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Small RNAs (sRNAs) play a crucial role in the regulation of bacterial gene expression

by silencing the translation of target mRNAs. SgrS is an sRNA that relieves

glucose-phosphate stress, or “sugar shock” in E. coli. The power of single cell

measurements is their ability to obtain population level statistics that illustrate cell-to-cell

variation. Here, we utilize single molecule super-resolution microscopy in single E. coli

cells coupled with stochastic modeling to analyze glucose-phosphate stress regulation

by SgrS. We present a kinetic model that captures the combined effects of transcriptional

regulation, gene replication and chaperonemediated RNA silencing in the SgrS regulatory

network. This more complete kinetic description, simulated stochastically, recapitulates

experimentally observed cellular heterogeneity and characterizes the binding of SgrS to

the chaperone protein Hfq as a slow process that not only stabilizes SgrS but also may

be critical in restructuring the sRNA to facilitate association with its target ptsG mRNA.

Keywords: stochastic biology, cell simulations, small RNA, single-molecule techniques, super-resolution

microscopy, gene regulatory networks, cellular stress response

1. INTRODUCTION

The ability of living cells to modulate their gene expression in response to changing environmental
conditions is critical to their growth and continued development. Many bacteria use the
phosphoenolpyruvate phosphotransferase (PTS) system to transport and phosphorylate incoming
sugars to prepare them for subsequent glycolytic metabolism. The uptake of phosphosugars
must be balanced with their breakdown in order to prevent metabolic stress. In E. coli, a
stress response induced by unbalanced glucose-phosphate transport and metabolism or “sugar
shock,” is referred to as glucose-phosphate stress response. A primary activity of this stress
response is RNA silencing of ptsG, a gene coding for the glucose transport protein of the
same name (also known as EIICBGlc in E. coli), by the small RNA (sRNA) SgrS. Small
RNAs are usually non-coding RNA molecules that act by base pairing with target messengers
to regulate translation or mRNA stability and have been observed across all domains of
life (Babski et al., 2014). sgrS is upregulated by a transcriptional activator (SgrR) when the
cell is under a state of glucose-phosphate stress. SgrS regulates ptsG post-transcriptionally
by a mechanism where SgrS binds to ptsG messenger RNA (mRNA) and prevents
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its translation to protein by blocking access of the ribosome
to the mRNA (Vanderpool and Gottesman, 2004; Maki et al.,
2010). This also enhances the co-degradation of ptsGmRNA and
SgrS via enzymes responsible for the removal of bulk RNA
such as ribonuclease E (RNase E) (Kawamoto et al., 2006; Maki
et al., 2010). This co-degradation reduces the number of PtsG
sugar transporter proteins that are produced and thus reduces
the impact of glucose-phosphate stress, since fewer transport
proteins are available to bring sugar into the cell.

SgrS and ptsG mRNA associate via complementary base
pairing that occludes the ribosome binding site on the mRNA.
Recently, this mechanism has been analyzed in conjunction with
binding of the Sm-like chaperone protein Hfq to SgrS, which has
been proposed to stabilize the sRNA, and facilitate the interaction
between the sRNA and its mRNA target (Ishikawa et al., 2012).
Hfq also promotes SgrS–dependent regulation of other targets
involved in sugar shock such as manXYZ, and yigL in E. coli. In
this study, we focus only on the primary regulatory target ptsG
mRNA and do not consider the other targets of the SgrS regulon,
which are described in Bobrovskyy et al. (2019).

Previous experimental and theoretical work (Jones et al.,
2014; Peterson et al., 2015) has demonstrated the necessity
of accounting for gene replication over the course of the cell
cycle in order to capture the population variation observed in
messenger RNA abundance. The additional noise emanating
from transcription at multiple gene loci manifests itself in
the broad mRNA copy number distributions observed in a
population of cells. The aforementioned work also demonstrated
that including the effect of gene regulation by transcription
factors can be critical in order to appropriately describe stochastic
dynamics. The effect of transcriptional regulation is apparent
in the SgrS–ptsG mRNA system, where the expression of SgrS
is maintained by the regulator SgrR, which activates sgrS and
autorepresses its own expression during glucose-phosphate stress
conditions (Vanderpool and Gottesman, 2004, 2007).

Recently, Fei et al. (2015) presented a deterministic kinetic
model of the SgrS mediated regulation of ptsG mRNA in E. coli.
Using single-molecule fluorescence experiments (smFISH and
STORM), SgrS and ptsG mRNA copy numbers in cells were
measured, which produced distributions of RNA at various time
points after the induction of sugar stress across a population of
fast-growing E. coli. However, it is important to note that both
the ptsG mRNA and the SgrS regulating it are present in low
copy number (a few to tens of particles) and therefore exhibit
intrinsically noisy behavior in both their gene expression and
regulatory behaviors. For this reason it is most appropriate to
treat the regulatory processes via stochastic simulation in order to
quantify the variation that is observed across a population of cells,
which has been demonstrated previously (Elowitz et al., 2002;
Raser, 2005; Earnest et al., 2018).

Here, we have developed a stochastic model, to our knowledge
the first of its kind for an RNA silencing network, that captures
the mRNA and sRNA distributions experimentally observed in
a population of hundreds of E. coli cells. The stochastic model
additionally incorporates the following features that extend
the platform given by Fei et al. (2015): (1) accounting for
gene replication, (2) transcriptional gene regulation of sgrS by

its activator SgrR and (3) explicit representation of the SgrS
stabilization via the Hfq chaperone protein. This model robustly
describes experimentally observed RNA distributions, closely
matching regulatory dynamics from immediately after induction
until a steady state is reached 20 min later. We also utilize
this model to analyze the effects of the size of the pool of Hfq
chaperone protein available to SgrS, to decouple the rate of Hfq
stabilization of SgrS and its subsequent activity in enhancing
association to the target, ptsG mRNA, and to study the effect
of an sgrS point mutation in the SgrS-Hfq binding region on
regulatory dynamics.

2. MATERIALS AND METHODS

2.1. Model and Computational Methods
The previous kinetic model for SgrS regulation of ptsG
mRNA (Fei et al., 2015) utilized simple mass-action kinetics to
describe the target search process andmodeled gene expression as
a constitutive process, with RNA species originating from a single
gene copy. Despite its simplicity, this model captures average
regulatory network behavior and also gives insight into many
of the parameters required for the more descriptive stochastic
model that is the focus of this work. For example, since an overall
binding rate for SgrS to ptsG mRNA was established in Fei et al.
(2015) we are now able to complexify themodel by the addition of
the chaperone protein Hfq, which allowed us to predict (by fitting
to the experimental data) the size of the pool of Hfq available to
stabilize SgrS and the rate at which it binds the sRNA (separate
from its association to ptsGmRNA).

The kinetic model was implemented and solved stochastically
as a well-mixed Chemical Master Equation (CME) in the Lattice
Microbes (LM) simulation software suite (Peterson et al., 2013;
Roberts et al., 2013; Hallock et al., 2014; Hallock and Luthey-
Schulten, 2016). The corresponding rate constants (Table 1) were
adapted from the kinetic model described in Figure 1. One
important feature added to the model is the explicit presence
of the chaperone protein Hfq, which has been shown to
both stabilize SgrS (substantially increasing its half-life) and to
facilitate the association of SgrS to ptsG mRNA (Vanderpool
and Gottesman, 2004; Hopkins et al., 2011; Wagner, 2013;
Santiago-Frangos and Woodson, 2018). In order to capture the
cell-to-cell heterogeneity due to the small number of particles
(e.g., gene copies) involved in transcription, it is critical to
account for transcriptional regulation of the genes involved in the
glucose-phosphate stress response. For this reason, we include
the transcriptional activation of sgrS by the transcription factor
SgrR, which has been shown to upregulate sgrS expression in
the presence of αMG (the unmetabolizable inducer used in place
of glucose for our experiments) (Vanderpool and Gottesman,
2004, 2007). Regulation of ptsG by the transcriptional repressor
Mlc was not included in the model since repression is relieved
in the presence of glucoside sugars. With αMG present, Mlc is
sequestered at the membrane by binding the EIIB subunit of
the PtsG transporter protein complex (Lee, 2000; Seitz et al.,
2003; Nam et al., 2008), relieving repression and resulting in
high levels of ptsG transcriptional activity (Balasubramanian and
Vanderpool, 2013). Since the decay time of PtsG proteins is
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TABLE 1 | The list of parameters used for the kinetic model.

Parameter Value Unit Source

kt,p 0.12 ± 0.01 s−1 Experimentally measured

βp (3.7 ± 0.5) × 10−3 s−1 Experimentally measured

kon,Ds (3.0 ± 0.1)× 10−2 s−1 Fit

koff ,Ds (9.5 ± 0.1)× 10−3 s−1 Fit

kt,s 0.33 ± 0.01 s−1 Fit

kds 0.022 ± 0.002 s−1 1hfq decay rate of SgrS

kbind 0.063a ± 0.014 s−1 Fit

kunbind 0.0018 ± 0.0004 s−1 SgrS decay rate

kon (3.1± 0.2)× 10−4 molec−1s−1 Fei et al., 2015

koff 0.22 ± 0.02 s−1 Fei et al., 2015

kcat 0.3 ± 0.1 s−1 Fei et al., 2015

% high, low gene state sgrS 25 ± 12, 75 ± 12 % Fit

% high, low gene state ptsG 46 ± 20, 54 ± 20 % Fit

Hfq pool size (available to SgrS Regulon) 250 ± 167 molec Fit

The% in each gene state refers to percentage of the cellular population with the gene being in a low or high gene copy state as described in section 2.1.1. (a) kbind is given as a Pseudo

first order rate accounting for the average expected pool size of Hfq participating in SgrS stabilization and enhancement (250). When converted to the corresponding bulk second order

rate with 250 Hfq present kbind agrees well with the range of Hfq binding rates measured for other sRNA reviewed in Santiago-Frangos and Woodson (2018) and discussed further in

section 3. Confirmation of kon and koff as the same values given in Fei et al. (2015) is discussed in section 2.2. Calculation and analysis of parameter uncertainty values by Markov Chain

Monte Carlo analysis is discussed in Supplementary Section 6.

FIGURE 1 | Schematic of the kinetic model as described in the text. The RNA species are transcribed from a sampled genome state with sgrS capable of switching

between an “ON” and “OFF” state. Explicitly represented Hfq can bind and unbind with SgrS, and then the Hfq–SgrS complex binds (and potentially unbinds)

with ptsG mRNA. All RNA degradation events are carried out by the enzyme RNase E. See Figure 4 for the kinetic equations described above.

expected to be approximately on the order of 8 h (Maier et al.,
2011), much longer than the timescale of mRNA decay, Mlc
repressors are likely still sequestered by the transporters at the
membrane 20 min post-induction and have little effect on the
SgrS regulatory process. Rates for the association of the Hfq-SgrS
complex to ptsG mRNA (kon) and the dissociation of the Hfq-
SgrS-ptsG mRNA complex (koff ) were obtained from Fei et al.
(2015), which did not include Hfq explicitly but provides the
corresponding association and dissociation reaction rates. The
value for the co-degradation rate of SgrS and ptsG mRNA from
the Hfq-SgrS-ptsG mRNA complex by RNase E (kcat) is also

obtained from Fei et al. (2015) (see section 2.2 for confirmation
of kon, koff , and kcat values).

2.1.1. Calculation of Gene Copy Number
Finally, and critically, in order to appropriately capture
regulatory effects on gene expression of SgrS and ptsG mRNA,
it is important to account for gene duplication, as we have
previously shown (Peterson et al., 2015). As illustrated by Jones
et al. (2014) since the time to replicate the E. coli genome
(approximately 40 min, Cooper and Helmstetter, 1968) is longer
than the fast-growing E. coli cell division time of 20min (or the 35
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FIGURE 2 | The gene location for SgrS and ptsG mRNA relative to the origin of replication (oriC) are shown on the circular genome of the E. coli cells used for this

study. As it is closer to the origin of replication sgrS (cyan) is likely to be present in higher gene copy number than ptsG (orange), which is farther away from the oriC.

min observed in our experiments), the cell has nested replication
forks that are already replicating the genomes of daughter and
granddaughter cells prior to cell division. In particular, genes
close to the origin of replication are likely to have multiple
copies present over much of the cell cycle. This phenomenon
has been shown previously for genes near the origin in E. coli by
both isotopic labeling of nucleotides and imaging of fluorescent
chromosome markers (Cooper and Helmstetter, 1968; Youngren
et al., 2014). Due to the position of sgrS (only 6◦ away along the
circular chromosome) very near to the origin of replication, it is
likely that multiple gene copies are accessible for transcription
over the course of the cell cycle. About half-way between the
origin and terminus of replication (at approximately 90◦) ptsG is
also likely to have multiple gene copies present at some point
over the course of the cell cycle, although at lower copy number
than sgrS. Figure 2 depicts the two genes and their location along
the circular E. coli genome.

The experimentally measured cells were unsynchronized
and should have multiple replication forks present over the
course of the 20 min post-induction, our measurement window.
To account for gene duplication effects in a population of
unsynchronized cells, we sample the percentage of the cellular
population in either a low or high gene state, which corresponds
to the expected distribution of the number of genes present
over the course of the cell cycle after induction. In this way, we
effectively flip a coin to decide whether a simulation replicate
corresponding to an individual experimentally imaged E. coli cell
has 2 copies (low gene state) or 4 copies (high gene state) of
sgrS and similarly 1 or 2 copies of ptsG. This allows us to account
for the effect of gene duplication in generating mRNA noise

over the heterogeneous population of hundreds of E. coli cells
that were observed experimentally. We assume that all gene
copies are transcribed independently from one another and at
the same rate, a notion that Wang et al. (2019) has recently
examined in E. coli under various growth conditions. Under
similar growth conditions to ours [MOPS glucose-based medium
with a doubling time of 35 min (see section 2.2)], the data
from Wang et al. (2019) suggest that transcription does appear
to be independent and uncorrelated between copies of the
same gene.

Figure 3 illustrates the reasoning for the specific choices
of high and low state gene copy numbers for ptsG and
sgrS in an E. coli cell growing faster than the expected time
necessary for replication (approximately 40 min, compared to
an experimentally observed generation time of approximately 35
min) (Cooper and Helmstetter, 1968; Youngren et al., 2014).

Stochastic simulations were performed by sampling the CME
for the model given in Figure 1 with the widely used Gillespie
Direct Method of the Stochastic Simulation Algorithm (SSA),
which is implemented in the publicly available Lattice Microbes
(LM) software suite (version 2.3 was used) and its python
interface pyLM (Peterson et al., 2013; Roberts et al., 2013;
Hallock et al., 2014; Hallock and Luthey-Schulten, 2016). We ran
2,000 replicate simulations for 25 min after αMG induction of
glucose-phosphate stress in order to match the corresponding
20 min smFISH-STORM experiments. Initial conditions for
basal SgrS (1–3 copies) and ptsG mRNA (30–40 copies) copy
number were sampled from the experimentally measured
distributions and rounded to the nearest integer particle
number (a necessity for stochastic representation). Simulations
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FIGURE 3 | A simplified depiction of possible cellular states throughout a single DNA replication cycle. Each cell shows a snapshot of the gene state of a cell given its

progression through the DNA replication and cell division cycle. Due to the difference in lengths of the cell division cycle (∼35 min) and DNA replication cycle (∼40

min), DNA replication and cell division are not completely in sync. Multiple replication forks (red dots) can form on the genome in order to ensure DNA is duplicated

properly in these fast-growing cells. As a result, genes closer to the origin such as sgrS (blue) are duplicated in the same timeframe that replication is initiated (resulting

in 2 or 4 gene copies), while genes closer to the terminus such as ptsG (orange) are replicated later in the C period, the period when a majority of DNA is duplicated

(resulting in 1 or 2 gene copies). The black arrows denote the start of a cycle.

were computed on a local cluster containing AMD Opteron
Interlagos cores.

2.1.2. SgrS Regulatory Network Kinetic Model
The kinetic model describing the reactions characterizing
the E. coli glucose-phosphate response network by
the small RNA SgrS is given in Figure 4. Simulation
files are available in Jupyter Notebook format to be
simulated via the Lattice Microbes (LM) Software Package
at http://faculty.scs.illinois.edu/schulten/research/sgrs-2020/.

2.2. Experimental Methods and Materials
Wild type E. coli cells (DJ480) were grown overnight at 37 ◦C,
250 rpm in LB Broth. The SgrS U224G mutant was grown
in LB Broth with 50 µg/ml spectinomycin (Spec) (Sigma-
Aldrich). The next day, overnight cultures were diluted 100-
fold into MOPS EZ rich defined medium with 0.2% glucose
and the cells were grown until OD600 reached 0.15–0.25. α-
methyl D-glucopyranoside (αMG) (Sigma Aldrich) was then
added to provoke glucose-phosphate stress and induce SgrS
expression response. Specific volumes of liquid were removed
from the culture at 0, 2, 4, 6, 8, 10, 15, and 20 min after
induction and mixed with formaldehyde (Fisher Scientific) to a
final concentration of 4% for cell fixation prior to single molecule
experiments. See Supplementary Table 1 for a description of the
cellular strains utilized for these experiments.

Following fixation, the cells were incubated and
washed, before being permeabilized with 70% ethanol,
to allow for fluorescence in situ hybridization (FISH).
Stellaris Probe Designer was used to design the
smFISH oligonucleotide probes that were ordered from
Biosearch Technologies (https://www.biosearchtech.com/).
See Supplementary Table 2 for a table of the probes used in
this work. Each sRNA was labeled with 9 Alexa Fluor 647
probes while each ptsG mRNA was labeled with 28 CF 568
probes. The labeled RNA molecules were then imaged via
the super-resolution technique STORM (Stochastic Optical
Reconstruction Microscopy). A density-based clustering analysis
algorithm (DBSCAN) (Daszykowski et al., 2001) was utilized
to calculate RNA copy numbers. The algorithm used was the
same as previously published (Fei et al., 2015), but the Nps and
Eps values were updated for the SgrS and ptsG mRNA images,
since CF 568 was used instead of Alexa Fluor 568 and a 405 nm
laser was used to reactivate the dyes. The SgrS (9 probes labeled
with AlexaFluor 647) images were clustered using Nps = 3
and Eps = 15 and the ptsG mRNA (28 probes labeled with CF
568) images were clustered using Nps = 10 and Eps = 25 and
these numbers were empirically chosen. A MATLAB code was
used for cluster analysis.

The raw data was acquired using the Python-based acquisition
software and it was analyzed using a data analysis algorithm
which was based on work previously published by Babcock
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FIGURE 4 | Kinetic Equations of the SgrS regulatory network. Don,p1,2 refers to the gene (or DNA) for ptsG in 1 (low state) or 2 (high state) copies

and Don,s2,4 corresponds to the gene for sgrS in 2 (low state) or 4 (high state) copies. Don,s corresponds to sgrS when it is in the “ON” state due to activated or solute

bound transcriptional activator SgrR being bound (Vanderpool and Gottesman, 2007). kds corresponds to the experimentally measured degradation rate of SgrS

when cellular Hfq is not present and kunbind corresponds to the experimentally measured degradation of SgrS when Hfq was present.

et al. (2013). The peak identification and fitting were performed
using the method described previously (Fei et al., 2015). The
z-stabilization was done by the CRISP system and the horizontal
drift was calculated using Fast Fourier Transformation (FFT)
on the reconstructed images of subsets of the super-resolution
image, comparing the center of the transformed images and
corrected using linear interpolation.

The ptsG mRNA degradation rates were calculated
via a rifampicin-chase experiment. The wild type
(DJ480) E. coli cells and 1hfq mutant strain SA1816
[DJ480, laclg, tetR, spec, 1hfq::kan] cells were grown in LB
Broth with the respective antibiotics at 37 ◦C, 250 rpm overnight.
They were used to calculate the RNA degradation rates. The
1hfq::kan allele was moved to create strain SA1816 constructed
by P1 transduction (Miller, 1972). When the OD600 reached
0.15–0.25, rifampicin (Sigma-Aldrich) was added to cultures to
a final concentration of 500 µg/ml. The cells were labeled by
smFISH probes and analyzed by the same process described
above, taking the time of rifampicin addition or αMG removal as
the 0 time point. Aliquots were taken after 0, 2, 4, 6, 8, 10, 15, and
20 min (0, 2, 4, 6, and 8 min for 1Hfq strains). For the purpose
of background subtraction, 1SgrS and 1ptsG mRNA strains
were grown, labeled with probes and imaged in the same manner
to be used for the measurement of the background signal due

to the non-specific binding of Alexa Fluor 647 and CF 568. The
natural logs of the RNA copy numbers were plotted against time
and the slope of the linear fitting was used to calculate the RNA
lifetime and then the degradation rates. SgrS degradation rates
were obtained from Fei et al. (2015), where they were measured
by stopping the transcription of sgrS by removing αMG from
the media and then were imaged and analyzed to calculate
the degradation rates in the same manner as was described
for ptsG mRNA. The values for kcat , kon, and koff for WT
cells were confirmed to be within the errors reported for the
values given in (Fei et al., 2015) by fitting to the experimentally
measured RNA counts with the simplified model given in that
work. The transcription rate of ptsG was determined using
kt.p = βp× [p]0, [as described in Fei et al. (2015)], where [p]0 was
the average initial level of ptsG mRNA before stress induction.
The transcription rate obtained was unchanged between the
wild-type and the U224G mutant cells.

3. RESULTS

Figure 5 demonstrates the ability of our newly developed kinetic
model to capture the average cellular copy number of SgrS and
ptsGmRNA over the course of the 20 min period post-induction.
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FIGURE 5 | Average time trace and interquartile range (IQR) of (A) labeled SgrS and (B) ptsG mRNA from both 85–169 cells from smFISH experiments (red, circled

line) and 2,000 replicates from kinetic model simulations (blue, solid line). The kinetic model shows strong agreement, especially at long times (10–20 min) after

induction and captures overall response behavior. An available pool of 250 Hfq and the kinetic parameters given in Table 1 were utilized. Results considering both

lower and higher available Hfq pools are discussed in Supplementary Figure 1.

The overlap of the interquartile range (IQR) of both the
experimental and simulated cellular populations demonstrates
the agreement over a variety of cells [at different gene states (i.e.,
high/low copy number), and RNA expression levels].

The ability of our improved kinetic model to capture
population-level statistics of single cell copy number
distributions of SgrS and ptsG mRNA is demonstrated in
Figure 6. Kernel Density Estimates (KDE), which are used
to estimate the probability densities of distributions of
approximately 100–200 experimentally measured cells and
2,000 simulated cells are displayed, along with dashed vertical
lines giving the average RNA copy numbers observed. KDEs
were utilized to provide a reasonable comparison to the
experimental values despite the fact that there were a relatively
low number of cells measured at each time point (approximately
100–200) compared to the number of replicates required
for appropriate stochastic simulation (2,000) (Histograms of
experimental RNA counts measured before KDE imposition
are given in Supplementary Figure 7). The distributions
obtained from both experiment and the kinetic model show
strong agreement (especially in the case of ptsG mRNA), which
can be seen quantitatively by the starred line showing the
Kullback–Leibler Divergence (KL Divergence) in Figure 7.
The KL Divergence (Equation 2), which was minimized to

fit to experimental RNA distributions over all time points,
is a statistical measure used to characterize the difference
between a probability distribution (the KDE of simulated
cells) and a reference distribution (the KDE of experimentally
measured cells).

The parameters obtained from the fitting process give
some insight into the role of stabilization by Hfq in the
SgrS-ptsG mRNA target search process and the role of
transcriptional regulation by SgrR in the regulatory network.
The pseudo first order rate of Hfq binding to SgrS (kbind) is
0.063 ± 0.014 s−1, while the degradation rate of SgrS (kds),
obtained from 1hfq strain experiments (described in section
2.2), is 0.022 ± 0.002 s−1. The available Hfq pool size of
250 ± 167 predicted by fitting to the kinetic model seems
reasonable in that average proteomics values have been found to
be on the order 1,500 (Taniguchi et al., 2010; Santiago-Frangos
and Woodson, 2018) and unique sRNAs have been shown to
be bound to 10 to 1,000 copies of Hfq in E. coli (Melamed
et al., 2020) (Further discussion of range of Hfq copy number
is given in Supplementary Section 1). Additionally, the
aforementioned SgrS-Hfq binding rate kbind corresponds well
to experimentally measured in vitro values for sRNA-Hfq
binding for sRNA of its approximate size (Fender et al., 2010;
Hopkins et al., 2011; Santiago-Frangos and Woodson, 2018).
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FIGURE 6 | Distributions of (A) Wild-Type SgrS (top) and (B) ptsG mRNA (bottom) at various time points from 0 to 20 min post-induction. Data from smFISH-STORM

experiments (red, 100–200 cells per time point) and stochastic simulations (blue, 2,000 cells per time point) are shown as kernel density estimates. The effect of

number of cell replicates is studied further in Supplementary Figure 3. Average copy number at each time point is are displayed with dashed vertical lines.

If the pseudo first order rate for kbind reported in Table 1 is
converted to a bulk second order rate by incorporating
the Hfq concentration at the predicted available pool size
of 250, we obtain a binding rate of 1.5 × 105 M−1 s−1.
This value (on the order of 1–3 105 M−1 s−1 within the
uncertainty reported in Table 1) agrees better with the reported
value of approximately (Santiago-Frangos and Woodson,
2018) 106 M−1 s−1 for long RNAs binding to Hfq (Lease and
Woodson, 2004; Fender et al., 2010) than 108 M−1 s−1 reported
for short, unstructured RNAs binding to Hfq (Hopkins et al.,
2011). Since SgrS is a relatively long sRNA (sRNA have typically
been found to be between 37 and 300 nt Wang et al., 2015a with
a length of 227 nucleotides, the slow sRNA-Hfq binding rate
obtained by fitting seems appropriate. This type of slow sRNA
association process has been suggested to be characterized by
RNA restructuring (by which Hfq remodels sRNA regions in
order to make its secondary structure more accessible for target
mRNA base pairing) (Antal et al., 2004; Soper and Woodson,
2008; Soper et al., 2011; Bordeau and Felden, 2014), which has
been proposed to occur for SgrS (Maki et al., 2010). kbind is
also much greater than the Hfq-SgrS unbinding rate (kunbind)
of 0.0018 ± 0.0004 s−1 which was obtained from fitting to
the degradation rate of SgrS in a cell where Hfq was expressed
(distinct from the 1hfq rate) by assuming that Hfq-SgrS
unbinding is the rate-limiting step in the degradation of free SgrS
represented in Figure 4 (Rxn 2.2). These results seem reasonable
in that SgrS should associate with Hfq at a rate comparable to
its degradation as well as that SgrS-Hfq binding should happen

at a significantly higher rate than their dissociation for sRNA
chaperone stabilization by Hfq to be effective.

The kinetic values for transcriptional regulation by the
activator SgrR also seem reasonable with a kon,Ds of 3.0 ×

10−2 s−1 and a koff ,Ds of 9.5 × 10−3 s−1. The gene switching
parameters correspond to sgrS activation via SgrR binding
occurring approximately 30 s after initiation of induction,
with all sgrS genes assumed to start in the “OFF” state (the
effect of starting genes in the “OFF” vs. the “ON” state is
analyzed in Supplementary Figure 2). This seems reasonable
since SgrS sRNA moves from a basal level of a few copies to
greater than 40 copies on average in 2 min time (Figure 5).
The fact that kon,Ds is 3 times greater than koff ,Ds means that
activation happens more frequently than deactivation from
unbinding of SgrR. This relative behavior is somewhat expected
as sugar shock has been induced and SgrR is believed to
be transformed to its active conformation as a transcription
factor for sgrS by binding to a small molecule at its C-
terminus (Vanderpool and Gottesman, 2004, 2007). While the
available evidence suggests that the activity of SgrR due to
solute binding rather than sgrR expression affects activation
of sgrS, it has been demonstrated that SgrR is negatively
autoregulated (Vanderpool and Gottesman, 2007) which may
lead to a ceiling on the level of sgrS activation that can occur
even after glucose-phosphate stress is fully induced. Thus, we
incorporate constant rates of kon,Ds and koff ,Ds for sgrS activation
in our model, instead of a time variant rate constant for
either parameter.
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FIGURE 7 | Statistical analysis of the agreement of (A,C) SgrS sRNA and (B,D) ptsG mRNA copy number between experiment and theory on both (A,B) an average

(Relative Error) and (C,D) distribution (Kullback–Leibler: KL Divergence) level. KL Divergence values for the model with no Hfq stabilization nor Gene Duplication are

not shown as the values obtained are at 1.0, corresponding to significant disagreement in that model variant and experiment. GeneDup refers to a model with Gene

Duplication for both SgrS and ptsG implemented and Reg refers to a model with transcriptional regulation of SgrS by SgrR in place. The green line (with star markers)

indicates the full kinetic model used for this study, which provides the best fit to both average and population level data for both SgrS and ptsG mRNA.

3.1. Comparison of Goodness of Fit Based
on Model Complexity
To illustrate the improvement of the kinetic model to
describe cellular populations, we compare simulation results
sequentially as each level of complexity (i.e., transcriptional
regulation by SgrR, gene replication, and stabilization by the
chaperone protein Hfq) is added to the original reduced
model presented in Fei et al. (2015). Figure 7 demonstrates
the improvement in descriptiveness at both an average

and population level with progression to a more fine-
grained kinetic model. The relative error (Equation 1) of
the average copy number of SgrS and ptsG mRNA gives
the capability of the model to reproduce experiments on

an average level, while the Kullback-Leibler Divergence (KL
Divergence) (Equation 2) shows the agreement between the

experimentally observed and simulation distributions of RNA
copy numbers at a series of times from 0 to 20 min
post induction.
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The Relative Error used to illustrate the agreement between
the experimentally measured average RNA copy number and the
theoretical value is given by:

η =

∣

∣

∣

∣

Expavg − Simavg

Expavg

∣

∣

∣

∣

(1)

where Expavg is the experimentally measured average RNA copy
number at a given time point and Simavg is the simulated average
RNA copy number at the same time point.

The KL Divergence used to compare agreement between
experimental and simulated distributions is given by:

DKL (P||Q) =
∑

i

P(i) log
P(i)

Q(i)
(2)

where P(i) is the continuous probability distribution given by the
Gaussian KDE of the experimental copy number distribution of
RNA (SgrS or ptsG mRNA) and Q(i) is the analogous simulated
RNA copy number distribution.

It is clear that the decrease in the KL
Divergence (Figures 7C,D), describing the ability of the
kinetic model to accurately describe cell-to-cell variation, is
most substantial in the final model presented in this work (star
markers). Accounting for transcriptional regulation by SgrR,
ongoing gene replication, and the stabilizing effect of Hfq allows
for a more faithful description of the noise observed in a cellular
population in the process of sugar shock response.

3.2. Characterizing the Effects of SgrS
Point Mutation on Association to Hfq and
ptsG mRNA
The stochastic model we have presented can also be utilized to
characterize the effects of sgrS point mutations on the regulatory
network as a whole. The polyU tail region of sgrS comprising
the final 8 residues of the 5’ end (all of which are uridine in
the sRNA) has previously been shown to be an important site
for Hfq recruitment (Otaka et al., 2011). When the polyU tail is
truncated or similarly disrupted, there is a noticeable decrease
in SgrS regulatory efficiency. With this in mind, we used the
previously defined kinetic model (See Figure 4) to characterize
the effect of a point mutation resulting in a U to G change
in SgrS at position 224 (in the polyU tail region, hereafter
referred to as U224G) of the sRNA on regulatory kinetics.
This point mutation is well downstream of the seed region
(nucleotides 168–187) where SgrS-ptsG mRNA base pairing
occurs (Maki et al., 2010; Bobrovskyy and Vanderpool, 2014) so
it should not directly interfere with sRNA-mRNA interactions.
It is also important to consider the possible structural effects
arising from polyU tail mutation. Through in silico folding with
the RNA structure prediction tool mFold (Zuker, 2003), we
confirmed that the stability of the U224G with a 1G of
−17.60 kcal/mol is unchanged from the predicted wild-type
value of−17.60 kcal/mol, and also indicated that sRNA structure
is conserved Supplementary Figure 5) and the measured wild-
type 1Hfq degradation rate (see section 2.2) is appropriate

for use in fitting the U224G mutant data (as a rate for
Figure 1, rxn 2.2).

We then fit to the experimentally measured SgrS and
ptsG mRNA distributions using the previously determined
kinetic model (Given in Figure 1 and Table 1). A robust
fit describing both average behavior as well as population
level variation (Figure 8, Supplementary Figure 4) was achieved
primarily by modulating the rates of SgrS to Hfq binding and
unbinding (kbind and kunbind) and the ptsG mRNA annealing
rates kon and koff (which were also free parameters in this
treatment) to a much lesser extent, which further demonstrates
the role of the polyU tail in Hfq chaperone recruitment. The
changes in the kinetic parameters of the model used to fit mutant
U224G relative to the wild-type cells (WT) illustrate that the
effects of this mutation on SgrS-Hfq association are much larger,
relative to the subsequent annealing of SgrS to its target ptsG
mRNA (Table 2) (Further discussion of mutant U224 structure
is given in Supplementary Section 4).

The 48% decrease in the SgrS-Hfq binding rate kbind and
66% increase in the unbinding rate of the sRNA and chaperone
complex kunbind highlight the effects of polyU tail disruption, and
support previous conclusions that this is an important site for
Hfq stabilization of SgrS (Otaka et al., 2011), and the regulatory
efficiency of the network as a whole. The smaller relative changes
in the Hfq-SgrS-ptsG mRNA annealing rates kon and koff by
32% and 22% respectively may be due to altered interactions
with Hfq that impair Hfq–dependent annealing of SgrS and ptsG
mRNA (Supplementary Section 4). In light of the previously
discussed slow SgrS–Hfq association process, it is reasonable that
RNA restructuring of Hfq may be disrupted by mutation U224G,
thus leading to slower and weaker annealing to ptsGmRNA. One
possible explanation for the disturbance of regulation in mutant
U224G is the disruption of orderly transcription termination (the
polyU tail is at the 3’ end of sgrS). Such readthrough transcription
has previously been ascribed to decrease the efficiency of SgrS
binding to Hfq (Morita et al., 2015, 2017). Even considering
values near the ceiling of the uncertainties reported in Table 2 it
seems clear that both kbind and kon decrease and that both kunbind
and koff increase due to the disruption of the polyU tail at U224G,
highlighting the importance of Hfq in both stabilizing SgrS and
in promoting the association of SgrS to ptsGmRNA.

4. DISCUSSION

The construction of a stochastic kinetic model including gene
replication, transcriptional regulation, and the role of the Hfq
chaperone protein demonstrates the utility of combining single
cell experiments with stochastic modeling. The SgrS Regulatory
Network is a noisy system characterized by small numbers of
sRNA and mRNA, as well as gene copy numbers that vary
from cell-to-cell. This leads to the population level heterogeneity
that can then be used to parameterize a kinetic model for
analysis of the role of specific molecular actors, such as the
chaperone Hfq, and the effects of point mutation on sRNA
silencing of mRNA.
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FIGURE 8 | For U224G mutant cells, average time trace and interquartile range (IQR) of (A) labeled SgrS and (B) ptsG mRNA from both 83–110 cells from smFISH

experiments (red, circled line) and 2,000 replicates from kinetic model simulations (blue, solid line). The kinetic model shows strong agreement, especially at long times

(10–20 min) after induction and captures overall response behavior. An available pool of 250 Hfq and the kinetic parameters given in Table 1 were utilized, other than

changes to SgrS-Hfq binding and unbinding rates and ptsG mRNA annealing and dissociation rates given in Table 2.

The average number of Hfq hexamers present in an E. coli cell
has been reported to be on the order of 1,400–10,000
(2–15 µM) (Taniguchi et al., 2010; Mancuso et al., 2012;
Wiśniewski and Rakus, 2014; Wang et al., 2015b; Santiago-
Frangos and Woodson, 2018). It is worth noting that an
extensive microfluidic-based, single-cell proteomics study that
analyzed over 4,000 individual E. coli cells grown in similar
media conditions as our study (Taniguchi et al., 2010) found a
mean Hfq level of 1500. Additional immunoprecipitation and
sequencing studies (by RIL-Seq) have shown the number of
various individual mRNAs and sRNAs being bound to Hfq to
range from 10 to 1,000 in E. coli (Melamed et al., 2020). Thus, our
prediction (from fitting) that a pool of approximately 250 ± 167
Hfq (approximately 0.5 µM) are available to bind with SgrS
sRNA at any time in the simulation of sugar shock regulation
seems reasonable.

In addition, our approach allowed us to characterize the rate
of Hfq-SgrS association compared to values reported for Hfq
stabilization of other regulatory sRNAs. If the pseudo first order
Hfq binding rate kbind reported in Table 1 is converted to a bulk
second order rate we obtain a binding rate of 1.5× 105 M−1 s−1

which agrees reasonably well with the reported value (Santiago-
Frangos and Woodson, 2018) of approximately 106 M−1 s−1 for
long RNAs binding to Hfq (Lease and Woodson, 2004; Fender

et al., 2010) (compared to the value of to 108 M−1 s−1 for
short, unstructured RNAs binding to Hfq Hopkins et al., 2011).
SgrS is a relatively long sRNA with a length of 227 nucleotides
(sRNAs have been observed with 37-300 nt Wang et al., 2015a),
therefore the slow sRNA-Hfq binding process that we describe
does seem likely. We suggest that this could be due to RNA
restructuring of SgrS (Antal et al., 2004; Soper and Woodson,
2008; Maki et al., 2010; Soper et al., 2011; Bordeau and Felden,
2014) by Hfq in order to promote binding with ptsG mRNA.
It is thought that cellular sRNA and mRNA are present in
large excess over Hfq (Wagner, 2013), so nearly all cellular Hfq
hexamers are thought to be bound to RNA. Since cellular mRNA
in E. coli are found to be on the order of approximately 2,000–
8,000 copies (Bartholomäus et al., 2016) (much greater than
the highest measured SgrS sRNA value of 200) the available
Hfq pool size that we present is representative of the relative
competitiveness (and time-dependent cycling) of SgrS for Hfq
relative to the other particles that interact with the chaperone.

The study of mutant U224G shows the importance of Hfq
stabilization in the SgrS regulatory network as a whole and
seems to corroborate previous findings (Otaka et al., 2011) that
highlight the importance of the polyU tail for Hfq association
with SgrS. The substantial decrease of the Hfq-SgrS binding rate
and increase in the related unbinding rate relative to the ptsG
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TABLE 2 | The list of kinetic parameters for SgrS-Hfq association

(kbind and kunbind ) and annealing with ptsG mRNA (kon and koff ) for wild-type (WT)

cells as well as SgrS mutant U224G (Reactions in Figure 4).

Parameter Mutant Value %Difference

from WT

kbind
U224G 0.033 ± 0.010 s−1 −48%

WT 0.063 ± 0.014 s−1

kunbind
U224G 0.003 ± 0.002 s−1 +66%

WT 0.0018 ± 0.0004 s−1

kon
U224G (2.1 ± 1.0)× 10−4 molec−1s−1 −32%

WT (3.1± 0.2)× 10−4 molec−1s−1

koff
U224G 0.27 ± 0.11 s−1 +22%

WT 0.22 ± 0.02 s−1

The substantial differences between WT and U224G for the values of kbind and

kunbind demonstrate the disruption of Hfq binding that accompanies the mutation in

the polyU tail, which has been observed previously (Otaka et al., 2011). The smaller

relative changes in the ptsG mRNA annealing rates may be due to disruption of RNA

restructuring (Antal et al., 2004; Soper and Woodson, 2008; Soper et al., 2011; Bordeau

and Felden, 2014) of SgrS by Hfq that hampers association to the mRNA target.

Calculation and analysis of parameter uncertainty values by Markov Chain Monte Carlo

analysis is discussed in Supplementary Section 6.

mRNA annealing rates further down the network obtained from
fitting confirms this point (Table 2). The changes in the SgrS-ptsG
mRNA annealing rates kon and koff seem to support conclusions
from the wild-type cells that Hfq-SgrS binding may result in
some restructuring of the sRNA that makes this a slow process.
This may explain the lower efficiency in ptsG mRNA association
observed in mutant U224G, since Hfq cannot bind SgrS as
effectively due to mutation at the polyU tail. Therefore, the
predicted restructuring of SgrS by Hfq necessary to facilitate ptsG
mRNA association is also hampered, resulting in slower and less
stable mRNA binding (a decrease in kon and an increase in koff ).

While this work is useful in describing the role of Hfq in
the SgrS regulatory network and in capturing the stochastic
nature of regulation over a population of replicating cells, it does
not consider certain cellular processes that may affect network
dynamics. First, the various other SgrS mRNA targets that may
be present in a living E. coli cell under certain growth conditions
may affect the SgrS pool available to regulate ptsG mRNA.
In addition, other factors such as sRNA recycling (i.e., SgrS
not being co-degraded with its target mRNA) (Soper et al.,
2011; Santiago-Frangos and Woodson, 2018), which have been
proposed for some sRNA and are now under study for
SgrS, were not included, but can be incorporated into the
model. Also, the process of spatial target search (via RNA
and protein diffusion) of SgrS-Hfq for ptsG mRNA and RNase
E (which may be localized in ribonucleoprotein bodies Al-Husini
et al., 2018 or near the membrane Moffitt et al., 2016) for
the entire protein-RNA complex as it seeks to degrade the
RNA is not explicitly considered in our model (as it a well-
stirred model). The potential of binding of the SgrS to ptsG
mRNA as soon as the sRNA binding site on the mRNA is
transcribed [i.e., co-transcriptional regulation which has been
posited previously by Chen et al. (2019)], may be of interest
to add to the model, since the model assumes only post-
transcriptional binding of ptsGmRNA to the SgrS-Hfq complex.

A further experiment that would be useful in the study of these
processes would be an RIL-Seq experiment (Melamed et al.,
2020) that quantifies the interactions of Hfq with other RNA
(such as yigL or manX) relative to its interactions with SgrS, to
better understand the pool of Hfq available for the SgrS stress
response network.

In conclusion, by incorporating gene replication, stabilization
by the chaperone protein Hfq, and transcriptional gene
regulation of sgrS we have developed a kinetic model capable of
describing the cellular heterogeneity observed in the E. coli sugar
shock response network. Stochastic simulation of the kinetic
model allows us to take full advantage of the single-molecule
fluorescence data that illustrates cell-to-cell variability in a
collection of hundreds of cells. While the post-transcriptional
regulation and silencing of ptsG mRNA by the sRNA is the
critical feature, accounting for gene replication, transcriptional
regulation, and stabilization gives a more robust picture of the
regulatory network as a whole. In addition, complexifying the
model highlights the importance of stabilization by Hfq and
chaperone proteins in general in RNA silencing networks and
allowed for a prediction of the rate of association of SgrS and
Hfq (as a slow process, characterized by restructuring), the
effective available Hfq pool size for the SgrS regulon under sugar
stress conditions, as well as an analysis of an SgrS point mutation
in one of the presumedHfq bindingmodules (the polyU tail). The
model presented in this work establishes a framework for models
analyzing other sRNA mediated gene regulatory networks, and
can be extended to spatially-resolved models describing SgrS
target search kinetics.
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