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Abstract

The immune system rapidly responds to intracellular infections by detecting MHC class I restricted T-cell epitopes presented
on infected cells. It was originally thought that viral peptides are liberated during constitutive protein turnover, but this
conflicts with the observation that viral epitopes are detected within minutes of their synthesis even when their source
proteins exhibit half-lives of days. The DRiPs hypothesis proposes that epitopes derive from Defective Ribosomal Products
(DRiPs), rather than degradation of mature protein products. One potential source of DRiPs is premature translation
termination. If this is a major source of DRiPs, this should be reflected in positional bias towards the N-terminus. By contrast,
if downstream initiation is a major source of DRiPs, there should be positional bias towards the C-terminus. Here, we
systematically assessed positional bias of epitopes in viral antigens, exploiting the large set of data available in the Immune
Epitope Database and Analysis Resource. We show a statistically significant degree of positional skewing among epitopes;
epitopes from both ends of antigens tend to be under-represented. Centric-skewing correlates with a bias towards class I
binding peptides being over-represented in the middle, in parallel with a higher degree of evolutionary conservation.
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Introduction

The immune system rapidly detects virus-infected cells through

cell-surface presentation of viral peptides to T-cells despite the fact

that the half-lives of source proteins are typically orders of

magnitude longer than the response time (i.e. days vs. minutes)

[1,2]. To explain this paradox, the DRiP hypothesis proposed that

defective ribosomal products, rapidly degraded forms of standard gene

products, are a major source of peptides for MHC class I

processing pathway [3].

Although the DRiPs hypothesis is well into its teens, surprisingly

little is known about the nature of the DRiPs [4–6]. This is likely

due to the low abundance of DRiPs relative to the abundance of

folded proteins, which poses a significant challenge to current

biochemical/molecular technologies. A central question is what

mechanisms dominate in the production of DRiPs [5,6]. One set

of mechanisms that leads to the generation of partial protein

products is downstream initiation and premature terminations

when translating proteins from mRNAs [7]. If such errors are

involved in generation of DRiPs, a bias in sampling of regions of

mRNAs may result. This sampling bias in turn may influence from

which regions of proteins epitopes are more often detected,

resulting in positional bias of epitopes. For example, a dominance of

downstream initiation would result in more epitopes detected from

the C-terminal ends; conversely, a dominance of premature

termination would result in more epitopes detected from the N-

terminal regions.

To overcome the limitation of the current experimental

approaches, we have investigated if a data-driven approach can

provide insights into the nature of DRiPs. Namely, the availability

of a large repository of immune epitopes stored at the Immune

Epitope Database (IEDB) [8] makes it possible to indirectly

characterize the population of DRiPs by measuring positional bias

of viral epitopes.

Results

A summary of MHC class I restricted viral T-cell epitopes
available in the IEDB

Because viruses exploit the translational machinery of the host

to synthesize their proteins and are thus relevant in the context of

the DRiPs hypothesis, we retrieved all MHC-I restricted T-cell

epitopes of viruses for which reference proteomes are available.

Top 20 viruses based on number of tested peptides are shown in

Table 1. For each virus, total number of unique peptides tested,

peptides with positive T-cell outcomes (i.e. epitopes), and those

with negative outcomes are shown. In the table, vaccinia virus

contributed the greatest number of tested peptides, followed by

hepatitis C Virus, lymphocytic choriomeningitis virus, human herpesvirus 5/4

and influenza A virus.

Positional bias of known MHC class I restricted T-cell
epitopes from viruses

After determining positions of viral peptides in their reference

antigens and calculating normalized positions, we constructed

distributions of normalized positions for positives (i.e. epitopes) and

negatives as shown in Fig. 1A and 1B, respectively. Each
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distribution used 5 bins of equal intervals covering a range [0,1].

Distributions plotted using 10 bins showed similar patterns (data

not shown). The distributions correspond to probability mass

functions, p(x|positive) and p(x|negative), where ‘x’ represents a

binned normalized position (described further in Methods section).

To show positional bias of epitopes, a probability ratio plot (i.e.

p(x|positive)/p(x|negative), see Methods for details) is shown in

Fig. 1C. By dividing the distribution for positive peptides by the

distribution of negative peptides, we implicitly take into account

study biases that are otherwise difficult to capture. If positional

bias is absent, the corresponding probability ratio plot would show

a horizontal line at a probability ratio of 1. If positional bias is

present, regions with lower likelihoods of finding epitopes would

show values less than 1. Indeed, in Fig. 1C, the probability ratio

plot shows under representation of epitopes at N- and C-termini.

Furthermore, probability ratio plots generated after cumulative

exclusion of data from vaccinia virus and Hepatitis C virus, which

contributed most in terms of data, resulted in maintaining the

overall pattern (supplementary Fig. S1)

The positional bias of epitopes observed is supported by results

of statistical analyses on the corresponding contingency table

(supplementary Table S1). Using a binomial test for each bin, it

was determined whether counts of positives significantly deviate

from the expected fraction of positives (i.e. (all positives)/(all

positives+all negatives) = 2394/12974). Out of 5 bins, 4 deviated

from the expected (two sided; p-value,0.05).

Absence of positional bias of predicted MHC class I
binding peptides in viral antigens

A possible source of positional bias of epitopes is unequal

distributions of amino acids spanning the length of antigens. For

instance, the positional bias observed may have been due to

hydrophobic residues being preferentially found in middle regions

rather than at N- and C-termini. Such unevenness would mean

that MHC alleles binding peptides with hydrophobic anchor

residues would impose positional bias of epitopes. To rule out this

possibility, we determined positional bias of predicted binding peptides

of viruses to MHC molecules.

Our prediction strategy uses recently developed peptide:MHC-I

binding algorithms, which have achieved high accuracies in

benchmarks [9,10]. Using 9-mer peptides generated from a set

viral proteins, we made binding predictions to human MHC-I

molecules (HLA). As a note, HLA molecules can be grouped into

12 HLA supertypes based on their known overlap of binding

specificities [11]. SMMPMBEC was used to make binding predic-

tions [12]. Corresponding member alleles for each supertype used

for predictions are provided in the supplementary material (Table
S2). After grouping predictions based on supertypes, for each

supertype, we generated distributions of normalized positions for

predicted ‘binders’ (i.e. those peptides with predicted binding

affinities ,500 nM) and ‘non-binders’ (i.e. those with affinities

.500 nM).

Probability ratio plots derived from the distributions for 12 HLA

supertypes are shown in Fig. 2. The lack of divergence from a

horizontal line at 1.0 indicates absence of positional bias. In the

figure, some of the supertypes show slight positional bias.

Specifically, supertype A01 favors the middle region of antigens,

whereas A03 favors the C-terminus. A combined plot generated

from weighted averaging of probability ratio plots from all

supertypes based on frequencies of known MHC restriction data

showed absence of positional bias (supplementary Fig. S2). To

ensure that these observations are not due to the choice of

predictive method, we used a different predictive method

NetMHC [13], which is another accurate predictive method,

and made the same observations. In addition, scatter plots of

predicted binding affinities for the tested peptides and their

Table 1. MHC class I restricted T-cell epitopes retrieved from
the Immune Epitope Database for viral species.

Organism Name All Positive Negative

Vaccinia virus 8612 414 8198

Hepatitis C virus 1637 622 1015

Lymphocytic choriomeningitis virus 1046 100 946

Human herpesvirus 5 997 433 564

Human herpesvirus 4 839 255 584

Influenza A virus 655 303 352

Murine coronavirus 468 22 446

Dengue virus 204 103 101

Human respiratory syncytial virus 187 32 155

Yellow fever virus 187 49 138

Murid herpesvirus 1 184 42 142

Hepatitis B virus 179 88 91

Equine infectious anemia virus 155 90 65

Primate T-lymphotropic virus 1 151 124 27

Human papillomavirus - 16 130 76 54

Hantaan virus 122 12 110

Human herpesvirus 8 99 78 21

Human herpesvirus 1 98 80 18

Theilovirus 97 16 81

West Nile virus 82 59 23

For each organism, total number of tested peptides as well as numbers of those
with positive and negative assay outcomes are shown. A total of 93 viruses
were studied. For brevity, 20 viruses with the highest number of tested
peptides are shown in the table.
doi:10.1371/journal.pcbi.1002884.t001

Author Summary

To defend the host from an infection, the immune system
continuously scans cell surfaces for foreign objects.
Specifically, a virus inside a cell exploits the host to make
copies of its proteins; viral proteins are broken up into
peptide fragments; and the fragments are displayed on the
infected cell’s surface, thereby allowing detection and cell-
killing. How these peptide fragments for cell-surface
presentation are generated remains unknown. An under-
standing of this step will lead to rational design of vaccines
and insights into tumor immunosurveillance and autoim-
munity. One possible mechanism is that the peptide
fragments come from defective proteins missing either the
beginning or end regions, which may result in a bias. Here,
we analyzed locations of a large set of known viral
epitopes, peptide fragments recognized by the immune
system, within their proteins. We find that all regions of
proteins are represented well by the immune system.
However, there is a statistically significant bias in the
central regions of proteins, which correlate with a pattern
of conservation spanning the length of viral proteins. Our
results suggest a combined effect of conservation and
enhancement of immune responses through repeated
exposures in shaping the distribution of known viral
epitopes.

Positional Bias of Epitopes in Viral Antigens
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normalized positions showed no systematic effects (supplementary

Fig. S3).

The presented results largely reflect results reported in [14],

where mammalian, bacterial, and viral proteomes show lack of

influence of MHC class I binding preferences. However, in the

same work, A02 and B07 supertypes showed bias in signal-peptide

regions (i.e. N-terminal). We confirmed that using our prediction

strategy, signal-peptide specific biases observed for A02 and B07

are present for both human and viral antigens if residue positions are

used instead of normalized positions (data not shown).

Positional bias of protein conservation correlates with
positional bias of viral epitopes

A DRiP-independent factor that could explain the positional

bias of viral epitopes is positional bias of protein conservation.

Specifically, if ends of proteins are less conserved than the middle

region and epitopes tend to be more conserved than non-epitopes,

positional bias of epitopes may result. To test this possibility, we

calculated conservation scores at the residue-level for proteins of

the viruses (See Methods for details on calculation of conservation

scores). Conservation scores could be assigned to ,60% of

proteins. The remaining proteins had an insufficient number of

suitably distant homologues to construct reliable conservation

scores, and were therefore excluded from this analysis.

In Fig. 3, a boxplot showing confidence intervals of means of

conservation scores as a function of normalized position is shown.

This reveals a pattern of positional bias of conservation, where

ends of proteins are less conserved than their cores, similar to the

pattern observed for the positional bias of known epitopes in

Fig. 1C. For the middle bin, however, we do see a difference.

To determine if sequence conservation alone can explain

positional bias of epitopes, we first had to determine the

relationship between conservation and immune recognition. In

Fig. 4A, distributions of conservation scores for positives and

negatives are shown. Positives tend to be more conserved than

negatives (Welch’s t-test; one-sided; p-value = 5.961028). In

Fig. 4B, a plot of probability ratio as a function of conservation

score is shown. The plot is a result of calculating ratios of

probability masses for positives and negatives shown in Fig. 4A.

As shown in Fig. 4B, detecting epitopes is less likely as

conservation decreases.

Next, we combined our estimates of conservation bias over the

length of a protein with our estimate of correlation between

conservation and immune recognition. Using conservation as a

function of normalized position in Fig. 3 as input, we estimated

probability ratios as a function of normalized position (Fig. 4C).

Its overlay with the probability ratios curve observed earlier (i.e.

Fig. 1C) is shown in Fig. 4D. Overall, the probability ratios curve

estimated only from the conservation data has a good agreement

with the observed one (Pearson’s correlation r = 0.57). In addition,

for first, second and fourth bins, their confidence intervals between

observed positional bias curve and that derived from conservation

overlap. Thus, the observed positional bias in viral epitopes can be

explained by the correlation between conservation and immune

recognition alone, consistent with a minor contribution from

premature translational termination and downstream initiation.

Viral epitopes in the context of immunization with
peptides display similar level of conservation as non-
epitopes

There are two possible explanations for the observed correlation

between immune recognition and conservation of peptides. One

explanation is that the immune recognition machinery has evolved

to preferably recognize epitopes that are conserved, as evidenced

by an overlap of MHC binding motifs on conserved sequence

regions found in [15]. An alternative explanation is that viral

sequences are variable, and responses against epitopes from

conserved regions could be higher in individuals that are exposed

to multiple variants of a virus over time, as is expected for example

in human influenza infections.

To determine whether there is an intrinsic enhanced immune

recognition for peptides that are conserved in viral species, we

retrieved viral epitopes identified in the context of peptide

immunization, rather than with viral infection. Figure 5 shows

distributions of conservation scores for positive and negative

peptides, as was done earlier. The two distributions overlap, and

their difference in means is not statistically significant (p-

value = 0.62). Thus, we conclude that we cannot detect an

Figure 1. Distributions of normalized positions of MHC-I restricted T-cell epitopes for viruses. (A and B) For each category of peptides
indicated (i.e. ‘Positive’ or ‘Negative’), peptides were mapped onto all proteins of the corresponding genome with peptide similarity cutoff of 100%.
For each peptide:antigen mapping, a normalized position was calculated. The set of normalized positions was plotted as a histogram. (C) To show
positional bias of epitopes, the box plot shows results of 1000 bootstrap sampling of Positive and Negative data sets of normalized positions and
plotting ratios of their probabilities for each bin. Boxes cover the range from 25th to 75th percentiles. Whiskers extend out from boxes 1.0 times the
interquartile range.
doi:10.1371/journal.pcbi.1002884.g001

Positional Bias of Epitopes in Viral Antigens
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intrinsically enhanced immune recognition for peptides that are

conserved. This leads us to favor the hypothesis that the observed

enhanced immune recognition of conserved viral peptides is due to

extrinsic effects such as repeated priming of responses against

conserved peptides due to heterologous exposure.

Discussion

By leveraging a large set of experimentally determined epitopes

from a wide range of viruses stored in the IEDB, we determined

positional bias of epitopes in source antigens. The shape of

positional bias curve (Fig. 1) shows significant under-representa-

tion of epitopes at N- and C- termini. This could be explained by

near equal participation of downstream initiation and premature

termination mechanisms in generating DRiPs as a major source of

epitopes. Our findings, however, point to the conclusion that the

central bias of viral epitopes reflects the combined effects of

positional bias of epitope sequence conservation and induction of

memory CD8+ T cells by exposure to heterologous boosts. There

is a good correlation between positional bias curve estimated only

from conservation data with that of the observed position bias

curve of epitopes, so we cannot clearly detect (or clearly rule out)

partially translated DRiPs transcripts as a major source of viral

epitopes.

The connection between positional epitope biases with protein

conservation is reasonable in the context of boosting effects

associated with repeated vaccine administrations. The principle

idea behind boosting is that those epitopes already exposed to the

immune system tend to dominate in the following exposure [16].

This repeated exposure is a likely explanation of why MHC-I

restricted viral epitopes tend to be more conserved than non-

epitopes. Providing an additional support to this explanation, Kim

et al. presented results showing positive correlation between

epitope conservation and T-cell response frequency scores, which

indicate how often individuals recognize a given peptide from a

pathogen [17]. Presumably, this correlation is due to higher

likelihood of more conserved epitopes being seen by greater

number of individuals. In addition, as more immune epitope data

are deposited at the IEDB, we expect to see differences in the

degree of positional bias for RNA versus DNA viruses, because

RNA viruses are more variable.

In addition to explanations discussed above, there are a number

of recent ones that may be relevant. First, Calis et al. have

reported correlations between G+C content and potential MHC-I

Figure 2. Positional biases of predicted binders for 12 HLA supertypes. For each supertype, 9-mer peptide binding predictions were carried
out and ratios of probability masses of predicted ‘binders’ and ‘non-binders’ were calculated. Peptide binding predictions were made for alleles
belonging to each supertype, using SMMPMBEC method. All possible 9-mer peptides were generated from a set of viral proteins that contain at least
one tested peptide from Table 1. Relationships between HLA molecules and supertypes are provided in [11].
doi:10.1371/journal.pcbi.1002884.g002

Positional Bias of Epitopes in Viral Antigens

PLOS Computational Biology | www.ploscompbiol.org 4 January 2013 | Volume 9 | Issue 1 | e1002884



binders [18], where low G+C content indicates pathogenicity. In

our hands, we could not detect significant contribution of MHC-I

binding affinity preferences to positional bias of epitopes, thereby

making G+C content a less likely explanation. In explaining

differential conservations between positive and negative peptides,

it may be that this is due to viruses selectively mutating T-cell

epitopes [19–21]. The idea is interesting and may be pursued in a

future study. Our data set however takes protein variability as

given and thus cannot be used to delineate its cause/effect

relationships.

Other investigators have also reported epitope conservation for

HIV [22,23] and TB [24]. Our results extend their findings to a

broad set of viruses, and suggest a possible connection between

epitope conservation and boosting through analyses of epitopes

determined in the context of immunization with peptides. It

remains to be seen whether this boosting effect can be also

observed for MHC class II restricted epitopes as well as in other

immunological contexts.

Regarding the MHC-motif specific biases and conservation, it

has been reported that predicted binding affinities of HLA

molecules positively correlate with conserved regions of a wide

range of viruses [25], which appears to contradict the results of

absence of MHC-specific biases presented here. The absence of

bias may be explained by the fact that the correlation between

predicted binding affinity and protein conservation reported in

[25] is very small to begin with (Spearman’s rank correlation of at

most ,0.2), thereby dampening any MHC-specific biases that can

be seen.

In conclusion, to better understand mechanistic details of

antigen processing steps involving DRiPs, positional bias of MHC-

I restricted viral T-cell epitopes was measured. Our findings

indicate that there is indeed such bias in antigens, where epitopes

at N- and C-termini are under-represented. Although mechanisms

associated with translational errors such as downstream initiation

and premature termination may contribute to observed positional

bias, our data indicate that differential conservation spanning

protein length is an alternative explanation.

Methods

Retrieving epitopes from the Immune Epitope Database
For each virus listed in Table 1, we retrieved MHC-I restricted

T-cell epitopes from the Immune Epitope Database (IEDB)

(http://www.iedb.org), which is the largest publicly available

database of epitopes for infectious agents [8]. To retrieve an

appropriate set of epitopes to examine the DRiPs hypothesis, there

were a number of important considerations.

First, the query should retrieve epitopes derived from proteins

newly expressed in a host cell, rather than epitopes recognized

after peptide or protein immunization. Only for newly synthesized

epitopes can defective ribosomal products skew the positional

distribution of epitopes in antigens. To meet this requirement, we

query the IEDB for epitopes identified using assays in which the

‘Immunogen Type’ is a whole ‘Organism’ (rather than an

individual peptide or antigen). Second, we further limit the query

to epitopes restricted by MHC class I molecules. Third, we limit

the query to epitopes with ‘virus’ as the source organism.

We then grouped the epitopes retrieved with the query by viral

species. As described below, we want to map all epitopes from one

species to a single reference proteome. Therefore, we excluded all

viruses for which we do not have reference proteomes available,

resulting in a total of 93 different viruses.

Mapping epitopes onto antigens of a complete
proteome of an organism

To ensure consistent calculation of positional bias, we mapped

all epitopes onto antigens from a single complete reference

genome for each species based on sequence similarity rather than

using the source antigens listed in the IEDB, which are those

specified by the author mapping the epitope and are derived from

different strains and are of divergent quality. For example, an

author may have used truncated versions of an antigen, or epitopes

may come from a polyprotein of Dengue virus, which later gets

cleaved into individual products. Consequently, epitope positions

can be made relative to the polyprotein or to final cleavage

products.

To carry out the mapping, we used NCBI’s BLAST with a

default setting to search for presence of epitopes in antigens and to

retrieve only those hits with exact matches in the reference

genome. In addition, we required homology between the originally

curated source antigen of the epitope and the antigen in the

reference genome using BLAST searches with an E-value cutoff of

0.001, thereby ensuring meaningful mapping. Lastly, we required

that there is only a single best match of the epitope in the reference

genome to ensure that the position of the epitope in the antigen

can be uniquely determined. We did not consider ties because of

associated uncertainty in mapping.

Calculating normalized positions of epitopes
To derive a measure of epitope position that is independent of

protein length, a normalized position, x, is defined as follows:

x~ peptide start�1ð Þ= protein length�peptide lengthð Þ ð1Þ

In the equation, ‘peptide_start’ indicates the position of the first

residue from the peptide mapped onto the protein sequence;

Figure 3. Positional bias of conservation for viral proteins. For
each viral protein which also contained at least one tested peptide from
Table 1, conservation scores at the residue-level were calculated using
Rate4Site [26]. Residue positions were converted into normalized
positions and corresponding conservation scores were binned (5 bins of
equal size). Higher conservation score indicates higher degree of
conservation. Conservation scores were normalized for each protein (i.e.
mean = 0; sd = 1). One thousand bootstrapping over proteins was used
to estimate confidence intervals for the means of conservation scores.
Each box covers 25th and 75th percentiles. Whiskers extend out from
each box 1.0 times the interquartile range.
doi:10.1371/journal.pcbi.1002884.g003

Positional Bias of Epitopes in Viral Antigens
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‘protein_length’ and ‘peptide_length’ are lengths of protein and peptide,

respectively. The first residue of a protein has a position of 1,

rather than 0. Our measure of normalized position, x, has the

property that if a peptide contains the first residue of the protein

(and thus comes from an N-terminal region), then its value is zero;

if the peptide contains the last residue, then the value is 1.0.

Consequently, if all regions of a protein are equally likely to

contain epitopes, then one would obtain a uniform distribution of

normalized positions in the range [0,1]. This property has been

verified using randomly sampled peptide positions and uniformly

sampled peptides from a set of proteins, followed by mapping the

peptides onto the proteins with BLAST.

Figure 4. Estimating positional bias of epitopes from conservation data. (A) Bootstrap sampling of conservation scores for positive and
negative peptides are shown as two boxplots placed next to each other. The bins used are of variable lengths to ensure a sufficient count in each bin.
Each bin contains ,20% of data points. Middle positions of bins are indicated on the x-axis. The difference between the means of the two
conservation score distributions is statistically significant (Welch’s t-test; one-sided; p-value = 5.961026). (B) Estimating probability ratios from the
conservation score distributions. This is simply taking a ratio of positive and negative peptide probabilities as a function of a conservation score.
Confidence intervals are derived from bootstrap sampling. (C) Estimated probability ratios as a function of normalized position, using the mapping
shown in the second panel. As input, distributions of means of conservation scores shown in Fig. 3 were used. (D) Positional bias curves derived from
observed normalized positions (black) and conservation scores (gray).
doi:10.1371/journal.pcbi.1002884.g004

Positional Bias of Epitopes in Viral Antigens
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Deriving probability ratios curve for measuring positional
bias of epitopes

After mapping peptides with positive (i.e. epitopes) and negative

T-cell assay outcomes onto their corresponding antigens, we

calculated their normalized positions, x, as described in Equation
1. We then grouped the normalized positions into ‘positives’ and

‘negatives’, and binned using 5 bins of equal intervals covering a

range [0,1], resulting in probability mass functions (PMFs):

p(x|positive) and p(x|negative). The function p(x|positive) gives

a probability of observing peptides at binned position x, given that

only positives were considered.

To indicate positional bias, we calculated ratios of probability

masses for positive and negative PMFs: p(x|positive)/p(x|nega-

tive). Absence of positional bias corresponds to a probability ratio

of 1.0 for all bins. A probability ratio less than 1 indicates under-

representation of epitopes while greater than 1 indicates over-

representation.

Estimating protein conservation at the residue-level
To determine whether differences in conservation over the

normalized position in a protein contribute to positional bias of

epitopes, we estimated conservations at the residue level for

proteins from the viruses using Rate4site algorithm [26]. We chose

the algorithm because it was identified as one of the highest

performing methods in a recent benchmark to predict a known set

of protein catalytic sites [27]. To estimate conservation, we used a

protocol similar to one used by the ConSurf website [28].

Specifically, a multiple sequence alignment was generated for each

protein by running a sequence of PSI-BLASTRCD-HITRMUS-

CLE against the NCBI Non-Redundant database, using a set of

Perl scripts retrieved from the ConSurf website. Running the

conservation score estimation algorithm on the alignment returned

residue position-specific conservation scores.

Supporting Information

Figure S1 Positional bias curves of epitopes after
removing varying amounts of data. For reference, the

positional bias curve using all data is shown (‘all’). The curve

labeled ‘v’ refers to exclusion of data from Vaccinia virus. The

curve labeled ‘v+h’ refers to exclusion of data from vaccinia virus

and Hepatitis C virus. Vaccinia virus had the largest amount of

immune epitope data, followed by Hepatitis C virus.

(TIFF)

Figure S2 Weighted combination of supertype-specific
positional bias curves of predicted binders based on the
frequencies of MHC restrictions observed for the known
immune epitope data.

(TIFF)

Figure S3 Scatter plots of predicted binding affinities
and their normalized positions for the known immune
epitope data. Top panels: normalized positions vs. predicted

binding affinities. Bottom panels: bar plots where for each bar, a

median of predicted binding affinities is shown. Red line indicates

500.0 nM cutoff. Orange line indicates a median of predicted

binding affinities.

(TIFF)

Table S1 Contingency table of number of peptides with
positive and negative T-cell assay outcomes after
binning based on their normalized positions. The bins

cover the range [0..1] and each bin has a fixed width of 0.2.

(XLS)

Table S2 HLA supertypes and their member alleles
used for peptide binding predictions. Only those HLA

alleles for which IEDB’s SMMPMBEC has 9-mer predictors

available are shown.

(DOCX)
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