.E).

Next, we address the parameter inference of kasso (X-C9). The

inference with ‘‘B’’ or ‘‘BI’’ by MCMC-HFM (Figure 7.A, B)

resulted in the parameter values somewhat deviated from the

experimentally characterized value. The MCMC-HFM with

‘‘BITs’’ also showed similar deviation (Figure 7.C). On the other

hand, The MCMC-HFM with ‘‘BITe’’ and with ‘‘BITsTe’’

narrowed the parameter range and the mode (the red arrow) is

very close to the experimental value (Figure 7.D, E). For both of

the above parameter inference, clearly, the use of quantitative

fitness together with qualitative fitness is powerful and thus

MCMC-HFM provides a useful framework.

Next, as for kasso (X-AC9), both of MCMC-HFM with ‘‘B’’,

‘‘BI’’ and ‘‘BITs’’ provided nearly uniform distribution without

providing any information (Figure 8.A, B, C). On the other hand,

MCMC-HFM simulations with ‘‘BITe’’ and ‘‘BITsTe’’ disfavored

values larger than ,0.06 although they still accept any values

lower than ,0.06. The mode was smaller than the value assumed

in Legewie et al’s paper (Figure 8.D, E) although the precise mode

value does not seem robust in the current simulations due to the

flatness of the distribution and the intrinsic error in simulations.

We note again that the value of kasso (X-AC9) was not determined

experimentally and thus it is difficult to conclude if the inference

was succeeded or not. At least, MCMC-HFM with ‘‘BITe’’ and

‘‘BITsTe’’ narrowed down the range of kasso (X-AC9).

Figure 5. Mathematical model of the apoptosis signal transduction network. (A) Schematic diagram of the model. Solid arrows represent
mass flows. Dotted arrows represent enhancement of the processes. One-way arrows between components represent irreversible processes. Two-
way arrows between components represent reversible processes. Apaf-1 ‘‘A’’ is an input stimulus, and activated caspase-3 ‘‘C3*’’ is an output.
Abbreviations are as follows: A: Apaf-1, C9: caspase-9, C3: caspse-3, X: XIAP. (B) Simplified diagram of the apoptosis signal transduction network at
cytoplasm. Arrows represent activations. Lines with horizontal bar represent inhibition by binding and sequestering. Red colored interactions are
implicit positive feedbacks. (C) Bifurcation diagram of the model. Red colored lines indicate stable steady states and the blue colored line indicates
unstable steady state with the set of kinetic parameters used in Legewie et al’s study. ‘‘A0.001’’, ‘‘A2’’ and ‘‘A20’’ indicate the Apaf-1 concentrations
(Apaf-1 = 0.001, 2.0, 20.0 respectively) used as the conditions to infer kinetic parameters. (D) Time series of active caspase-3 (C3*) with kinetic
parameters used in Legewie et al’s study. Ts represents ‘‘switching time of caspase-3 activation’’. Te represents ‘‘execution time of caspase-3
activation’’. (E) Assumed function of switching time of caspase-3 activation. (F) Assumed function of execution time of caspase-3 activation.
doi:10.1371/journal.pone.0074178.g005
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kasso (X-C9*) were quite well inferred in all cases (Figure 9A–E).

In all cases, the mode was consistent with the value assumed in

Legewie et al’s paper. Although the value of kasso (X-C9*) was not

determined experimentally, the inference by the current MCMC-

HFM simulations strongly suggest that 0.06, the value used in the

previous work, would be a good choice.

kasso (X-AC9*) was inferred similarly by all the five simulations

(Figure 10.A–E). Although the inferences are not strong, they all

favor smaller rate constants than the value assumed in the work of

Legewie et al. The fact that all five simulations gave similar results

suggests that the existence of ‘‘B’’ alone disfavors, but not

completely rules out, values larger than 0.06. Other types of

fitness did not work for narrowing the parameter range.

Taken together, MCMC-HFM estimated experimentally esti-

mated kinetic parameters, kasso (X-C3*) and kasso (X-C9), perfectly

in consistent with experimental values.

Figure 6. Marginal probability distributions of kasso (X-C3*). Probability distribution with ‘‘B’’ (A), that with ‘‘BI’’ (B), that with ‘‘BITs’’ (C), that
with ‘‘BITe’’ (D), and that with ’’BITsTe’’ (E). Red bars represent experimentally estimated values. Red arrows indicate the modes.
doi:10.1371/journal.pone.0074178.g006

Figure 7. Marginal probability distributions of kasso (X-C9). The same as captions in Figure 6.
doi:10.1371/journal.pone.0074178.g007
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Switching time and execution time for caspase-3

activation of inferred parameters. Next, we checked wheth-

er the switching time and execution time of caspse-3 activation are

consistent with the assumed functions shown in Figure 5.E and F

respectively.

About the switching time of caspase-3 activation, Ts, as shown

in Figure 11.A, only with ‘‘B’’, the inferred parameters showed

log-normal like distribution, without quantitative condition, Ts.

However, the calculated histogram is not consistent with the

approximated histogram of the assumed function (red outline box

histogram in Figure 11). The peak of calculated distribution is

located at faster position than the assumed function shown in

Figure 5.E. By additional conditions ’’I’’, ‘‘Ts’’ and ‘‘Te’’, the

distribution got sharper but the positions of peaks do not change

(Figure 11.B–E). The calculated histograms are still not consistent

with the approximated histogram of the assumed function. These

Figure 8. Marginal probability distributions of kasso (X-AC9). The same as captions in Figure 6, except for green bars represent the used value
in Legewie et al’s study but not experimentally estimated.
doi:10.1371/journal.pone.0074178.g008

Figure 9. Marginal probability distributions of kasso (X-C9*). The same as captions in Figure 8.
doi:10.1371/journal.pone.0074178.g009
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results seem to indicate that other experimentally-unknown kinetic

parameters in the model are not correct. This is discussed in

Discussion section.

About the execution time of caspase-3 activation, Te, as shown

in Figure 12.D and E, the inferred parameters showed clearly

similar distribution to that in Figure 5.F, when ‘‘Te’’ was

considered. Over 90% parameter sets showed 10,20 minutes

for caspase-3 activation. In the cases with ‘‘BI’’ and with ‘‘BITs’’,

only about 20% parameter sets showed 10,20 minutes for

caspase-3 activation and calculated histograms are clearly far from

the approximated histogram of the assumed function (Figure 12.A–

C). Taken together, the inferred parameter sets could not well

reproduce the function about ‘‘Ts’’ assumed based on experimen-

tal results [19] as shown in Figure 11. On the other hand, the

inferred parameter sets could reproduce the probability density

function about ‘‘Te ‘‘, assumed based on experimental results [33]

as shown in Figure 12.

Credibility intervals for system analysis of the apoptosis

model. Lastly, to quantify the acceptable range of parameters,

we calculated 95% credible intervals of each inferred parameter.

Upper bound and lower bound of 95% credible interval were

defined as external regions of bounds contain 2.5% data

respectively. Common logarithm of the ratio of upper bound

and lower bound of 95% credible interval was shown in Figure 13.

In Figure 13, kasso (X-C3*), kasso (X-C9) and kasso (X-AC9) showed

differences among the five MCMC simulations, while others did

not show clear difference.

The 95% credible intervals of kasso (X-C3*) became narrower by

additional information of ‘‘I’’. As seen in Figure 6, smaller values

of kasso (X-C3*) got unfavorable and higher values got favorable by

additional information of irreversibility. This might be explained

as follows. For irreversible activation of caspase-3, caspase-9 needs

to activate caspase-3 constantly, and switch-on states of positive

feedbacks needs to be sustained. For constant activation of

caspase-3, a certain amount of caspase-9 has to be dissociated

from XIAP. Thus, kasso (X-C3*) tended to favor higher values to

attract XIAP and 95% credible interval became narrower.

The 95% credible intervals of kasso (X-AC9) and kasso (X-C9)

became narrower by additional information of ‘‘Te’’. This result

indicates that, free AC9 and, more dominantly, free C9 determine

the timing of caspase-3 activation after MOMP (MOMP is at time

= 0 minutes in our simulation). This is actually consistent with our

intuition. After Apaf-1 input, firstly, C9 and AC9 activate C3 to

C3*. Then two positive feedbacks, one is the implicit positive

feedback, and the other is the positive feedback that C3* activates

C9 to C9* and AC9 to AC9* (Figure 5.A, B), are switched on and

apoptotic stimulus is amplified. The switch-on timing of the

positive feedbacks will determine the time when enough amount of

caspase-3 is activated after Apaf-1 input, i.e. execution time of

caspase-3 activation. Thus C9 and AC9 mainly determine the

execution time of caspase-3 activation. Therefore, free C9 and free

AC9 amounts need to be more strongly constrained, and thus the

credible intervals became narrower.

In this manner, the current parameter inference process

provides us lessons on which parameters are important for specific

system properties. In addition, investigation about correlation

coefficients and joint probability distributions between inferred

parameters also provides us the relationships between parameters

and specific system properties (See Text S2, Figure S4-S6 and

Table S2).

In the two experimentally determined parameters, kasso (X-C9)

had narrow interval but kasso (X-C3*) had still wide intervals. A

wide credible interval of posterior distribution indicates that the

information for parameter inference was not enough only with the

information of bistability, irreversibility, switching time of caspase-

3 activation and execution time of caspase-3 activation. As

experimental results on the target system properties increases, the

credible interval will become narrower and better inference will be

accomplished.

Figure 10. Marginal probability distributions of kasso (X-AC9*). The same as captions in Figure 8.
doi:10.1371/journal.pone.0074178.g010
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Discussions

In the present study, we introduced functions to evaluate fitness

to experimental results, named fitness measures. Then we

formulated Bayesian formula for hybrid fitness measures. We

implemented it and developed MCMC-HFM algorithm to deal

with a mixture of quantitative and qualitative fitness measures. We

tested the MCMC-HFM algorithm for parameter inference in the

kinetic toy model and the mathematical model of apoptosis signal

transduction network. In the former, we inferred the kinetic

parameters mainly related to positive feedback. As a result,

MCMC-HFM could reliably infer the kinetic parameters with use

of hybrid fitness measures. In the apoptosis model, we inferred the

kinetic parameters which are related to the implicit positive

Figure 11. Calculated histograms of switching time of caspase-3 activation. Histogram of switching time of caspase-3 activation calculated
with ‘‘B’’ (A), that with ‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with ‘‘BITsTe’’ (E). Blue bars represent calculated results. Red outline
box bars represent the approximated histogram of the function shown in Figure 5.E.
doi:10.1371/journal.pone.0074178.g011

Figure 12. Calculated histograms of execution time of caspase-3 activation. Histograms of execution time of caspase-3 activation
calculated with ‘‘B’’ (A), that with ‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with ‘‘BITsTe’’ (E). Blue bars represent calculated results. Red
outline box bars represent the approximated histogram of the function shown in Figure 5.F.
doi:10.1371/journal.pone.0074178.g012
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feedback. As a result, MCMC-HFM could reliably infer the kinetic

parameters, especially those of which values were experimentally

estimated [49,50]. Inferred parameter sets reproduced the

function approximating the distribution of execution time of

caspase-3. In the current study, the function was assumed based on

the experimental result [33]. This function can be replaced with

explicit experimental data represented as a histogram in possible

future applications in the same way as the switching time of

caspase-3 activation [19]. For inference, we define the represen-

tative parameter values of inference by the values at peak of each

marginal distribution. This definition could reliably infer the

kinetic parameters with use of hybrid fitness measures. Another

definition of representative parameter values is the values at peak

of joint distribution of all inferred parameters [23]. We used the

uniform distribution as the proposal distribution in MCMC

algorithms. Actually, almost the same results shown in Figure 3, 4,

6–13 and S1–5 were obtained when we used the normal

distribution as the proposal distribution in MCMC (partly shown

in Figure S7–14). These results indicate that MCMC-HFM is a

useful and reliable method for parameter inference, and the results

presented in the current study are reproducible.

In the apoptosis model, by the credible intervals of inferred

parameters, joint probability distributions and correlation coeffi-

cients between inferred parameters, we could also specify the

important relationships between kinetic parameters and corre-

sponding biochemical processes, especially for irreversibility and

execution time of caspase-3 activation. In the process of parameter

inference by Bayesian statistics with MCMC, we can usually

obtain many parameter sets, which can be used to understand and

specify important biochemical processes in the target system as

shown in the current study.

In the apoptosis model, inferred parameter sets reproduced well

the assumed function of execution time of caspase-3 (Figure 5.F,

Figure 12), but did not well reproduced the assumed function of

the switching time of caspase-3 (Figure 5.E, Figure 11). This is not

because of the restriction by two qualitative conditions, bistability

and irreversibility. Because when we performed parameter

inference only with a quantitative condition, ‘‘Ts’’, calculated

histogram of Ts was not consistent with the assumed function

(Figure S15). Thus, one possibility of inconsistency might be other

experimentally-unknown kinetic parameters in the model are not

correct. Legewie et al.’s model has a number of experimentally-

unknown kinetic parameters [22]. In our case study, we fixed most

of those kinetic parameters except for kasso (X-AC9), kasso (X-C9*)

and kasso (X-AC9*) in our parameter inference simulations. If we

tried to infer all the unknown parameters in the model, the

assumed function of the switching time of caspase-3 might be

reproduced. Otherwise the mathematical model might need to be

improved to be able to reproduce experimental results shown by

Albeck et al. [19,33]. We note that our calculation could not well

reproduce the switching time of caspase-3 activation in the

distribution level, but most of parameter sets showed acceptable

switching time around ten and a few minutes compared with the

experimental result (Figure 11).

Of the conditions used for parameter inference in the apoptosis

model, ‘‘Ts’’ did not largely narrow the distributions of any kinetic

parameters (Figure 6–10) or strengthen correlation coefficients,

which differ from other conditions (Table S2). This might indicate

that other conditions have already had some information about

the switching time of caspase-3. For example, we can easily see

that ‘‘Te’’ has the information about ‘‘Ts’’ because of its definition

(Figure 5.D). This kind of interaction among a number of

conditions, i.e. a number of experimental results, will often appear

in future applications.

Robustness analysis of kinetic parameters in systems biology

sometimes assumes the size of the parameter space as the measure

of robustness. For example, the volume of the ellipsoid containing

95% of the parameters generated by Monte Carlo method was

calculated and assumed as the measure of robustness [28]. In the

same way, the 95% credible interval of posterior distribution

obtained by parameter inference process by MCMC can be

assumed to be the measure of robustness. For example, in the case

study of the apoptosis model, kasso (X-AC9) showed wide credible

interval and roughly uniform distribution in the case with

information ‘‘B’’ (Figure 8.A). This indicates the system is robust

against perturbation of the strength of XIAP and AC9 association

to maintain bistability of caspase-3. In contrast, the narrow 95%

credible interval was kasso (X-C9*) (Figure 9.A). This indicates the

system is sensitive to perturbation of the strength of XIAP and C9*

association to maintain bistability of caspase-3. In this manner,

parameter inference by Bayesian statistics with MCMC can give

us the information about the robustness of kinetic parameters.

This point is also an advantage of parameter inference by Bayesian

statistics with MCMC compared to other optimization algorithms

which does not infer kinetic parameters as probability distribu-

tions.

In the same way as the MCMC-HFM algorithm, the idea to

deal with mixture of quantitative and qualitative fitness measures

simultaneously can be applied to SMC or so-called population

Monte Carlo methods [51]. ABC-SMC has already been

developed [13,14] and applied to not only parameter inference

but also model selection [14–18]. One of the problems of ABC-

MCMC is that the efficiency of the algorithm is reduced when the

ABC-MCMC sampler is trapped in an area of relatively low

probability [13]. In the current study, the MCMC-HFM sampler

was not strongly trapped in a low probability area as shown in

trace plots in Figure S1 and S3. However, implementation to

SMC or population Monte Carlo methods may improve the

efficiency of sampling and may enable us to perform model

selection more easily dealing with mixture of quantitative and

qualitative fitness measures.

Supporting Information

Figure S1 Examples of trace plots of MCMC and
probability distributions in the kinetic toy model. (A)

Trace plot and the probability distribution of kp using ‘‘BI’’. (B)

Trace plot and the probability distribution of kp using

Figure 13. 95% credible intervals of inferred parameters in the
apoptosis model. The 95% credible intervals are represented by
common logarithm of the ratio of upper bound and lower bound of
95% credible intervals. Blue bars represent the case with ‘‘B’’. Red bars
represent the case with ‘‘BI’’. Green bars represent the case with ‘‘BITs’’.
Magenta bars represent the case with ‘‘BITe’’. Cyan bars represent the
case with ‘‘BITsTe’’.
doi:10.1371/journal.pone.0074178.g013
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‘‘BITe[Y]time = 100’’. Dotted lines indicate the 300000th step, of

which left side is the burn in period.

(PDF)

Figure S2 Calculated histograms of execution time of Y
production ‘‘Te’’ and concentration of Y at time = 100
‘‘[Y]time = 100’’. Histograms of execution time of Y production,

‘‘Te’’, and concentration of Y at time = 100, ‘‘[Y]time = 100’’

calculated with ‘‘BI’’ (A-a) and (A-b) respectively, those with

‘‘BITe’’ (B-a) and (B-b) respectively, those with ‘‘BI[Y]time = 100’’

(C-a) and (C-b) respectively, those with ‘‘BITe[Y]time = 100’’ (D-a)

and (D-b) respectively, and those with ‘‘BITe[Y]time = 100’’ with

weaker noise in quantitative fitness (E-a) and (E-b). Blue bars

represent calculated results. Red outline box bars represent the

histogram generated by adding Gaussian noise into the model.

(PDF)

Figure S3 Examples of trace plots of MCMC and
probability distributions in the apoptosis model. (A)

Trace plot and the probability distribution of kasso (X-C9) with

‘‘BI’’. (B) Trace plot and the probability distribution of kasso (X-C9)

with ‘‘BITsTe’’. Dotted lines indicate the 500000th step, of which

left side is the burn in period.

(PDF)

Figure S4 Joint probability distributions of the pair of
kasso (X-C9) and kasso (X-AC9). Probability distribution with

‘‘B’’ (A), that with ‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’

(D), that with ‘‘BITsTe’’ (E).

(PDF)

Figure S5 Joint probability distributions of the pair of
kasso (X-C9*) and kasso (X-C3*). Probability distribution with

‘‘B’’ (A), that with ‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’

(D), that with ‘‘BITsTe’’ (E).

(PDF)

Figure S6 Simplified diagram of apoptosis signal
transduction network focused on 4 implicit positive
feedbacks. Blue and numbered interactions represent implicit

positive feedbacks. 1: C9-X-C3* implicit positive feedback, 2:

AC9-X-C3* implicit positive feedback, 3: C9*-X-C3* implicit

positive feedback, 4: AC9*-X-C3* implicit positive feedback.

(PDF)

Figure S7 Marginal probability distributions of param-
eters in the kinetic toy model (proposal distribution in
MCMC set to normal distribution). Probability distributions

with ‘‘BI’’ (A), those with ‘‘BITe’’ (B), those with ‘‘BI[Y]time = 100’’

(C), those with ‘‘BITe[Y]time = 100’’ (D), and those with ’’BITe[Y]-

time = 100’’ with weaker noise in quantitative fitness (see main text)

(E). Red bars represent the ‘‘true’’ values of parameters. Red

arrows indicate the modes.

(PDF)

Figure S8 95% credible intervals of inferred parame-
ters in the kinetic toy model (proposal distribution in
MCMC set to normal distribution). The 95% credible

intervals are represented by common logarithm of the ratio of

upper bound and lower bound of 95% credible intervals. Blue bars

represent the case with ‘‘BI’’. Red bars represent the case with

‘‘BITe’’. Green bars represent the case with ‘‘BI[Y]time = 100’’.

Magenta bars represent the case with ‘‘BITe [Y]time = 100’’. Cyan

bars represent the case with ‘‘BITe [Y]time = 100’’ with weaker noise

in quantitative fitness.

(PDF)

Figure S9 Marginal probability distributions of kasso

(X-C3*) (proposal distribution in MCMC set to normal
distribution). Probability distribution with ‘‘B’’ (A), that with

‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with

’’BITsTe’’ (E). Red bars represent experimentally estimated values.

Red arrows indicate the modes.

(PDF)

Figure S10 Marginal probability distributions of kasso

(X-C9) (proposal distribution in MCMC set to normal
distribution). Probability distribution with ‘‘B’’ (A), that with

‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with

’’BITsTe’’ (E). Red bars represent experimentally estimated values.

Red arrows indicate the modes.

(PDF)

Figure S11 Marginal probability distributions of kasso

(X-AC9) (proposal distribution in MCMC set to normal
distribution). Probability distribution with ‘‘B’’ (A), that with

‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with

’’BITsTe’’ (E). Green bars represent the used value in Legewie et

al’s study but not experimentally estimated. Red arrows indicate

the modes.

(PDF)

Figure S12 Marginal probability distributions of kasso

(X-C9*) (proposal distribution in MCMC set to normal
distribution). Probability distribution with ‘‘B’’ (A), that with

‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with

’’BITsTe’’ (E). Green bars represent the used value in Legewie et

al’s study but not experimentally estimated. Red arrows indicate

the modes.

(PDF)

Figure S13 Marginal probability distributions of kasso

(X-AC9*) (proposal distribution in MCMC set to normal
distribution). Probability distribution with ‘‘B’’ (A), that with

‘‘BI’’ (B), that with ‘‘BITs’’ (C), that with ‘‘BITe’’ (D), and that with

’’BITsTe’’ (E). Green bars represent the used value in Legewie et

al’s study but not experimentally estimated. Red arrows indicate

the modes.

(PDF)

Figure S14 95% credible intervals of inferred parame-
ters in the apoptosis model (proposal distribution in
MCMC set to normal distribution). The 95% credible

intervals are represented by common logarithm of the ratio of

upper bound and lower bound of 95% credible intervals. Blue bars

represent the case with ‘‘B’’. Red bars represent the case with

‘‘BI’’. Green bars represent the case with ‘‘BITs’’. Magenta bars

represent the case with ‘‘BITe’’. Cyan bars represent the case with

‘‘BITsTe’’.

(PDF)

Figure S15 Calculated histograms of switching time of
caspase-3 activation. Histogram of switching time of caspase-3

activation calculated with ‘‘Ts’’. Red outline box bars represent the

approximated histogram of the function shown in Figure 5.E.

(PDF)

Table S1 Initial concentrations of proteins in dynamics
calculation.

(DOC)

Table S2 Correlation coefficients between two inferred
parameters.

(DOC)
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Text S1 MCMC-HFM algorithm satisfies detailed bal-
ance condition.

(DOC)

Text S2 Correlation between inferred parameters for
the apoptosis model.

(DOC)
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