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Global Density Profile For Particle 
Non-Conserving One Dimensional 
Transport From Renormalization 
Group Flows
Sutapa Mukherji1 & Somendra M. Bhattacharjee2

The totally asymmetric simple exclusion process along with particle adsorption and evaporation 
kinetics is a model of boundary-induced nonequilibrium phase transition. In the continuum limit, the 
average particle density across the system is described by a singular differential equation involving 
multiple scales which lead to the formation of boundary layers (BL) or shocks. A renormalization 
group analysis is developed here by using the location and the width of the BL as the renormalization 
parameters. It not only allows us to cure the large distance divergences in the perturbative solution for 
the BL but also generates, from the BL solution, an analytical form for the global density profile. The 
predicted scaling form is checked against numerical solutions for finite systems.

The totally asymmetric simple exclusion process (TASEP) is a model for boundary-induced nonequilibrium 
phase transitions1–3, though it had its genesis in modeling polymerization on biopolymeric templates4,5. In this 
open, driven system, particles, representing biomolecules, hop in a specific direction on a one-dimensional lattice, 
obeying a mutual exclusion rule forbidding double occupancy of any site. The rates of injection and withdrawal 
of particles at the boundaries are the drives necessary to maintain the system in a nonequilibrium steady state 
and they determine the bulk properties, for example, the average particle density in the bulk, in the steady-state. 
Unlike equilibrium systems, there is a bulk-boundary duality (BBD) and the bulk transitions are completely 
encoded in thin boundary layers (BL) of the particle density. BLs are not just microscopic details because they 
survive the continuum limit which washes out some small-scale details. This unusual feature of the steady-state 
transitions has motivated many studies that involve developments of new methods6–8 and new models9–12 with 
an aim to understand nonequilibrium phase transitions, and to obtain the phase diagram in the parameter space 
of the problem.

The bulk-boundary duality implies the existence of multiple scales which result in stiff differential equations 
for the density profile. The difficulty lies in finding the nature of the density profile in any scale–the bulk or the 
boundary–consistent with the given boundary conditions. The usual procedure for problems with multiple scales 
is the boundary layer analysis13–15 which involves asymptotic matching of different parts of the solutions obtained 
for different scales. More specifically, the rapidly varying BL solution and the smoothly varying bulk solution 
must match in the overlapping asymptotic limits15. Such an approach, in an order-by-order scheme for separate 
scales, ultimately leads to nonphysical divergences, which need to be handled by a renormalization group (RG) 
analysis. We show here how RG determines the global density profile across the scales, with the BL as the starting 
point, thereby reinforcing BBD in a stronger form.

The power of the RG approach as a tool for asymptotic analysis has been illustrated in refs.16–18, for different 
types of nonlinear problems. We develop a procedure where the width of the BL is taken as the parameter to be 
renormalized to remove the divergences with the help of an arbitrary length scale μ that adjusts the location of 
the BL, and allows us to bridge the scales in the problem. The condition that the density profile should not depend 
on μ, then yields the RG equation for the width. The solution of the RG equation allows us to reconstruct the 
density profile. In short, once the long distance divergence is removed we get the entire density profie rather than 
solutions in parts, matched appropriately to generate a uniform solution. Thus obtaining the entire density profile 
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from the renormalization of the boundary layer solution appears to be a clear manifestation of the bulk-boundary 
duality.

Let us consider TASEP with an additional adsorption and evaporation of particles to and from the lattice 
(Langmuir kinetics (LK))9–12. The dynamics of particles can be described through the time evolution of the occu-
pancy variable, τi, taking values 1 or 0 depending on whether the i th site is occupied or empty, respectively. The 
master equation for the statistically averaged occupancy variable, 〈τi〉, is

τ
τ τ τ τ ω τ ω τ

〈 〉
= 〈 − 〉 − 〈 − 〉 + 〈 − 〉 − 〈 〉− +

d
dt

(1 ) (1 ) 1 , (1a)
i
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where the first two terms on the right hand side of Eq. (1a) represent the hopping of particles to the empty for-
ward site, and the last two terms represent adsorption and evaporation of particles with rates ωa and ωd, respec-
tively19. For a finite lattice of N sites, particles are injected at i = 1 at rate α and are withdrawn from the lattice 
at i = N at rate β. The time evolution of the average occupancy variable for the boundary sites can be written as

τ
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where the α-, β- terms are the boundary terms, resembling the adsorption-evaporation terms in Eq. (1a). The 
boundary parameters α, β are crucial for the open chain problem because the steady state phase diagram is deter-
mined by these two parameters and the phase diagram is generally drawn in the α–β plane. Without hopping, the 
sites in the bulk would have a steady or equilibrium density ρ ω ω ω= + ./( )a a dLK  With hopping, the boundary 
sites are maintained at densities α and 1 − β, for large N, while there is a net current of the order of ρ(1 − ρ) where 
ρ is the average density. On the other hand, there is a net deposit on the whole lattice of the order of 
Nωa(1 − ρ) − Nωdρ. For this net adsorption not to overwhelm the current, it is required that ωaN, ωdN are O(1). 
In this limit, called the scaling limit9, the α – β phase diagram is drastically modified by the LK process.

In a mean-field approximation, factorizing the correlations as 〈τiτj〉 ≈ 〈τi〉〈τj〉, the steady-state density in the 
continuum limit (the lattice spacing, a → 0, and N → ∞ with Na = 1), can be described through the equation

ε ρ ρ ρ ρ ρ+ − + Ω − =
d
dx

d
dx

(2 1) ( ) 0,
(2a)

2

2 LK

where x denotes the location along the lattice, ρ(x) = 〈τi〉 is the average density at x, ε ( = 1/(2N)) is a small param-
eter, and

ω ω ρ
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+
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The boundary conditions (BC) are

ρ α ρ β γ= = = = − = .x x( 0) , and ( 1) 1

To obtain Eq. (2a), the neighboring densities are written as

ρ ρ ρ ρ
± = ± + ....x a x ad

dx
a d
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( ) ( )

2 (2c)

2 2
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Note that ρ ρ= LK is a solution of Eq. (2a), but it does not satisfy the two BC’s.
The differential equation Eq. (2a) is singular due to the small prefactor ε in front of the highest order deriva-

tive. In the extreme limit, ε = 0, the equation reduces to a first order equation which cannot, in general, satisfy two 
BCs. The loss of one BC leads to the appearance of a boundary layer. Another way of seeing this is to realize that 
for small but finite ε, there are two scales, x, and ε=x x/ , so that the density is a function of two widely different 
scales, making the equation stiff to solve. Standard numerical procedures with special continuation strategies20 
fail to converge for small ε. To overcome this problem, the steady-state behaviour of this system has been studied 
using various methods such as domain wall theory, boundary layer analysis, numerical simulations, etc.7,8,21.

The bulk steady state phases are obtained from the mean-field equation, Eq. (2a), with ε = 0, and the result 
seems to agree with various other non-mean-field studies, especially numerical simulations9,10. In recent times, 
it has been realized that due to the bulk-boundary duality, the boundary layers (which in a broader sense include 
shocks) actually contain information for the bulk, and just focusing on the BLs would suffice for the phase dia-
gram8,13. Although it is known that the mean-field BL differs from those seen in simulations, but still the basic 
mechanism that the BL controls the shape of the density profile remains valid. Mean-field theory, as a nonper-
turbative approach to any interacting system, provides the basic framework to develop an understanding of the 
system, and then build on it for more details. Examples are critical phenomena, polymers with excluded volume 
interaction and many others. In the present context, developing a global picture of the BL and the bulk even at the 
mean-field level, is a difficult task, and is generally done via singular perturbation theory which gets into trouble 
as we show in the next section. In this spirit, we try to develop a renormalization group based approach that 
handles the BL of the mean-field equation and extends the idea of the bulk-boundary duality in a general way.
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The particle conserving TASEP (ωa = ωd = 0) can exist broadly in three phases which are low-density (LD) 
with ρ < 1/2, high-density (HD) with ρ > 1/2, and maximal current (ρ = 1/2) phases3. The LD-HD phase bound-
ary is at α + γ = 1 with a linear density variation, ρ(x) = α + (γ − α)x. Numerical simulation shows that on the 
phase boundary, there is a coexistence of phases with ρ = α and ρ = γ with a shock anywhere on the lattice. This 
can be understood from the LK case in the limit of Ω → 0.

With LK, there is a difference in phase diagrams for ρLK = 1/2 and ρ ≠ 1/2LK
9–11. However, for both the cases, 

there is a region in the phase diagram where the high density (HD) and the low-density (LD) phases are separated 
by a shock phase. This region is of interest, see Fig. 1 corresponding to to γ > . + Ω0 5

2
. Unlike particle conserving 

TASEP, here the shock is localized with its location dependent on α, γ, ωa and ωd. For ρLK = 1/2, the average par-
ticle density in the bulk changes linearly with x. In the LD phase for α < 1

2
, the average density across the lattice 

remains less than 1/2, consistent with the BC at x = 0, while a BL near x = 1 matches the BC at that end. Such a 
phase appears for α γ+ < − Ω1

2
. Similarly, for γ > 1/2 and α γ+ > + Ω1

2
, the system is in an HD phase in 

which the major part of the density is larger than 1/2, consistent with γ > 1
2

 with the BL around x = 0. The picture 
remains more or less similar for ρ ≠ 1/2LK  in this region, though the bulk density is nonlinear in x.

As Ω → 0, the shock region shown in Fig. 1, collapses onto the line α + γ = 1 as it should. As one moves across 
this shock phase by changing, say, α, the static shock position shifts from x = 0 to x = 1, no matter how small Ω 
is. By continuity, one therefore expects a shock separating the LD and HD phases to exist even on the α + γ = 1 
line for Ω = 0 but the shock position remains labile. Assuming a uniform probability distribution of the shock 
position, the average density on this line becomes a linear one as mentioned above. That the features of the no-LK 
case can be revealed by the limit Ω → 0 justifies taking the LK case as the generic model for the TASEP class.

The RG analysis is based on the boundary layer part of the particle density profile, and the outcome is a glob-
ally valid solution for the entire density profile, thereby broadening the region of validity of the boundary layer 
solution22. We rewrite Eq. (2a) as
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d
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d
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2

2

where, ε=x x/ ,
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It is to be noted that Eq. (3a) remains invariant under a shift of origin μ→ − x x ; this symmetry is exploited 
below.

Let us look for a regular perturbative solution of the form,

φ φ εφ= + + … . (4)0 1

The zeroth order solution is

φ =






+






 x p p x k( ) tanh
2

( ) ,
(5)0

which is characterized by two parameters k and p, related to the centre and the width of the boundary layer, 
respectively. In the boundary layer approach, this φ0 is the BL on the scale of x , to be matched with the bulk solu-
tion which can be found by solving Eq. (2a) for ε = 0 (see Supplementary Materials for details). We, instead, 
extend the BL solution to the next order. At εO( ) level, φ1 satisfies the equation

Figure 1.  A part of the γ-α phase diagram (the region with γ ≈ 1) of TASEP with Langmuir kinetics with 
ωa = ωd (r = 0). The low-density phase to the shock phase boundary is γ = 1 − Ω/2 − α, while that for the shock 
to the high density phase is γ = 1 + Ω/2 − α. The density profiles in the three phases are shown schematically.

https://doi.org/10.1038/s41598-019-42011-5


4Scientific Reports |          (2019) 9:5697  | https://doi.org/10.1038/s41598-019-42011-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

φ φ φ
φ+ + Ω − = .




d
dx

d
dx

r( ) ( ) 0
(6)

2
1

2
0 1

0

The divergence mentioned earlier can now be seen from Eq. (6). It shows that φ ∼ x1 , for → ∞x , due to the limit 
φ0 → p.

The solution of Eq. (3a), φ, upto εO( ), is given by

φ ψ ε ψ ε= −
−

Ω +  p p x r p
p

x p x( , ) ( , ) ,
(7)


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
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



 p x px( , ) tanh

2
,

(8)

where only the diverging terms at the εO( ) level are shown explicitly with ε  representing all the regular terms 
together. See Supplementary Materials for details. This naive perturbation theory shows inconsistency as → ∞x  
since in this limit, the term at εO( ) level in Eq. (8) becomes comparable to the zeroth order term. The divergence 
appearing in Eq. (8) can be isolated by introducing an arbitrary length scale μ that adjusts the location of the BL, 
to rewrite Eq. (8) as


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By tuning μ we go from one scale to the other, with μ → ∞ approaching the bulk scale. Since μ is an arbitrary 
length-scale, it may be chosen in such way that μ−x  is non-diverging, and, under such a scenario, the last term 
in Eq. (9) contains the divergence. In the following, we renormalize p to absorb this divergence in equation (9).

In the next step, we introduce a renormalized parameter pr defined through the equation

μ ε μ= +p p a( ) ( ), (10)r 1

to absorb the divergence in Eq. (9). Therefore, we set

μ
= − Ω.a

p
r p( )

(11)r
r1

The divergence-free density profile now appears as
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where the cosh term comes from the Taylor expansion of ψ. This cosh term is a regular term since cosh1/ 2 term 
decays exponentially for large x . Furthermore, since μ ∼ x , the last term in Eq. (12) is also divergence-free.

Since the final density profile must be independent of the arbitrary length scale μ, we must have ∂φ/∂μ = 0. 
The complete expression of ∂φ/∂μ along with cancellations necessary to ensure that ∂φ/∂μ is zero at εO( ) level is 
shown in Supplementary Materials. This condition leads to the renormalisation group equation to εO( ) as

μ
ε= −

−
Ω.

dp
d

r p
p (13)

r r

r

It is interesting to note that this RG equation is the bulk equation, Eq. (2a) with ε = 0, when expressed in terms 
of φ, and μ replacing x. Eq. (13) is analogous to the renormalisation group equation in the original formulation 
of Renormalization Group analysis23. In the present context, the importance of this equation lies in claiming that 
φ is independent of the arbitrary length μ. This equation can also be derived from the definition of pr(μ) in Eq. 
(10). But, as p appears as an arbitrary constant in Eq. (5), it is prudent to demand invariance of a physical quantity 
like φ.

For r = 0 (i.e., ωa = ωd), the solution of Eq. (13) is pr = Ωεμ + c, c being a constant. Substituting this in (12) 
along with μ = x , we have the density profile, to leading order, O(ε0), as

φ = + Ω + Ω x C x C x x( ) ( ) tanh[( ) /2], (14)

where C and x0 (in ε= −x x x( )/0 ) are the constants to be fixed by the boundary conditions.
In case of r ≠ 0, we solve Eq. (13) perturbatively for small r. Expressing Eq. (13) in terms of λ = εΩr, we obtain 

a perturbative solution for pr with λ λ= + +p p p O( )r r r
0 1 2  as
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εμ εμ λ= Ω + − Ω + +p c r c Oln( ) ( ), (15)r
2

where c is a constant. Replacing μ by x , we have the final form of the density profile as

φ = Ω + − Ω +
× Ω + − Ω + .

x C r x C
x C r x C x

[ ln( )]
tanh[{ ln( )} /2] (16)

Eqs (14) and (16) are the main results of our paper. The bulk solutions can be found from these equations by 
considering → ∞x  limit in which tanh → 1. In case of r = 0, φ approaches a linear function of x as obtained from 
the boundary layer analysis in ref.10. In case of r ≠ 0, the density profile φ in the → ∞x  limit recovers the bulk 
solution which has a nonlinear dependence on x. The boundary layer parts, on the other hand, can be found from 
the →x 0 limit of expressions in Eqs (14) and (16). As Eq. (14) shows, in the leading order, the density profile has 
a form C Cxtanh( /2) in agreement with the results obtained through the boundary layer analysis13,14. Interestingly, 
the RG analysis, via the renormalization of the width because of adsorption/desorption kinetics of particles, leads 
to further subleading correction terms which contribute for finite ε. Instead of a simple additive form for the 
density over two scales, we see a more complex solution where the local bulk density affects the “local” width of 
the boundary layer. The ε-dependent term in Eq. (2a) comes from the diffusive contribution to the current, and 
therefore it is significant only in the region of rapid variation as in a BL or a shock. To leading order in the bound-
ary layer analysis, this thin region does not generate much current from the Langmuir kinetics. As the BL thickens 
for not-so-small ε, there is an appreciable contribution from the Ω-dependent kinetics. Our RG analysis captures 
this aspect of the problem. Herein lies the importance of Eqs (14) and (16), which provide an interpolation for-
mula from finite ε to the bulk.

We compare the numerical solution of Eq. (2a) for r = 0, with plots obtained from the RG solution, Eq. (14). 
In Fig. 2, plots for the high-density phase with Ω = 0.2, and the boundary conditions α = 0.45 and γ = 0.66 are 
shown. The numerical solutions of the full differential equation for three different ε, viz., ε = 10−3, 10−5, 10−9 are 
shown here. For the RG solution in Eq. (14), the constants C and x0 = εk are found from the boundary conditions 
at x = 1 and x = 0. This is based on the observation that the boundary layer in the high density phase is formed at 
the x = 0 boundary. The equations are C + Ω = 0.32 and ε = .C Cxtanh[ /2 ] 0 10 , yielding C = 0.12 and k = 4.98. As 

Figure 2.  RG solution vs numerical results. (a) Data points are from numerical solutions of Eq. (2a) for three 
cases ε = 10−3, 10−5, 10−9 (as mentioned in the plot) with r = 0, Ω = 0.2, α = 0.45 and γ = 0.66. The RG solution 
of Eq. (14) are shown by solid lines. The value of ε in the asymptotic formula is adjusted to take care of higher 
order corrections. The values of ε for the solid curves are ε = 8.4 × 10−4, 10−5, 10−9. (b) Data collapse plot for the 
same set of data as in (a) (same symbols). Labels show the variables along x and y axes. The solid line is the tanh 
part of Eq. (14).
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mentioned in Fig. 2, the value of ε in the RG solution is adjusted to take care of the higher order corrections. 
Further, Eq. (14) admits a scaling form via a collapse of all curves for different ε’s if φ(x)/(C + Ωx) is taken as a 
function of ε= −x x x( )/0 . Such a form is not expected from the naive boundary layer solution. A data collapse 
plot for all the numerical solutions is shown in Fig. 2b, confirming the predicted scaling.

We also compared the profiles for the shock phase. For a shock phase with x0 somewhere in the interior of the 
lattice, there is a symmetry φ φ= − − x x( ) ( ), obeyed by Eq. (3a). We, therefore, concentrate on >x 0 only. The 
boundary conditions chosen here are α = 0.3 and γ = 0.7, so that the shock is formed at x0 = 0.5. Eq. (2a) is solved 
numerically with these boundary conditions. With x0 = 0.5 and the BC at x = 1, we have C + Ω(x − x0) = 0.4, so 
that C = 0.3. The symmetry automatically fixes the boundary condition at x = 0. In this way, the RG analysis per-
formed with boundary layer located near one of the boundaries can be utilized here. A good agreement is noted 
between the numerical solution of the full differential equation and the RG solution as given in Eq. (14) (see 
Fig. 3). Figure (4), shows a comparison of the RG result and the result from Monte Carlo simulation. For the RG 
result, ε is adjusted suitably to account for the higher order corrections.

In this paper, we developed a renormalization group scheme to determine the particle density profile in a 
one-dimensional, particle non-conserving totally asymmetric simple exclusion process. The particle adsorption/
desorption kinetics (Langmuir kinetics) is the source of particle non-conservation while the steady state of 
nonzero current is maintained by the injection and the withdrawal rates at the boundaries. The continuum differ-
ential equation for the process is singular due to a small prefactor (ε) in front of its highest order derivative term 
that comes from diffusion. As a consequence of the singularity, the perturbative solution on the scale of ε=x x/  
shows divergences at εO( ) at large distances, → ∞x . Upon absorbing the divergences systematically through 
renormalizations of the position and the width of the boundary layer, we arrive at a globally valid density-profile 
which describes both the boundary layer and its crossing over to the bulk solution. One of the predictions of the 
solution is the appearance of a finite-size scaling form for the density, which compares well with the results from 
direct numerical solutions of the steady-state differential equation in the high-density and the shock phases. We 
believe our procedure is general enough to apply to other boundary induced transitions as well.

Figure 3.  Density profile for shocks for r = 0, Ω = 0.2. The upper and lower curves correspond to ε = 0.001, 
and 0.01, respectively. The boundary parameters are α = 0.3 and γ = 0.7. The graph is plotted over the range 
x ∈ [0.5:1].
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Figure 4.  RG solution (dashed line) vs results from Monte Carlo simulations (line with dots). Density profile 
for shocks for r = 0, Ω = 0.2, α = 0.3 and γ = 0.7. Monte Carlo simulations were done for N = 1000 sites. For RG 
solution, 1/ε = 80 has been used.
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