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Background: Inulin-type fructans (ITF) have been used as prebiotics to alleviate
glucose and lipid metabolism disorders. However, few studies evaluated the microbial
mechanism of ITF in improving maternal metabolic status during pregnancy.

Methods: C57BL/6J mice were fed a high-fat/sucrose diet (HFD) for 4 weeks before
and throughout pregnancy to induce a model of gestational diabetes mellitus (GDM).
Body weight, glycolipid metabolic parameters, and fecal short-chain fatty acids (SCFAs)
were assessed in the experimental process. The effects of ITF on the fecal microbiota
were analyzed by 16S rRNA gene amplicon sequencing.

Results: Pregnant HFD-fed mice displayed significant insulin resistance and
dyslipidemia. ITF (3.33 g/kg/day) treatment improved glucose and lipid metabolism
disorder parameters in HFD-induced GDM mice and alleviated fat accumulation and
glucose intolerance. The alpha diversity of the gut microbial community was increased
in ITF mice, while the beta diversity returned to the level of normal chow diet (NCD)
mice. Interestingly, Verrucomicrobia, Bifidobacterium, and Akkermansia were obviously
enriched, while Dubosiella was obviously lessened after inulin treatment. Further analysis
indicated that Dubosiella was positively correlated with markers of glycolipid metabolism
disorders, whereas the ITF-supplemented diet partially reversed the changes.

Conclusion: Our results suggest that the ITF treatment may alleviate glucose and lipid
metabolism disorders with the mediation of gut microbiota.

Keywords: inulin-type fructans, high-fat/sucrose diet, gut microbiota, maternal metabolism, gestational diabetes
mellitus (GDM)

BACKGROUND

Gestational diabetes mellitus (GDM), carbohydrate intolerance, and insulin resistance during
pregnancy are serious problems with increasing prevalence (American Diabetes, 2019), resulting
in significant short-term and long-term adverse health outcomes in both mother and offspring
(Miao et al., 2017; Song et al., 2018; Lowe, 2019). The physiological changes in insulin resistance
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and lipid profiles are exacerbated in women with GDM
and may indicate an underlying metabolic dysfunction that
transiently manifests during pregnancy (Schneider et al., 2011;
Zhu and Zhang, 2016).

Gut dysbiosis plays a vital role in abnormal host metabolism,
as recently demonstrated in studies of type 2 diabetes (T2D)
and obesity (Karlsson et al., 2013). Prevotella and Bacteroides
have been identified as the main species contributing to insulin
resistance and glucose intolerance (Pedersen et al., 2016).
While the impact of gut microbiota on host metabolism and
metabolic diseases is well-documented (Moller, 2001), only
recently have studies focused on microbiota changes that
influence metabolic mechanisms during pregnancy (Koren et al.,
2012). Parabacteroides are significantly more abundant in GDM
women than in healthy pregnant women (Kuang et al., 2017).
A novel relationship between gut microbiome composition and
the metabolic hormonal environment in overweight and obese
pregnant women at the first trimester has also been described
(Gomez-Arango et al., 2016). These studies suggest that major
shifts in the gut microbiome during pregnancy may play a crucial
part in the development of GDM.

Dietary intervention has become a potentially effective
strategy to modulate the gut microbiota and improve the host
health (Marchesi et al., 2016). Inulin-type fructans (ITF) are
a type of dietary fiber present in vegetables, such as chicory
roots, and can also be extracted to be used as food ingredients
(Kalala et al., 2018). Isolated ITF have been considered to
be typical prebiotics (Gibson et al., 2017). Prebiotics are
defined as non-digestible compounds that are generated through
fermentation by the gut. Prebiotics are able to modulate the
composition and/or activity of the gut microbiota, thereby
conferring a beneficial physiological effect on the host (Bindels
et al., 2015; Salminen et al., 2021). In vitro studies and
randomized controlled trials have shown that ITF can stimulate
the growth of Bifidobacterium populations (Roberfroid et al.,
1998; Sawicki et al., 2017) and certain butyrate-producing
species (Ramirez-Farias et al., 2009; Scott et al., 2014) as well
as reduce the abundance of Firmicutes (Everard et al., 2011,
2013; Dewulf et al., 2013). In addition, numerous randomized
controlled trials have demonstrated direct health benefits of ITF,
including inhibiting pathogens, protecting against cardiovascular
diseases, and improving mineral bioavailability (Abrams et al.,
2005; Kellow et al., 2014; Lohner et al., 2014). However, the
relationships among dietary ITF, GDM and gut microbiota are
still not clear.

Given that there are few studies aiming to evaluate the
microbial mechanism of soluble dietary fiber in improving
maternal metabolic status during pregnancy, our current research
was undertaken to investigate the effects of adding ITF to a high-
fat/sucrose diet (HFD) on the composition and metabolites of
fecal microbiota from 4 weeks before conception and throughout
gestation as well as maternal and neonatal health parameters
in a GDM mouse model. In human intervention studies, doses
ranging from 12 to 16 g/day are often given when testing for
metabolic effects of ITF (Cani et al., 2009; Parnell and Reimer,
2009; Tarini and Wolever, 2010; Rahat-Rozenbloom et al., 2017),
which equals to 2.46 and 3.33 g/kg body weight in mice,
respectively (Nair and Jacob, 2016). In this study, the dose was

based on our previously published study of ITF administration
in mice (Miao et al., 2021). A high dose was chosen due to the
short window of treatment allowed by pregnancy. Our study
aimed to provide some microbial mechanistic insights into the
application of ITF to a typical gestational diet characterized by
high-fat/sucrose for improving maternal and neonatal health.

MATERIALS AND METHODS

Materials
Six-week-old C57BL/6J mice were purchased from Vital River
Laboratory Animal Technology Co., Ltd. (Beijing, China). ITF
were procured from Fengning Ping’an hi tech Industry Co.,
Ltd. (Hebei, China), Thermo Scientific (Massachusetts, United
States), Thermo Fisher (Massachusetts, United States), (VilofTM

soluble dietary fiber powder) which contains 91% ITF and 9%
mixture of sucrose, fructose, and glucose.

Animal Treatment and Experiment
Design
Mice were housed in a temperature- and humidity-controlled
laboratory. This animal experiment was approved by the Animal
Protection Ethics Committee of Women’s Hospital of Nanjing
Medical University (No. 2018-49). All animal experiments were
performed in accordance with Chinese national regulations
on the administration of animal experimentation as well as
international guidelines on animal experimentation. After 1 week
of acclimatization, mice were randomly divided into three groups
(n = 5): control [normal chow diet (NCD) + vehicle, n = 5],
HFD (HFD + vehicle, n = 5), and ITF treatment (HFD + ITF,
n = 5). In order to compare the changes of fecal microbiota
before and after pregnancy, the three groups were renamed to
normal chow diet in gestation (NCDG) group, HFDG group,
and ITFG group after mating. The NCD mice were fed a low-
fat diet (Research Diet AIN-93G, consisting of 20.3% protein,
63.9% carbohydrate, and 15.8% fat) for 4 weeks prior to mating
and throughout pregnancy (18 days), while both HFD and ITF
treatment groups were fed an HFD (Research Diet D12451,
consisting of 35.2% protein, 63.9% carbohydrate, and 45% fat).
The ITF treatment group received a dose of 3.33 g/kg of ITF each
day via oral gavage, while the NCD and HFD groups received the
same dose of a vehicle (DD H2O). All mice were given free access
to 100 g of fresh diet and 250 ml of fresh water daily per cage
(five mice per cage).

Fasting Blood Glucose and Oral Glucose
Tolerance Test
Blood samples were collected from the tail vein, and blood
glucose levels were measured with a glucose meter (Roche
Accu-Chek Active, Mannheim, Germany). FBG was monitored
at different time points, including before dietary intervention,
after 4 weeks of HFD, and on gestational age of 0 day (GD0),
gestational age of 10 days (GD10), gestational age of 14 days
(GD14), and gestational age of 18 days (GD18). OGTT was
performed on GD14. The animals fasted for 6 h and then were
gavaged with 2 g/kg glucose. The blood glucose levels at 0, 30, 60,
90, and 120 min were determined.
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Detection of Biochemical Indexes
Mice were euthanized by CO2 inhalation on GD18 (or
equivalent) after fasting for 6 h from 8 a.m., and blood sample was
collected. Blood was centrifuged at 3,000 g for 15 min at 4◦C, and
serum was isolated. The levels of fasting serum insulin (FINS),
triglyceride (TG), total cholesterol (TC), low-density lipoprotein
(LDL), and high-density lipoprotein (HDL) were measured using
a commercial detection kit (NJJCBIO Co., Ltd., Nanjing, China)
according to the kit instructions.

Based on the measured content of FBG and FINS, the
homeostasis model of assessment (HOMA) for insulin resistance
(IR) index (HOMA-IRI) was calculated and compared. HOMA-
IRI was calculated as [fasting glucose (mmol/L) × fasting insulin
(mU/L)]/22.5. Meanwhile, the area under the curve (AUC) of
blood glucose was calculated (Lachine et al., 2016).

Hematoxylin–Eosin Staining
Liver and inguinal fat tissues were fixed in 4% paraformaldehyde,
decalcified, paraffin embedded, and stored at 4◦C. After tissues
were sliced into 4 µm sections, hematoxylin–eosin staining was
performed. First, sections were stained with hematoxylin for
5–10 min, immersed in 70% ethanol for 30 min to remove
cytoplasm coloring, alkalized with alkaline solution, and washed
with distilled water for 1 min. Second, sections were stained
with eosin for 30–60 s, dehydrated with gradient ethanol,
cleared two times with xylene, dried, and mounted. Finally, the
morphological structures of the liver and inguinal fat tissues were
observed under an optical microscope.

Fecal DNA Extraction
One day prior to mating and GD18, fecal samples were
collected in individual sterilized cages and immediately frozen
in liquid nitrogen. About 100 mg of stool samples was
used to extract total genome DNA according to the DNA
extraction kit (DP328, Tiangen Company, Beijing, China).
The concentration and purity of the extracted bacterial
DNA were detected using a Qubit 2.0 fluorometer (Thermo
Scientific, United States). The 16S rRNA gene V4 region-
specific primers are 515F (GTGCCAGCMGCCGCGGTAA) and
806R GGACTACHVGGGTWTCTAAT. The PCR products of
sterile water were considered as the negative control for 16S
rRNA sequencing. The PCR products were purified using
the Gene JET Gel Extraction Kit (Thermo Scientific). The
library was constructed using Ion Plus Fragment Library Kit
48 reactions (Thermo Fisher, United States). After Qubit
quantification and testing, the library was sequenced by Thermo
Fisher’s Ion S5TM XL.

Gut Microbiota Analysis
Raw data were obtained after data processed using Cutadapt
(V1.9.11). Then, chimera sequences were removed to obtain
clean reads. Operational taxonomic units (OTUs) were assigned
for sequences with ≥97% similarity. OTUs were annotated
using the SILVA132 database.2 The taxonomic information

1http://cutadapt.readthedocs.io/en/stable/
2http://www.arb-silva.de/

was obtained, and the community composition was counted
at seven taxonomic levels: kingdom, phylum, class, order,
family, genus, and species. Alpha diversity was analyzed by
Chao 13 with QIIME software (version 1.9.1). Beta-diversity
metrics were calculated by the non-metric multidimensional
scaling (NMDS) model based on the Bray–Curtis distance. One-
way analysis of similarities (ANOSIM) with multiple pairwise
post-tests on all groups at the same time was performed
to test whether the difference between the extra groups was
greater than that between the intra-groups and to assess the
significance of the difference in separation. Chao 1, Bray–Curtiss
indexes, NMDS, and ANOSIM were calculated at the OTU
level. Differentially abundant genera were analyzed by meta
stats4 with a non-parametric test, followed by the Benjamini
and Hochberg false discovery rate approach to filter relevant
p-values.

Fecal Short-Chain Fatty Acid Analysis
The feces from each mouse were collected and frozen at
−80◦C. Acetate, propionate, and butyrate in fecal samples were
analyzed using gas chromatography–mass spectrometry (GC-
MS) (Sun et al., 2015). Briefly, the feces were homogenized with
a saturated sodium chloride solution and acidified with 10%
sulfuric acid. Next, diethyl ether was used to extract SCFAs. After
centrifugation, the supernatants were harvested for GC-MS.

Statistical Analysis
Data represent mean ± standard error of the mean. For
parametric variables, the unpaired two-tailed Student t-test was
used to assess the differences in mean values between two groups.
For three groups, statistical analysis was performed with ANOVA
with Tukey post hoc test. For non-parametric variables, the
statistical significance of the differences was evaluated by the
Mann–Whitney test or Kruskal–Wallis test. For the OGTT, two-
way ANOVA was performed for the evolution of blood glucose
levels with a post hoc test using the Bonferroni method. A p-
value < 0.05 was considered statistically significant. GraphPad
Prism 7 (GraphPad Software, San Diego, CA, United States) was
used to do the statistical analyses.

RESULTS

Changes of Body Weight and Glycolipid
Metabolic Parameters in Mice
To investigate the effect of inulin treatment on glycolipid
metabolism disorders in HFD-induced gestational diabetes mice,
we examined the body weight, daily food intake, and glycolipid
metabolism-related parameters. The body weight, FBG, FINS,
HOMA-IR, TG, TC, LDL-C, and the AUC of OGTT of the HFDG
group mice were significantly elevated compared with those of
the NCDG group mice (Figures 1A–H, 2A–D), indicating severe
glucose intolerance, insulin resistance and dyslipidemia.

3http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.chao1.html#
skbio.diversity.alpha.chao1
4http://metastats.cbcb.umd.edu/detection.html
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FIGURE 1 | Improvement in metabolic parameters in HFD-induced gestational diabetes mice by ITF. (A) Body weight. (B) FBG. (C) Plasma glucose profile. (D) Mean
AUC measured during the OGTT. (E) Body weight at GD18. (F) FBG at GD18. (G) Fasting insulin at GD18. (H) HOMA-IR at GD18. AUC, area under the curve;
OGTT, oral glucose tolerance test. Data are presented as mean ± SEM. Data were analyzed using two-way ANOVA followed by the Bonferroni post hoc test for
panels (A,B,F) and using one-way ANOVA followed by the Tukey post hoc test for panels (C–E,G). *p < 0.05, **p < 0.01.

In contrast, ITFG group mice fed the ITF-supplemented diet
showed improved metabolic parameters (Figures 1A–G, 2A–D).
After ITF intervention, body weight, serum TG, TC, and LDL-
C on GD18 reduced significantly by 4.54 g, 0.48 mmol/l,
1.04 mmol/l, and 0.494 mmol/l (p < 0.05, vs. HFDG group)

(Figures 1C, 2A,B,D), respectively. Additionally, the AUC
of OGTT on GD14 and the FBG and serum insulin on
GD18 were lowered by 7.95 mmol/L/h, 2.04 mmol/l, and
3.46 mIU/L, respectively (p < 0.05, vs. HFDG group), indicating
a significant improvement in glucose tolerance (Figures 1D,E,G).
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FIGURE 2 | Improvement in metabolic parameters in HFD-induced gestational diabetes mice by ITF. (A) Serum TG. (B) Serum TC. (C) Serum HDL-C. (D) Serum TC
LDL-C. (E) Representative H&E-stained images of the hepatic and adipose tissues (×200). TG, triacylglycerol; TC, total cholesterol; HDL-C, high-density lipoprotein
cholesterol; LDL-C, low-density lipoprotein cholesterol. Data were analyzed using one-way ANOVA followed by the Tukey post hoc test for panels (A–D). *p < 0.05,
**p < 0.01.

According to hepatic and adipose tissue staining (Figure 2E),
the HFDG group mice exhibited severe hepatic lipid droplets
and adipocyte hypertrophy, which were alleviated after ITF

treatment. Overall, the above results indicate that ITF have
a beneficial effect that ameliorates glycolipid metabolism
disorders in HFD mice.
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Reproductive Outcomes of Pregnant
Mice
The number, body weight, and length of fetal mice in each
group were compared. There was no significant difference in the
number of fetal mice among groups (Supplementary Figure 1A).
The average body weight and length of fetal mice born by HFD
mothers (1.26 ± 0.16 g and 2.33 ± 0.09 cm, respectively) were
significantly higher than those by ITF mothers (1.03± 0.05 g and
2.16± 0.07 cm, respectively) (Supplementary Figures 1B,C).

Changes of Fecal Microbial Diversity
We used the 16S rRNA gene amplicon sequencing method
(V4 region) and generated 2,131,728 reads for a total of 25
samples, with an average of 85,269 ± 22,171 reads per sample.
At each stage, NCD-HFD-ITF and NCDG-HFDG-ITFG pairs
shared less common OTUs with each other. The Venn graph
exhibited common OTUs for NCD-HFD-ITF and NCDG-
HFDG-ITFG pairs, decreasing from 579 before mating to 438 on
GD18 (Figure 3A).

To assess the fecal microbial community structure, richness
(Chao 1 index) and diversity (Simpson index) were calculated
(Figures 3B,C). For Chao 1 index, the data of the ITF group
were significantly higher than those of NCD and HFDG groups
(p < 0.05, p < 0.01). A remarkable increment in Simpson index
with ITF supplementation was found compared with HFD and
HFDG groups in the present study (p < 0.05). All the results
above provided the view that ITF treatment could effectively
improve the decline of Chao 1 index and Simpson index induced
by HFD addition.

We then used principal co-ordinate analysis (PCoA) to
categorize the OTU data into two main factors that explained
64.42% of the variance (Figure 3E), which showed that the
microbiomes in NCD (NCD and NCDG), HFD (HFD and
HFDG), and ITF (ITF and ITFG) treatment groups significantly
differed from one another while the two groups of the same
treatment shared some overlapping regions before and after
conception, which indicated that the overall gut microbial
community had been significantly modified. The four groups
exhibited significant, tight clustering according to NCD or ITF
diet. Independent biological replicates were generally consistent,
but more variable among mice fed by HFD (Figure 3D).

Changes of the Relative Abundance at
the Phylum Level
The phylum Bacteroidetes was dominant among the nine
phyla (>1% in at least one sample) present in the gut
microbiota from the six groups of mice, and the ratio of
Firmicutes/Bacteroidetes (F/B) was increased in HFD and HFDG
mice over the NCD and NCDG groups, but lower in the
ITF and ITFG groups compared with HFD and HFDG mice
(Figure 4 and Supplementary Table 1). The gut microbiota
in obese individuals has usually shown an increased F/B ratio
(Ramirez-Farias et al., 2009). Therefore, the decreased F/B ratios
of ITF and ITFG mean that the feature in HFD mice could
be reversed by the ITF-supplemented diet. HFD treatment
decreased the relative abundance of Proteobacteria before mating

(p < 0.01). ITF supplementation increased the relative abundance
of Verrucomicrobia compared with HFD before mating and on
GD18 (p < 0.01). Relative abundances of the Deferribacteres
group of HFD and the Cyanobacteria group of NCD were
not detected in fecal samples on GD18. Moreover, relative
abundances of Actinobacteria decreased in HFD before mating
but increased substantially when reaching the perinatal period.
The majority of genera were affected by the gestation stage,
indicating that their relative abundances changed greatly over the
pregnancy progress.

Changes of the Relative Abundance at
the Genus Level
The relative abundances at the genus level (>1% in at least one
sample) were present in Figure 5 and Supplementary Table 2. Fat
addition (HFD and HFDG) increased the relative abundances of
Dubosiella and Lactobacillus and decreased those of Romboutsia
and Alloprevotella compared to the NCD (NCD and NCDG).
The abundance of Bifidobacterium increased, whereas that of
Dubosiella decreased with the intervention of ITF before and
after conception. Our results also indicated that the abundance
of Akkermansia was significantly higher in the ITF-treated (ITF
and ITFG) groups than in any other group. The heat map
analysis of microbial community composition at the family level
confirmed that the abundance of Dubosiella that causes obesity
and metabolic syndrome-related inflammation was reduced after
ITF treatment (Figure 6).

Next, to identify the changes in specific bacterial taxa after
ITF-supplemented diet intervention before and after conception,
we utilized the linear discriminant analysis (LDA) effect size
(LEfSe) to compare the fecal microbiota composition between
the NCD, HFD, and ITF groups; the LDA score was selected
to discriminate specific taxa in different groups. Compared
with the HFD group, the ITF mice had a higher abundance of
f-Ruminococcaceae, f-Prevotellaceae, o-Verrucomicrobiales,
g-Akkermansia, c-Verrucomicrobiae, p-Verrucomicrobia,
and f-Akkermansiaceae but lower abundance of g-
Unidentified clostridiales, f-Unidentified clostridiales,
g-Dubosiella, c-Erysipelotrichia, o-Erysipelotrichales, and
f-Erysipelotrichaceae (Figures 7A–E). Correspondingly, g-
Bacteroides, f-Ruminococcaceae, and f-Bacteroidaceae were
enriched in the ITFG group on GD18 (Figures 8A–C).

Changes in Fecal Short Chain Fat Acids
Levels Upon Inulin-Type Fructans
Intervention
Acetate, propionate, and butyrate levels in fecal samples were
quantified by GC-MS. Over time, fecal acetic acid levels were
significantly increased in ITF group mice when compared to HFD
group mice before mating (p < 0.05) and on GD18 (p < 0.01)
(Figures 9A,B and Supplementary Table 3). Butyric acid levels
were significantly increased in ITF group mice compared to HFD
group mice on GD18 (p < 0.05) (Figure 9B and Supplementary
Table 3). However, we observed no differences in the propionate
levels among the three groups at any of the time points
(Figures 9A,B and Supplementary Table 3).
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FIGURE 3 | ITF modify the composition of the cecal microbiota in ob/ob mice. (A) OTU number before mating and on GD18. (B) Chao 1 index of microbiota.
(C) Shannon index of microbiota. (D) Heat map of beta diversity index. (E) The beta diversity of gut microbiota analyzed by PCoA. Data were analyzed using
one-way ANOVA followed by the Tukey post hoc test for panels (B,C). *p < 0.05, **p < 0.01.
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FIGURE 4 | Relative abundance of microbial species of the top 10 phyla in the
feces of mice.

Correlations Between Glycolipid
Metabolism Indicator and Bacterial
Abundance
At the phylum level, we analyzed the correlations between
significant glycolipid metabolism indicator and gut microbiota
on GD18. Bacteroidetes abundance was negatively correlated
with FBG, FINS, TG, and TC, whereas Firmicutes abundance
was positively correlated with FBG, FINS, and TG (Figure 10A).
Moreover, Actinobacteria abundance was positively correlated
with FINS and TC (Figure 10A).

At the genus level, the relative abundance of Dubosiella was
positively correlated with FBG, FINS, and TC (Figure 10B).
Romboutsia abundance was positively correlated with
FBG (Figure 10B).

DISCUSSION

Gut microbiota disorder has been considered as one of the
contributing factors for metabolic disorders. The composition

of the microbiome also changes during pregnancy. It has been
recently proposed that fecal microflora and their metabolic
activities may play a critical role in body weight control, energy
homeostasis, fermentation, and absorption of non-digestible
carbohydrate, as well as in the development of IR. Therefore, gut
microbiota may also participate in the pathogenesis of several
metabolic disorders, such as obesity, diabetes mellitus, and GDM
(Cani et al., 2014; Zhang et al., 2015; Rowland et al., 2018;
Cortez et al., 2019). Prebiotics can exert positive effects on the
maintenance of host metabolic homeostasis, which are mainly
mediated by the gut microbiota (Khanum et al., 2000; Wang et al.,
2021). ITF, one of the crucial prebiotics, have been demonstrated
to be effective in the treatment of T2DM (Dehghan et al.,
2014a; Zhang et al., 2018), while data on the effects of symbiotic
supplementation on markers of insulin metabolism and lipid
concentrations in GDM are scarce. The aim of this study was to
determine whether ITF taken before and during pregnancy could
impact the development of HFD-induced glucose intolerance
during pregnancy.

To induce features of GDM, C57BL/6J mice were fed an
HFD for 4 weeks before and during pregnancy. This model has
previously been used to induce features of GDM in mice, such as
insulin resistance and dyslipidemia (Holemans et al., 2004; Jones
et al., 2009; Liang et al., 2010). A period of only 4 weeks of HFD
exposure before pregnancy is not sufficient to cause a diabetic
phenotype; however, continued feeding throughout pregnancy
leads to progressive glucose intolerance and insulin resistance,
mimicking human disease. This mouse model allowed a factorial
design to determine the interaction of treatments, as well as more
thorough examination of potential mechanisms and whole-tissue
analysis, which would not be possible in human trials.

In the present study, we chose the dose of 3.33 g/kg/day of
ITF, which was equal to the highest dose reported for human
consumption (16 g/day) to evaluate the potential antidiabetic
effects of ITF in GDM mice. Consistent with a previous
study showing that ITF administration significantly lowered
the levels of FBG, IL-6, TNF-α, and plasma LPS in T2DM

FIGURE 5 | Relative abundance of microbial species of the top 10 genera in the feces of mice.
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FIGURE 6 | Heat map of microbial species of at the genus level in the feces of mice.

patients (Dehghan et al., 2014b), we found that ITF relieved
the gestational diabetic symptoms as evidenced by reduced body
weight, blood glucose level, and insulin level. However, Farhangi
et al. (2016) found that chicory inulin significantly reduced the
fasting serum glucose level and HbA1C ratio but had little effect
on the insulin level in patients with T2DM. We speculate that
the different effects of chicory inulin on insulin may be due to
different dosages (10 g/day for T2DM patients in Farhangi et al.’s
study). Moreover, a strong hypolipidemic effect of ITF in GDM
mice was observed. These results agree with a previous study

showing that inulin promoted lipid metabolism by altering the
expression of acetyl-CoA carboxylase and the activities of fatty
acid synthase and xanthine oxidase (Lin et al., 2014).

Accumulating studies have been performed to reveal the
underlying mechanisms of efficient treatment of ITF in GDM.
The majority of mechanisms are attributed to gut microbiota
alteration, immune inflammation, abnormal lipid metabolism,
and oxidative stress. Growing evidences have demonstrated that
the gut microbiota play a critical role in the development of GDM
(Fugmann et al., 2015; Mokkala et al., 2017; Crusell et al., 2018;
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FIGURE 7 | Identification of the most differentially abundant among HFD, ITF, and NCD analyzed by the LEfSe method. (A) LDA scores of differentially abundant
taxa. (B) Relative abundance of Prevotellaceae. (C) Relative abundance of Ruminococcaceae. (D) Relative abundance of Dubosiella. (E) Relative abundance of
Akkermansia.

Hasan and Aho, 2018). In the present study, the alpha diversity
index that was reduced by HFD could be effectively improved
by inulin treatment. Stanislawski et al. (2017) reported that
gestational weight gain was associated with lower alpha diversity.
Beta-diversity analysis of unweighted UniFrac illustrated the
distinct clustering of the relative abundances of OTUs after ITF
treatment. Similar results were obtained from PCoA.

At the phylum level, a higher ratio of F/B was observed
in the HFD group, which was supported by a study showing
that the F/B ratio in overweight human adults was lower
than that in lean controls (Lordan and Thapa, 2020). An
imbalance in the F/B ratio is related to dysbiosis conditions
(Ley et al., 2005; Nelson et al., 2010). The decreased F/B ratio
of ITF and ITFG means that this feature in obesity could be
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FIGURE 8 | Identification of the most differentially abundant among HFDG, ITFG, and NCDG analyzed by the LEfSe method. (A) LDA scores of differentially
abundant taxa. (B) Relative abundance of Ruminococcaceae. (C) Relative abundance of Bacteroidaceae.

FIGURE 9 | (A) SCFA data before mating. (B) SCFA data on GD18. Data were analyzed using one-way ANOVA followed by the Tukey post hoc test for panels (A,B).
*p < 0.05, **p < 0.01 compared to HFD.

reversed by the ITF-supplemented diet. Our analyses showed,
after ITF treatment, an enhancement of the relative abundance
of Verrucomicrobia in the HFD group before mating and on
GD18, as well as an obviously lessened Actinobacteria on GD18.
Verrucomicrobia is a member of the PVC (Planctomycetes–
Verrucomicrobia–Chlamydiae) superphylum, which includes
phylogenetically related bacteria with unusual characteristics
such as the existence of a complex and dynamic endomembrane
system that, in some aspects, makes them closer to eukaryotic
cells. A recent study showed that the healthy Chilean subjects

reveals a high abundance of the phylum Verrucomicrobia (Fujio-
Vejar et al., 2017). Positive correlations of Actinobacteria with
FINS caused aggravation of insulin resistance in the disease,
which was reversed by inulin intervention.

At the genus level, ITF supplementation showed a significant
effect on increasing the abundance of Bacteroides, which have
been demonstrated to ameliorate inflammation in recent studies
(Ejtahed et al., 2016; Li et al., 2017; Biruete et al., 2021).
SCFAs, including acetate, propionate, and butyrate, derived from
the gut microbiome are pivotal for rectifying host metabolism
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FIGURE 10 | Correlations between glycolipid metabolism indicator and bacterial abundance. (A) Heat map of Spearman correlations between the levels of
metabolites/components and the abundances of gut microbial phyla. (B) Heat map of Spearman correlations between the levels of metabolites/components and the
abundances of gut microbial genera. FBG, fasting blood glucose; FINS, fasting insulin; TG, triglyceride; TC, total cholesterol. *p < 0.05, **p < 0.01.

and immunity (Meijer et al., 2010). In the present study, we
observed that acetic acid levels of the ITF group increased
significantly before mating and on GD18, whereas butyric acid
levels only increased on GD18, suggesting that changes of
bacterial metabolites might be dependent on the intervention
time. Consistent with our findings, ITF-fed mice increased the
production of SCFAs, benefiting the balance of gut microbiota
in the alleviation of diabetic mice (Chen et al., 2017). Significant
elevation of SCFA-generating Bacteroides revealed that our ITF
treatment may restore gut dysbiosis by promotion of Bacteroides.
Another genus that we found increased abundance in ITF-
fed mice was Akkermansia. Recent studies described this as an
important probiotic genus, with systemic beneficial effects to

the host (Cani, 2014; Cani and de Vos, 2017), including the
control of metabolic syndromes (Christiansen, 2013; Dao et al.,
2016). In rodents, probiotics supplementation with Akkermansia
improved glucose tolerance and insulin sensitivity (Zhao et al.,
2017). Our results suggest that Akkermansia might have another
impact on host physiology during pregnancy than otherwise
described or that we found another subspecies of Akkermansia.
The applied 16S rRNA gene amplicon sequencing methods does,
however, not make it possible to investigate this finding at a
deeper taxonomic resolution. We observed that HFD mice have
increased Dubosiella, which has been previously described in
dysbiosis conditions such as GDM and obesity (Bai et al., 2019;
Li et al., 2020; Sheng et al., 2020; Qiu and Macchietto, 2021;
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Yi et al., 2021). Positive correlations of Dubosiella with FBG,
FINS, and TC demonstrated that these bacteria may promote
the glycolipid metabolism disorders, which could be reversed
by ITF treatment.

Modulation of the human gut microbiome with dietary
interventions has been extensively studied, mainly focusing on
the supplementation of non-digestible carbohydrates (NDCs)
(Ladirat et al., 2014; Elison et al., 2016; Zhao and Zhang, 2018).
However, the impact of dietary components on the stability
and resilience of the gut ecosystem has been barely addressed.
We found ITF intervention evidently primed the mice with
significant change in microbiota profile, and the gestational
impact (IFTG-IFT) was largely ameliorated compared to the
other two treatments. This may be partially due to the ability
of ITF to improve gut microbiome resilience. A high microbial
diversity, as well as the increase of the levels of fecal SCFA, seemed
to be critical aspects for the resilience of ITF group mice. Thus,
further studies are required to reveal the precise mechanism(s)
behind these effects.

In summary, we show that ITF treatment (3.33 g/kg/day)
alleviates glucose and lipid metabolism disorders in HFD-
induced gestational diabetes mice. These actions are likely to
be mediated via increasing the abundance of Verrucomicrobia,
Bifidobacterium, and Akkermansia and reducing the abundance
of Dubosiella. We further demonstrate that the abilities of
inulin intervention to enhance the relative abundance of SCFA-
producing bacteria and increase the levels of SCFAs play a key
role in antidiabetic effects. Our findings suggest a potential value
of ITF as an inexpensive supplement for the prevention and
treatment of GDM patients.
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