
Citation: Wang, X.; Le, H.; Guo, Y.;

Zhao, Y.; Deng, X.; Zhang, J.; Zhang,

L. Preparation of Cellulose

Nanocrystals from Jujube Cores by

Fractional Purification. Molecules

2022, 27, 3236. https://doi.org/

10.3390/molecules27103236

Academic Editor: José Rubén

Tormo

Received: 14 April 2022

Accepted: 17 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Preparation of Cellulose Nanocrystals from Jujube Cores by
Fractional Purification
Xiaorui Wang 1,†, Hao Le 1,†, Yanmei Guo 1, Yunfeng Zhao 1, Xiaorong Deng 1 , Jian Zhang 1,*
and Lianfu Zhang 2,*

1 School of Food Science and Technology, Shihezi University, Shihezi 832003, China;
wangxiaorui0923@163.com (X.W.); 20192111005@stu.shzu.edu.cn (H.L.); sdlcgtgym@163.com (Y.G.);
yunfeng@shzu.com.edu.cn (Y.Z.); dxr20099@163.com (X.D.)

2 School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
* Correspondence: zhangjian0411@163.com (J.Z.); lianfu@jiangnan.edu.cn (L.Z.); Tel.: +86-189-9773-1657 (J.Z.);

+86-138-1219-2381 (L.Z.)
† These authors contributed equally to this work.

Abstract: Jujube cores are fiber-rich industrial waste. Dewaxing, alkali treatment, bleaching, and
sulfuric acid hydrolysis were used to generate cellulose nanocrystals (CNCs) from the jujube cores
in this study. The morphological, structural, crystallinity, and thermal properties of the fibers were
investigated using FE-SEM, TEM, AFM, FT-IR, XRD, and TGA under various processes. CNCs’ zeta
(ζ) potential and water contact angle (WAC) were also investigated. The findings demonstrate that
non-fibrous components were effectively removed, and the fiber particles shrunk over time because
of many activities. CNCs had a rod-like shape, with a length of 205.7 ± 52.4 nm and a 20.5 aspect ratio.
The crystal structure of cellulose Iβ was preserved by the CNCs, and the crystallinity was 72.36%. The
temperature of the fibers’ thermal degradation lowered during the operations, although CNCs still
had outstanding thermal stability (>200 ◦C). Aside from the CNCs, the aqueous suspension of CNCs
was slightly agglomerated; thus, the zeta (ζ) potential of the CNCs’ suspension was −23.72 ± 1.7 mV,
and the powder had high hydrophilicity. This research will be valuable to individuals who want to
explore the possibility for CNCs made of jujube cores.

Keywords: jujube cores; cellulose nanocrystals; characterizations; purification

1. Introduction

In the agri-food industry, a large amount of waste is generated during the processing
and production of raw materials, such as peels, cores, leaves, and other inedible parts.
The disposal of these wastes can cause some pollution and environmental problems [1,2].
Therefore, it is very important for local and national economic development to find a
more reasonable way to utilize waste, to make value-added utilization of waste, and to
reduce environmental pollution as much as possible [3]. Jujube (Ziziphus jujuba Mill) is an
important cash crop in China, with an annual output of 7.46 million tons in 2019. It contains
many bioactive compounds and can be used for consumption as fresh or processed in
various red jujube products (such as dried jujube, jujube slices, drinks, jam, jujube powder,
etc.) [4]. Jujubes should be de-pitted before processing, which will produce a large amount
of industrial waste: jujube cores. Except for a small amount of the jujube cores which are
used as animal feed, the rest are discarded as waste and this waste can become a huge
environmental problem. Therefore, the best solution for this problem is to improve the
comprehensive value of the jujube industry to find an economic and reasonable way to
deal with jujube cores and realize the reuse of this waste [5,6].

Jujube cores are lignocellulosic materials containing phenols, polysaccharides, oil, and
other components, of which cellulose, lignin, and hemicellulose are the main components [7,8].
At present, the utilization of jujube cores is mainly focused on the use of jujube cores as
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adsorbents for water purification [9], activated carbon [10], biofuels [11], and functional
components such as polyphenol extraction [12,13]. However, there are few studies on the
utilization of fiber components in jujube cores.

Cellulose is one of the most abundant natural biopolymers, which is composed of
D-glucopyranosyl linked by a 1,4-β-Glycoside bond [5,14,15]. It is the main component
of the plant cell wall, which is often associated with hemicellulose, lignin, and resin [16].
There are both crystalline and amorphous regions in the cellulose structure. The crystalline
cellulose is very suitable as an enhancer for other polymer systems due to its excellent
mechanical properties, thermal stability, biodegradability, and environmental friendli-
ness [17,18]. Cellulose can be decomposed into nanocellulose after chemical or mechanical
treatment. According to their sources and separation methods, they can be divided into
bacterial nanocellulose (BNC), cellulose nanocrystals (CNCs), and cellulose nanofibers
(CNFs) [19,20].

CNCs are a kind of nanorod material obtained by removing the amorphous part of
cellulose through intense acid hydrolysis or a coupling mechanical treatment process [21].
There is a wide range of sources and cellulose has been successfully separated from some
agricultural wastes, such as softwood [22], flax, soy hulls [23], sisal fibers [24], tea waste [14],
walnut shells [25], potato peel waste [26], coffee husks [27], and lemon (Citrus limon)
seeds [20]. Because of its excellent mechanical, optical, non-toxic, biodegradable, and
renewable properties, it is more prominent in food packaging and application, which has
attracted the extensive attention of researchers [16]. The CNCs can effectively stabilize the
interface, which due to the characteristics of having an anisotropic shape, having a stable
electrostatic charge, being both hydrophilic and lipophilic, and being easy to form a dense
interface network, make the CNCs show advantages in a Pickering emulsion [28,29]. The
dimension, charge, crystallinity, and wettability of cellulose can be defined as a colloidal
state. The colloidal state affects its film-forming ability, emulsification/foaming ability, en-
capsulation, and other functions [30]. Therefore, a detailed study of the morphology, charge,
crystallinity, and wettability of CNCs can provide clear insights into the use of CNCs.

Natural fibers act as reinforcers to improve the mechanical strength, optical properties,
and antibacterial properties of materials. The abundant fibrous material in jujube cores
makes them a competitive material for developing different types of fibers. At present, a
small number of scholars have studied the extraction of cellulose from jujube cores [5,8,31].
Among them, Wahib et al. [32] studied two methods to extract CNCs, and compared the
crystallinity of the extracted CNCs and the economic cost of the two extraction methods.
However, there are limited studies on the more specific structure and morphology of CNCs.
The structure and morphology of polymers affect their properties. In this study, CNCs were
obtained by hydrolyzing cellulose in jujube cores with sulfuric acid, and the functional
group information contained in them was determined by FT-IR. The morphology and
surface structure properties were determined by using FE-SEM, TEM, and AFM. The crystal
structure and thermodynamic stability were determined by TGA. This study may provide
useful insights into the efficient utilization of jujube cores by exploring the morphology,
charge, crystallinity, and wettability of CNCs.

2. Results
2.1. Chemical Composition and Purification

The analysis of the initial composition of the jujube core powder was helpful to
determine the extent of the subsequent chemical treatment process. The results showed
that the jujube core powder contained a large amount of holocellulose (64.55 ± 4.56%),
lignin (26.27 ± 3.74%), a small amount of Soxhlet extract (2.14 ± 0.21%), and ash content
(0.38 ± 0.04%). The holocellulose included α-cellulose (40.48 ± 1.37%) and hemicellulose
(24.07 ± 1.03%). As a result, jujube cores have a high cellulose content and can be employed
as the primary raw material for cellulose extraction. After dewaxing, alkali treatment, and
bleaching, the resulting product had a higher cellulose content and lower hemicellulose
and lignin content: α-cellulose (80.47 ± 2.74%), hemicellulose (8.04 ± 1.21%), and lignin
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(0.57%). This indicated that after the purification treatment, lignin and hemicellulose were
significantly removed and the resulting cellulose had a higher α-cellulose content, which
was more suitable for the extraction of CNCs.

2.2. FT-IR Spectroscopic Analysis

The efficiency of the separation and purification process can be analyzed further by FT-
IR analysis of the jujube core powder (G-JC), the delignified jujube core (D-JC), the bleached
jujube core (B-JC), and the CNCs. Figure 1 shows the FT-IR spectrum of the G-JC, D-JC, B-JC,
and CNCs in the wavenumber range of 400–4000 cm−1. The main bands in the FT-IR spectra
for the G-JC, D-JC, B-JC, and CNCs are listed in Table 1. Figure 1 clearly shows that G-JC
contains lignin, hemicellulose, and other components. The peak located at 1739 cm−1 was
due to the symmetric stretching vibration in the CC-’s in-plane of the aromatic ring in the
lignin, and the carbonyl C=O stretching vibration in the lignin carboxylic acid bond or ester
group in hemicellulose [33,34]. The peak at 1739 cm−1 disappeared in the D-JC’s spectrum,
indicating that the NaOH treatment effectively removed lignin and hemicellulose [35].
Due to the presence of lignin and hemicellulose in G-JC and D-JC, the peaks are observed
in the spectrum at wavelengths of 1246 cm−1, 1230 cm−1, and 1510 cm−1 [5,36]. On the
contrary, these peaks disappeared in the B-JC’s and CNCs’ spectrums. It showed that after
the separation and purification of the red jujube core powder, hemicellulose and lignin
were effectively removed, and chemically purified cellulose was obtained.
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Figure 1. FT-IR spectra of G-JC, D-JC, B-JC and CNCs.

In Figure 1, all samples showed a broad and strong absorption peak near 3400 cm−1

and a weaker absorption peak near 2900 cm−1, which were due to the stretch vibrations of
O–H and C–H groups in the cellulose molecule [37,38]. The peak at 1640 cm−1 was related
to the O–H bending vibration caused by the strong adsorption of cellulose and water. The
peaks at 1047 cm−1 and 1030 cm−1 represent the vibration of the C–O–C pyranose ring
in cellulose, and the peak near 897 cm−1 is related to the C–H swing in the β-glycosidic
linkages of the glucose ring in the cellulose molecule [39]. Usually, the two peaks are related
to the cellulose content, and the increase in the peaks represents the increase in the cellulose
content [35,40]. It can be observed in the figure that as the separation and purification
process progresses, the two peak intensities increase, indicating that as the separation and
purification process progresses, the relative content of cellulose in the sample increases
and the sample is further purified. The FT-IR spectra of the B-JC and CNCs are similar,
indicating that CNCs maintain a structure consistent with cellulose molecules and that
sulfuric acid hydrolysis does not destroy the chemical structure of cellulose.
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Table 1. The main bands of FT-IR spectra for G-JC, D-JC, B-JC and CNCs.

Band Range (cm−1) Changes in Functional Components References

G-JC D-JC B-JC CNCs

3408 3325 3410 3400 Stretch vibration of O–H group in the cellulose molecule [35,37,38]

2927 2921 2897 2901 Stretch vibration of C–H group in the cellulose molecule and asymmetry
stretch vibration of CNCs [5,35,36,39]

1739 - - -
Stretch vibration in the CC-’s in-plane of the aromatic ring in lignin, and
the C=O vibration in the carboxylic acid bond of lignin or the carbonyl
group in the ester group in hemicellulose

[33–35,39]

1624 1649 1632 1642 O–H bending vibrations of strong interaction between cellulose and water [35,39,41]

1510 1510 - - C=C vibration of lignin [5,36,39]

1425 1427 1432 1432 C–H vibrations in cellulose [39,41]

1246 1246 - - C–O–C stretching vibration of acetyl linkage in lignin, hemicelluloses [5,36,39]

1163 1165 1162 1160 C–O–C stretching vibration of β-glycosidic linkages between glucose
units in cellulose [38,39,42]

1047 1028 1030 1030 C–O–C pyranose ring in cellulose [5,39,41]

897 895 897 897
C–H swing in the β-glycosidic linkages of glucose ring [5,35,39,40]

665 660 667 667

2.3. X-ray Diffraction Analysis

X-ray diffraction can evaluate the crystallization behavior of jujube core powder after
different treatments and further judge the effect of chemical purification. The XRD of
the G-JC, D-JC, B-JC and CNCs are shown in Figure 2. The figure showed that there
were diffraction peaks at 2θ = 14.8◦, 16.4◦, 22.2◦, and 34.5◦, which represented the 110,
110, 200, and 004 planes, respectively, and which are the characteristic peaks of cellulose
Iβ [41,43]. All samples maintained similar diffraction patterns, indicating that after chemical
purification treatment and further acid hydrolysis, the obtained samples maintained the
crystalline structure of cellulose Iβ. At the same time, due to the removal of lignin and
hemicellulose in the sample which changed the hydrogen bond between the cellulose
chains, there was a slight change in the position of the peak [34].
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Since the boundary between the crystalline regions and the amorphous regions of
the fiber samples are not clear, the content of the crystalline regions and the amorphous
regions cannot be accurately determined. Based on this, we adopted the method described
by Segal [44]. Using the difference between the diffraction intensity of the sample on the
200-crystal plane and the diffraction intensity of the amorphous region and its proportion
in the diffraction intensity of the 200-crystal plane, the crystallinity index (CrI) of the sample
was calculated. Usually, we take 2θ = 18◦ as the amorphous phase. The crystallinity of
the G-JC, D-JC, B-JC, and CNCs was 49.69%, 54.68%, 66.25%, and 72.36%. Crystallinity
was gradually increased with the progress of chemical purification. This was because the
initial jujube core powder contains amorphous components such as hemicellulose, lignin,
and pectin, which surround the crystalline compounds, resulting in a lower crystallinity.
The D-JC and B-JC were the products after the alkali treatment and bleaching treatment,
respectively. Because the alkali treatment and bleaching could remove pectin, lignin,
hemicellulose, and other components, their crystallinity increased. CNCs were obtained
from the B-JC through further sulfuric acid hydrolysis. They had the highest degree of
crystallinity. In addition, the crystallinity of the CNCs obtained in this study was higher
than that of the CNCs’ crystallinity of 69.99% obtained in Wahib et al.’s study [32]. It was
when the hydronium ion from the acid entered the amorphous region in the B-JC which
caused the glycosidic bond to be preferentially destroyed. The molecules were rearranged,
and the amorphous area was destroyed, thereby increasing the degree of crystallinity [5,45].
Similar results were reported in pineapple peel, and the results showed that the crystallinity
index (CrI) values of untreated PP, bleached PP, cellulose, and CNCs were 30.72, 42.07, 53.34,
and 61.19%, respectively [35]. Due to the effective removal of lignin and hemicellulose by
the bleaching treatment and alkali treatment and further acid hydrolysis, the crystallinity
of the samples continued to increase.

From the X-ray diffraction pattern, the crystallite size was determined using the Scher-
rer expression described in Section 4.4.3. By calculating the crystallite size and d-spacing
(200) of the samples, the d-spacing (200) of the samples were basically unchanged. The
crystallite size of the G-JC, D-JC, B-JC and CNCs was 2.255, 2.827, 2.957, and 3.147 nm,
respectively. Because the glycosidic bonds in the amorphous region are preferentially hy-
drolyzed and broken during the hydrolysis process, the cellulose molecules are rearranged
and the crystallinity is higher. The crystallinity index increases with crystallite size due to
the reduction in amorphous regions [46,47].

2.4. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of
materials. Figure 3 shows the TGA and DTG curves of the G-JC, D-JC, B-JC and CNCs in
the range of 30 ◦C–800 ◦C. The specific results are shown in Table 2. All samples showed
three degradation stages. The first stage occurred at 30 ◦C–150 ◦C due to the evaporation
of intermolecular H-bonded water, free moisture, or degradation of low molecular weight
compounds in the sample. The second stage occurred at 210 ◦C–370 ◦C, where cellulose
chains underwent depolymerization and degradation due to glycosidic bond cleavage. This
stage produced and released flammable volatiles through reactions such as dehydration,
hydrolysis, oxidation, decarboxylation, and trans-glycosylation [5,39]. The third stage was
when the carbon residue was further oxidized and decomposed into low molecular weight
components after being heated, such as hydrogen, ethylene, ethane, and other volatile
substances [48].



Molecules 2022, 27, 3236 6 of 16

Molecules 2022, 27, x FOR PEER REVIEW 5 of 17 
 

 

gradually increased with the progress of chemical purification. This was because the initial 
jujube core powder contains amorphous components such as hemicellulose, lignin, and 
pectin, which surround the crystalline compounds, resulting in a lower crystallinity. The D-
JC and B-JC were the products after the alkali treatment and bleaching treatment, 
respectively. Because the alkali treatment and bleaching could remove pectin, lignin, 
hemicellulose, and other components, their crystallinity increased. CNCs were obtained 
from the B-JC through further sulfuric acid hydrolysis. They had the highest degree of 
crystallinity. In addition, the crystallinity of the CNCs obtained in this study was higher 
than that of the CNCs’ crystallinity of 69.99% obtained in Wahib et al.’s study [32]. It was 
when the hydronium ion from the acid entered the amorphous region in the B-JC which 
caused the glycosidic bond to be preferentially destroyed. The molecules were rearranged, 
and the amorphous area was destroyed, thereby increasing the degree of crystallinity [5,45]. 
Similar results were reported in pineapple peel, and the results showed that the crystallinity 
index (CrI) values of untreated PP, bleached PP, cellulose, and CNCs were 30.72, 42.07, 
53.34, and 61.19%, respectively [35]. Due to the effective removal of lignin and 
hemicellulose by the bleaching treatment and alkali treatment and further acid hydrolysis, 
the crystallinity of the samples continued to increase. 

From the X-ray diffraction pattern, the crystallite size was determined using the 
Scherrer expression described in Section 4.4.3. By calculating the crystallite size and d-
spacing (200) of the samples, the d-spacing (200) of the samples were basically unchanged. 
The crystallite size of the G-JC, D-JC, B-JC and CNCs was 2.255, 2.827, 2.957, and 3.147 
nm, respectively. Because the glycosidic bonds in the amorphous region are preferentially 
hydrolyzed and broken during the hydrolysis process, the cellulose molecules are 
rearranged and the crystallinity is higher. The crystallinity index increases with crystallite 
size due to the reduction in amorphous regions [46,47]. 

2.4. Thermogravimetric Analysis 
Thermogravimetric analysis (TGA) is used to evaluate the thermal properties of 

materials. Figure 3 shows the TGA and DTG curves of the G-JC, D-JC, B-JC and CNCs in 
the range of 30 °C–800 °C. The specific results are shown in Table 2. All samples showed 
three degradation stages. The first stage occurred at 30 °C–150 °C due to the evaporation of 
intermolecular H-bonded water, free moisture, or degradation of low molecular weight 
compounds in the sample. The second stage occurred at 210 °C–370 °C, where cellulose 
chains underwent depolymerization and degradation due to glycosidic bond cleavage. This 
stage produced and released flammable volatiles through reactions such as dehydration, 
hydrolysis, oxidation, decarboxylation, and trans-glycosylation [5,39]. The third stage was 
when the carbon residue was further oxidized and decomposed into low molecular weight 
components after being heated, such as hydrogen, ethylene, ethane, and other volatile 
substances [48]. 

 
Figure 3. TGA curves of G-JC, D-JC, B-JC and CNCs; the inset image represents the DTG curves for
the corresponding thermograms.

Table 2. Onset temperature (TOn), degradation temperature at max weight loss (Tmax), weight loss
(WL), and char yield for G-JC, D-JC, B-JC, and CNCs evaluated from TG and DTG curves.

Sample
Step 1 (Evaporation of Water) Step 2 (Degradation of

Cellulose Chain)
Step 3 (Degradation of

Carbonic Residue)
Char

Yield (%)

TOn (◦C) Tmax (◦C) WL (%) TOn (◦C) Tmax (◦C) WL (%) TOn (◦C) Tmax (◦C) WL (%)

G-JC 30 79 8.13 222 298 30.91 330 360 40.34 20.61
D-JC 30 80 8.48 221 328 62.25 352 - - 29.27
B-JC 30 80 7.56 213 333 70.67 359 - - 21.76

CNCs 30 72 8.03 209 275 72.84 365 - - 18.28

Research had shown that the decomposition temperatures of hemicellulose and cellu-
lose were 250 ◦C–320 ◦C and 320 ◦C–400 ◦C, respectively, but the decomposition temper-
ature of lignin was more widely in the range of 100 ◦C–900 ◦C [39]. It could be obtained
that G-JC showed a dominant peak of degradation at 298 ◦C from DTG in Figure 4, which
corresponded to the decomposition of hemicellulose, but there were no corresponding
degradation peaks in the D-JC and B-JC, which further proved that the alkaline treatment
effectively removed hemicellulose from the jujube core powder (G-JC) and showed consis-
tent results with FT-IR and XRD [39,41,49]. The D-JC and B-JC showed dominant peaks
of degradation at 360 ◦C and 275 ◦C from DTG in Figure 4, which corresponded to the
decomposition of cellulose chains. The decrease in degradation temperature was attributed
to the gradual removal of hemicellulose and lignin and the increase in crystallinity [34,50].
In addition, compared with other samples, the Ti value of CNCs was relatively low, which
indicated that CNCs had lower thermal stability than the G-JC, D-JC, and B-JC. This was
due to the large size and surface area of the CNCs, which made them more easily exposed
during heating and led to an acceleration in the thermal degradation rate and, ultimately,
to a decrease in their stability [39,48,51].
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2.5. Morphological Analysis

The field emission scanning electron microscope (FE-SEM) can observe the structural
changes before and after the treatment of the jujube core powder fibers. Figure 4 shows
FE-SEM images of the grated jujube cores: G-JC (Figure 4a,b); dewaxed jujube cores: DW-JC
(Figure 4c,d); delignified jujube cores: D-JC (Figure 4e,f); and jujube core cellulose: B-JC
(Figure 4g,h). It is obvious that the morphology of the samples before and after processing
had changed significantly. Due to the presence of a large amount of lignin, hemicellulose,
pectin, wax, and other ingredients, the irregular block surface of G-JC in Figure 4a,b was
dense and smooth, but there were many granular substances. After the Soxhlet extraction,
the wax and other substances on the surface of the jujube core powder (G-JC) were removed;
the obtained DW-JC in Figure 4c,d was basically the same as the G-JC morphology, except
for the reduction of surface particles [5,39].

Lignin, hemicellulose, pectin, and other components were removed after further alkali
treatment and bleaching treatment. Figure 4e,f shows that the surface particles of the D-JC
completely disappeared and some small pores appeared, which facilitated the penetration
of NaClO2, resulting in a pure cellulose B-JC as shown in Figure 4g,h. Compared with other
samples, the diameter of the B-JC was significantly reduced in Figure 4h, which further
indicated the removal of non-fiber components, thereby separating individual fibers [46].
Figure 4h shows that the cellulose fiber surface was relatively rough and cracks appeared.
This was due to the penetration of a high-concentration NaOH solution into the fibrils,
causing fiber expansion and structural damage [52]. These results support the results of the
FT-IR, XRD, and TGA on lignin and hemicellulose removal.
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A transmission electron microscope (TEM) was used to observe the morphology of
CNCs. Figure 5 shows the TEM image of CNCs obtained by acid hydrolysis. The TEM
results in Figure 5a,b show that the CNCs produced by acid hydrolysis showed a rod-like
structure, which was consistent with the CNCs produced by other sources before [34,39,46].
CNCs have slight agglomeration, as is shown from Figure 5a, due to the presence of
intermolecular and intramolecular hydrogen bonds and the high specific surface area of
CNCs [53]. A total of 100 individual CNCs were selected to fit the diameter in Figure 5c and
length in Figure 5d by Nano Measurer software. Statistical data showed that the CNCs had
a length of 205.7 ± 52.4 nm, diameter of 10.5 ± 4.5 nm, and length-to-diameter ratio of 20.5.
The aspect ratio is an important factor in determining the performance of CNCs. The high
aspect ratio makes CNCs have stronger rigidity, which can increase the mechanical strength
of the bio-composite [54]. In the composite material, CNCs have strong interactions with
other substances through the hydrogen bonding force and through their own abundant
hydroxyl groups that maintain the percolation network. For example, Peresin et al. [55]
studied CNCs as reinforcements to enhance the mechanical properties of polyvinyl alcohol
fiber nanocomposites. The CNCs maintained the permeable network through hydrogen
bonding and there was an efficient stress transfer between CNCs and polyvinyl alcohol,
resulting in a significant increase in the elastic modulus of the obtained nanocomposites.

An atomic force microscope (AFM) was used to analyze the morphology and height of
the CNCs. Figure 6 shows the surface topography and height distribution image of CNCs
scanned by the AFM. In Figure 6a, the AFM image of CNCs shows needle-like crystals,
like the results reported by Kassab et al. [56]. In Figure 6d,e, the height of the CNCs were
analyzed; the crystal heights of the CNCs were mainly distributed in the range of 5–15 nm
and the average height was 10.33 ± 3.62 nm, which was consistent with the diameter of
CNCs shown by TEM as 10.5 ± 4.5 nm. These results were basically the same. The AFM
chart also shows that CNCs have a very high specific surface area, which has been shown
to be conducive to enhancing the interaction between composite materials [57]. Due to
the abundance of hydroxyl groups on the surface of CNCs, they are suitable for many
types of surface functionalization. For example, by chemical grafting, various functional
molecules, such as fluorescent molecules, DNA, etc., can also be attached to the surface of a
CNC, which can be widely used in smart materials [19,58]. In addition, they are also well
used in the field of biomedicine. The use of CNC-enhanced nanocomposite membranes
in dialysis can combine active ion exchange and passive ultrafiltration to achieve better
dialysis effects [59].
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2.6. Particle Size and Zeta (ζ) Potential Measurements

The particle size distribution of the CNCs is shown in Figure 7a. The figure clearly
shows that the particle size of the CNCs was mostly distributed in the range of 100–1000 nm.
Through the statistical analysis of the instrument’s own software, the CNCs had an average
particle size of 382 nm and a PDI of 0.321. This light scattering technique cannot measure
the size of a particle accurately and precisely, but it measured the length and diameter
dimension of the particles thoroughly. According to the TEM observation, the length of a
single CNC was about 200 nm, and the CNCs were aggregated to form larger aggregates
as shown in Figure 5a. The average particle size was larger than the particle size obtained
by TEM. This was due to the presence of intermolecular hydrogen bonding forces and
the formation of aggregates by CNCs appearing in suspension, which exhibited larger
hydraulic radii due to light scattering.
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The zeta (ζ) potential is an important parameter for analyzing the stability of the CNCs’
aqueous suspension. Zeta potential measurements investigate the degree of electrostatic
repulsion between adjacent, similarly charged particles in dispersions and provide broad
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insights into the dispersion, aggregation, or flocculation of nanoparticles, such as CNCs,
in colloidal systems. Studies have shown that solution systems have better colloidal
stability when their zeta potentials are below −30 mV or above +30 mV. The effective
electrostatic repulsion between the charges on the limits of the particle represent their
mutual coagulation or aggregation [41]. This study showed that the zeta potential of the
CNCs’ suspension was −23.72 ± 1.7 mV. It was due to the grafting of negatively charged
SO3

− groups on CNCs during acid hydrolysis which made the CNCs’ suspension appear to
have negative electrostatic repulsion [60,61]. However, the potential value of the suspension
is slightly higher than −30 mV, indicating slight aggregation and precipitation of CNCs
in the suspension due to the low electrostatic repulsion between suspended particles.
Both particle size and zeta (ζ) potential measurements indicated that the CNCs exhibited
slight agglomeration in the suspension system, which was consistent with TEM results
(Figure 5a).

2.7. Water Contact Angle (WCA)

The water contact angle is used to analyze the surface wetting ability of CNC powder.
The static WCA of the film compressed by CNC powder was collected as shown in Figure 7b,
and the static WCA of the CNCs’ film was 40.36◦. The results showed that the CNCs’ film
had strong hydrophilicity. Bruel et al. [62] reported similar results. The static WCA of the
film prepared from compressed CNC particles was 45◦. This may be due to a large number
of hydrogen bonds between or in the molecules of CNCs, which makes them sensitive to
water molecule adsorption; thus, the film prepared by compressed CNC particles exhibits
strong hydrophilicity [63].

3. Discussion

CNCs were successfully separated from jujube cores through dewaxing, alkali treat-
ment, bleaching, and acid hydrolysis. Through the analysis of the chemical compositions
of the fibers, it was shown that the purity of the fibers greatly improved from the original
40.48 ± 1.37% to 80.47 ± 2.74%, as the chemical treatment effectively removed the non-
fiber components in the jujube cores. The results of FT-IR and XRD further confirmed the
efficient removal of lignin and hemicellulose through different treatment stages, which
were consistent with the microscopic morphology. The crystal structure of cellulose Iβ was
preserved by the CNCs and the crystallinity was 72.36%. The TGA results showed that the
thermal degradation temperatures of the fibers were getting lower in different processing
stages, which was attributed to the gradual removal of hemicellulose and lignin and the
increase in crystallinity, but the CNCs still showed excellent thermal stability (>200 ◦C). The
FE-SEM, TEM and AFM were used to analyze the changes in the microscopic morphology
of the fibers at different processing stages, and the results showed that the morphology
of the treated fibers changed dramatically and the particle size of the treated fibers de-
creased gradually due to the removal of non-fiber components. The obtained CNCs were
rod-shaped, with a length of 205.7 ± 52.4 nm and a diameter of 10.5 ± 4.5 nm, showing a
high aspect ratio (20.5) and a large surface area. The particle size obtained by nanoparticle
size analysis was slightly larger than the result of TEM because the CNCs showed slight
agglomeration in the aqueous suspension, which was consistent with the zeta (ζ) potential
(−23.72 ± 1.7 mV). Furthermore, the results of the WCA showed that the films prepared
by CNC powder exhibit strong hydrophilicity due to many hydrogen bonds within, or
between, the cellulose molecules. Therefore, the jujube cores, as production waste, are an
interesting source of CNCs, and the obtained CNCs have great potential as reinforcing
materials for nanocomposites.

4. Materials and Methods
4.1. Chemicals and Raw Materials

Jujube cores were provided by Xinjiang Yeheyuan Fruit Industry Co., Ltd. (Kashgar,
China). The dirt on the surface of the jujube cores was removed with clean water and the
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material was then dried in an oven at 60 ◦C for 24 h. Sodium hydroxide was purchased from
Tianjin Yongsheng Chemical Co., Ltd. (Tianjin, China), sodium chlorite (80%, w/w) was
purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China), and sulfuric
acid (98%, w/w) was purchased from Beijing Chemical Works (Beijing, China). Dialysis
membranes were also used (molecular weight cut-off: 8000–14,000 Da). Other chemical
reagents used in this study were of analytical grade and used without further purification.

4.2. Fractionation and Purification of Cellulose from Jujube Cores

The procedure of fractional distillation, purification, and extraction of cellulose from
jujube core powder refers to the method of Abu-Thabit et al. [5] with appropriate modifica-
tions, as shown in Figure 8. The dried jujube core was ground into powder (G-JC, particle
size ≤ 0.25 mm). Before alkali treatment, Soxhlet extraction was used in the dewaxing pro-
cess. The wax was removed by refluxing with a mixed solvent (ethanol:benzene = 1:2) for
8 h at 85 ◦C to obtain dewaxed jujube cores (DW-JC). The amount of 500 mL of 10% NaOH
was added to 25 g of DW-JC, shook in a water bath at 90 ◦C for 4 h, filtered immediately to
remove the dark brown liquid, which was rich in lignin, and then washed continuously
with distilled water until the alkaline filtrate became neutral (pH ≈ 7); delignified jujube
cores (D-JC) were obtained after drying. An amount of 250 mL of 10% NaOH was added to
the D-JC (10 g), then the pH ≈ 4 with glacial acetic acid was adjusted and shook for 1 h in a
water bath at 80 ◦C for bleaching. The mixture, cooled to room temperature, was filtered
through No. 42 Whatman paper and washed with distilled water until the filtrate became
neutral. The bleaching process was repeated twice. After drying the bleached jujube cores
at 45 ◦C for 24 h, they were pulverized to obtain jujube core cellulose (B-JC) and stored in a
vacuum desiccator to prepare CNCs. The yield of jujube core cellulose was 42.3%.

4.3. Preparation of Cellulose Nanocrystals

Cellulose nanocrystals (CNCs) were obtained by sulfuric acid hydrolysis of the B-JC,
referring to the method of Dai et al. [35] with some modifications. An amount of 5 g of
B-JC was mixed with 100 mL of 63.5% H2SO4 with constant stirring at 45 ◦C for 40 min,
and the reaction was stopped with deionized ice water 10 times after the reaction was
finished. Residual sulfuric acid was removed by centrifugation at 8000 rpm for 10 min.
The centrifugation process of multiple washes was repeated until the upper liquid became
cloudy. The upper turbid liquid was collected and dialyzed against the deionized water
for 5 days using a dialysis membrane (8000–14,000 Da, Biotopped MD44) to collect the
resulting suspension, the CNCs, which were stored at 4 ◦C for further analysis.

4.4. Characterizations
4.4.1. Chemical Composition

The contents of holocellulose, lignin, and α-cellulose in the G-JC and B-JC was de-
termined by the Technical Association of the Pulp and Paper Industry (TAPPI) standards:
T 19 cm-54, T 222 cm-99, and T 203 cm-99, respectively. The hemicellulose content was
determined from the value of holocellulose and α-cellulose contents. The extractives and
ash content of the G-DC was determined by TAPPI standards: T 204 cm-97 and T 211 om-07.
All experiments were performed three times, and the average values were reported as
the results.

4.4.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

The resulting dried powder was subjected to infrared spectroscopy using the Bruker
Vertex 70v. Prior to analysis, the samples were ground together with KBr, mixed well to the
point of homogeneity, and pressed into light transparent flakes. In transmission mode, the
spectral signals of the samples at 400–4000 cm−1 were recorded and the obtained spectra
were smoothed with the software OMNIC 8.2.0.387 (Thermo Fisher Scientific Inc., Waltham,
MA, USA).
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4.4.3. X-ray Diffraction (XRD) Analysis

The structural changes of the samples were characterized by an X-ray diffractometer
(Ultima IV, Rigaku, Tokyo, Japan) using Cu-Kα radiation generated at an operating voltage
of 40 kV and a current of 150 mA. Samples were incubated at the 2θ range of 5–90◦ with a
step size of 0.02◦ and the test was performed at a rate of 4 ◦/min. The resulting diffraction
spectra were smoothed and analyzed. The crystallinity index (CrI) of the samples was
calculated from the following Equation (1) [44]:

CrI(%) =
I200 − Iam

I200
× 100 (1)

where I200 is the maximum intensity of the (200) diffraction at the 2θ value of about 22.2◦,
whereas Iam is the intensity diffraction at the 2θ value of around 18◦.

The crystallite size perpendicular to the lattice plane, the (200) plane of the samples,
was calculated from the Scherrer equation, according to Equation (2), and the d-spacing
(200) of the samples was calculated by using Bragg’s equation, according to Equation (3):

L =
kλ

β cos θ
(2)

where k = 0.9 is the correction factor, λ
(

1.54056 Å
)

is the wavelength of the X-ray radiation,
β is the FWHM of the diffraction peak in radians, and θ is the diffraction angle of the peak.

2d sin θ = nλ (3)
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4.4.4. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis (STA 449F5, NETZSCH, Bavarian Asia, Germany) was
used to study the thermal stability of the G-JC, D-JC, B-JC, and CNCs. The samples (about
5 mg) were placed in the Al2O3 pots, and the samples were heated from 30 ◦C to 800 ◦C at a
heating rate of 10 ◦C/min. All measurements were performed under a nitrogen atmosphere
with a gas flow rate of 40 mL/min.

4.4.5. Field Emission Scanning Electron Microscopy (FE-SEM)

The field emission scanning electron microscope (SU 8010, HITACHI, Tokyo, Japan)
was used to observe the morphology of samples in different chemical treatment stages
(G-JC, DW-JC, D-JC, and B-JC) under an accelerating voltage of 5 kV, referring to Prasanna
et al.’s [39] research methods. Before observation, the samples were dried at 60 ◦C for 12 h,
fixed on short aluminum stubs, and all samples were plated with gold using a vacuum
sputter coater (SD-900, Boyuan Micro Nano, Beijing, China).

4.4.6. Transmission Electron Microscopy (TEM)

The transmission electron microscope (HT 7700, HITACHI, Tokyo, Japan) was used to
analyze the shape and size of CNCs. A drop of 0.05 wt.% of the CNCs’ aqueous suspension
was deposited on the carbon film supported by the copper grid (300 mesh), stood for 2 min,
and then the CNCs were negatively stained with a 1% phosphotungstic acid solution for
2 min. The excess staining solution was then blotted with filter paper and dried under
infrared light. The TEM observation was performed under an acceleration voltage of
100 kV, and the diameter and width of 100 individual CNCs in the resulting image area
were measured using Nano Measurer software.

4.4.7. Atomic Force Microscopy (AFM)

An atomic force microscope (Multimode 8, Bruker, Karlsruhe, Germany) was used to
measure the surface of the CNCs. In the tapping mode, the phase diagram and the height
diagram of the area of 2.0 µm × 2.0 µm was obtained at the same time with a resolution of
256 × 256 points. Before analysis, a drop of 0.01 wt.% of CNCs’ suspension was dropped
on a clean silicon wafer surface and dried at room temperature for 12 h.

4.4.8. Particle Size and Zeta Potential Measurements

The particle size and potential of the CNCs were analyzed with a nanoparticle zeta (ζ)
potential analyzer (NanoPLUS-3, Micromeritics, Norcross, GA, USA). The suspension of
CNCs was diluted to 0.05 wt.% to obtain the statistical distribution of the CNCs’ particle
size. The zeta potential of the CNCs was obtained by measuring the mobility of the
particles that underwent electrophoresis in each suspension, and then converting it into a
zeta potential value. All tests were repeated 3 times.

4.4.9. Water Contact Angle (WCA)

The water contact angle of the CNCs was measured by the fixed drop method using
a contact angle meter (Theta Flex, BIOLIN, Gothenburg, Sweden). The CNC powder,
obtained by freeze-drying, was pressed into a sheet, a drop of deionized water (5 µL) was
dropped on it with a syringe, and the photograph was taken immediately. Each sample
was measured eight times.
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