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Abstract

Soil respiration induced by biological soil crusts (BSCs) is an important process in the car-

bon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the

harsh environment, particularly the limited soil moisture. However, the interaction between

temperature and soil respiration remains uncertain because of the number of factors that

control soil respiration, including temperature and soil moisture, especially in BSC-domi-

nated areas. In this study, the soil respiration in moss-dominated crusts and lichen-domi-

nated crusts was continuously measured using an automated soil respiration system over a

one-year period from November 2015 to October 2016 in the Shapotou region of the Teng-

ger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil

respiration rates in both types of BSC-covered areas were commonly related to the soil tem-

perature. The observed diel hysteresis between the half-hourly soil respiration rates and soil

temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical

shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in

the BSC-covered areas. The average lag times between the half-hourly soil respiration

rates and soil temperature for both types of BSC-covered areas were two hours over the

diel cycles, and they were negatively and linearly related to the volumetric soil water content.

Our results highlight the diel hysteresis phenomenon that occurs between soil respiration

rates and soil temperatures in BSC-covered areas and the negative response of this phe-

nomenon to soil moisture, which may influence total C budget evaluations. Therefore, the

interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas

should be considered in global carbon cycle models of desert ecosystems.

Introduction

Soil respiration accounts for the largest proportion of the total ecosystem respiration [1], and

its global integration is an order of magnitude larger than that of anthropogenic CO2 releases

from burning fossil fuels and deforestation [1,2]. However, soil respiration processes are not
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well documented in arid and semi-arid ecosystems, which cover approximately 45% of the

global land surface and contain 20% of the global soil C pool [3,4]. Soil respiration processes in

arid and semi-arid ecosystems are different from those in other ecosystems because of the

effects of drought and high temperatures [3,5]. Thus, a further understanding of soil respira-

tion in arid and semi-arid ecosystems is necessary to ensure accurate representation in large-

scale carbon models.

Biological soil crusts (BSCs) are widespread communities that consist of cyanobacteria,

green algae, lichens, mosses and other organisms, and they are closely integrated with particles

of the soil surface in arid and semi-arid regions [6]. These communities have long been

acknowledged as one of the major components of arid and semi-arid ecosystems [7,8], where

up to 70% of the living ground is covered by BSCs in certain plant communities [9]. BSCs play

an important role in ensuring the proper structure and function of desert ecosystems, by allevi-

ating soil erosion [6,10], fixing carbon (C) and nitrogen [11,12], and creating favorable micro-

habitats for plants and soil arthropods [6,8]. BSCs have been suggested as one of the critical

factors responsible for the large annual CO2 net uptake rates recorded in desert ecosystems

[13]. Previous research found that BSC-dominated microsites accounted for 42% of the total C

emitted through soil respiration, whereas vegetated and bare soil accounted for 37% and 20%,

respectively, in a semi-arid ecosystem [14]. Another work showed that algal crusts and subsur-

face microbial respiration accounted for approximately 60% of the total C release in the soil

during the growing season [15]. Therefore, BSCs need to be considered when estimating the C

budgets in desert ecosystems because of their major contribution to the total C release by soil

respiration.

Automated soil respiration systems have been widely used to provide continuously dense

datasets that reveal a complex relationship between soil respiration and temperature, which is

not easily illustrated using less frequent survey measures. Numerous studies have analyzed the

data from automated soil respiration systems and found significant diel hysteresis, which is

supported by the semielliptical shapes observed in the regression analyses between tempera-

ture and soil respiration [16–19]. Studies have indicated that low soil moisture increases the

degree of diel hysteresis between soil respiration and temperature [17,19,20], whereas the

opposite results have also been reported [16]. Both biological and physical explanations have

been proposed for the hysteresis patterns [17]. However, a consensus has not been reached on

the causes of the diel hysteresis patterns, especially in BSC-dominated areas in desert ecosys-

tems with sandy soil and low soil moisture. The specific objectives of this study were (1) to

explore the seasonal relationships between the diurnal cycles of soil respiration and soil tem-

perature in BSC-dominated ecosystems and (2) evaluate the effects of soil moisture on diel

hysteresis in the relationships between soil respiration and soil temperature in BSC-dominated

soils over the seasonal cycles.

Materials and methods

Ethics statement

This experiment was conducted at the Shapotou Desert Research and Experimental Station,

Chinese Academy of Sciences (37˚270 N, 105˚070 E), a department of the Northwest Institute

of Eco-Environment and Resources, Chinese Academy of Science. The study was approved

by the Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences.

No specific permissions were required for sample collection in the Shapotou-Yiwanquan

region (37˚250 N, 104˚400 E), and the field work did not involve any endangered or protected

species.
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Study area

This study was conducted in the Shapotou-Yiwanquan region (37˚250 N and 104˚400 E, 1339

m AMSL), which is located in Zhongwei County in the Ningxia Hui Autonomous Region at

the southeastern edge of the Tengger Desert in northern China. This area is a transitional zone

between desertified steppe and sandy desert [21]. The mean annual air temperature is 9.6˚C,

and the mean monthly temperature is 24.3˚C in July and -6.9˚C in January. The mean annual

precipitation is 186 mm, and 80% is received between May and September. The potential

evapotranspiration is approximately 2900 mm during the growing season (April to October).

The annual mean wind velocity is 2.6 m/s, and the windy season is from September to April.

The annual mean number of dust-storm days is 59.

A field investigation of the vegetation was conducted in July 2015. The dominant natural

shrub species are Caragana korshinskii and Artemisia ordosica, and the total plant cover is

approximately 38.6%. The predominant natural herbal species are Echinops gmelinii, Artemisia
capillaries, Allium mongolicum and Salsola ruthenica, which present coverage of approximately

29.1%. In addition, open areas between plant patches, which consist of moss-dominated and

lichen-dominated crusts, have a cover of approximately 51.2% and 33.6%, respectively. The

moss species include Didymodon constrictus (Mitt.) Saito., Bryum argenteum Hedw., Tortula
desertorum Broth., and Tortula bidentata Bai Xue Liang [22]. The lichen species include Endo-
carpon pusillum Hedw., Collema tenax (Sw.) Ach., and a number of Diploschistes muscorum
(Scop.) R. Sant and Squamarina lentigera (G.H. Weber) Poelt [23]. The physical and chemical

characteristics of the two BSC-dominated soils at a depth of 0–5 cm are provided in Table 1.

Experimental design

In July 2015, intact BSC samples (moss-dominated crusts and lichen-dominated crusts) were

collected using PVC collars (20 cm in diameter and 20 cm in height) in the Shapotou-Yiwan-

quan region. To avoid terrain and vegetation influences on BSC development, all samples were

randomly collected from undisturbed soil in the spaces between shrubs. The BSC samples

were taken to the Shapotou Desert Research and Experimental Station and randomly buried in

the soil (still in the PVC collars) of six plots (10 m × 10 m each), and the BSC surfaces were

placed at the same level as the soil surface. To ensure that the test conditions closely resembled

the natural environment, we maintained the natural soil water and air cycles by keeping the

bottoms of the PVC collars open for drainage. Each type of BSC had three replicates in each

plot, and they were incubated for four months before the first measurements.

Table 1. Physical and chemical characteristics of the BSC-dominated soils at a depth of 0–5 cm.

Soil properties Crust type

moss-dominated crusts lichen-dominated crusts

pH value 8.65 ± 0.05 8.67 ± 0.03

Organic matter (%) 1.27 ± 0.06 1.09 ± 0.05

Total nitrogen (%) 0.033 ± 0.003 0.015 ± 0.003

Total phosphorus (%) 0.054 ± 0.003 0.045 ± 0.002

C/N ratio 22.79 ± 0.76 44.36 ± 6.10

Sand (%) 75.11 ± 4.01 84.67 ± 3.45

Silt (%) 14.11 ± 2.33 9.32 ± 2.11

Clay (%) 10.78 ± 1.71 6.01 ± 1.41

https://doi.org/10.1371/journal.pone.0195606.t001
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Soil respiration measurements

The soil respiration rates of the BSC (RBSC, μmol m-2 s-1) were measured using an Automated

Soil Respiration System (LI-8100A fitted with a LI-8150 multiplexer, LI-COR Inc., Lincoln,

Nebraska, USA) from November 2015 to October 2016. A permanent opaque chamber (LI-

104, LI-COR Inc., Lincoln, Nebraska, USA) was set on each collar. The measurement time for

each chamber was 3 min and 10 s, including a 45 s pre-purge, a 45 s post-purge, a 90 s observa-

tion period, and a 10 s dead band. During the measurements, one-third of the samples were

randomly measured on the first day, and the other samples were measured on the following

two days. All plant seedlings present within the measurement collar were manually removed.

The half-hourly soil temperature (T) and volumetric soil water content (VWC) were measured

at a 5 cm soil depth outside of each chamber using the 8150–201 soil temperature sensor and

8150–204 ML2x soil moisture sensor (LI-COR Inc., Lincoln, Nebraska, USA). Rainfall was

measured at a distance of 1.6 km from the research location using a manual rain gauge during

the experiment.

Data analysis

All RBSC data were screened using limit checking. Half-hourly CO2 effluxes less than -0.5 were

considered abnormal and removed from the data set [19]. Instrument failure (from 24 Febru-

ary 2016 to 23 March 2016) and the quality control procedures resulted in 11% missing data

during the measurements. The mean diel cycles of RBSC and temperature for each month were

calculated as the average of the half-hourly means for each time of day, and the cycles were

then used to analyze the diel variation in RBSC and identify the hysteresis between RBSC and

temperature. A cross-correlation analysis was used to detect the hysteresis between RBSC and

temperature in the diel cycles, and synchronize the values before the regression was performed

[24,25]. A regression analysis was used to evaluate the relationships between RBSC and temper-

ature, the hysteresis in the RBSC-temperature relationship and the VWC. All of the analyses

were performed using SPSS 16.0 statistical software (SPSS Inc., Chicago, IL, USA).

Results

Seasonal variation in environmental factors and soil respiration in BSC-

covered areas

Similar changes were observed in the soil respiration as well as the daily mean soil temperature

and VWC at a depth of 5 cm in both the moss-dominated crusts and lichen-dominated crusts

(Fig 1). The minimum daily mean soil temperature at a depth of 5 cm in the moss-dominated

crusts was -12.6˚C in January and reached a maximum value of 38.2˚C in July (Fig 1A). For the

lichen-dominated crusts, the minimum daily mean soil temperature at a depth of 5 cm was

-13.1˚C in January and reached a maximum value of 37.0˚C in July (Fig 1A). The total precipita-

tion from November 2015 to October 2016 was 193.9 mm (Fig 1B), which was close to the aver-

age record of 186.2 mm. During the measurement period, 68.3% of rainy days had rainfall

amounts of 5 mm or less (Fig 1B), and the distribution pattern matched the 30 years of precipi-

tation records from our study site in the Shapotou region in China. The daily mean VWC at a

depth of 5 cm ranged from 0.001 to 0.178 m3/m3 in the moss-dominated crusts and from 0.001

to 0.189 m3/m3 in the lichen-dominated crusts (Fig 1B). The daily mean soil respiration rates in

the moss-dominated crusts and lichen-dominated crusts varied markedly following changes in

soil temperature and VWC at a depth of 5 cm, especially after a rain pulse. The minimum daily

mean soil respiration rates in the moss-dominated crusts was -0.052 μmol m-2 s-1 in January,

reaching a maximum value of 3.329 μmol m-2 s-1 in July (Fig 1C, S1 Table). For the lichen-
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dominated crusts, the minimum daily mean soil respiration rates were -0.032 μmol m-2 s-1 in

January, and reached a maximum value of 3.514 μmol m-2 s-1 in July (Fig 1C, S1 Table).

Diel hysteresis between soil respiration and soil temperature in BSC-

covered areas and its response to soil moisture

Because of the marked seasonal variations in soil temperature and moisture, the half-hourly

soil respiration rates in the moss-dominated crusts and lichen-dominated crusts presented a

Fig 1. Daily mean soil temperature at a depth of 5 cm (A), volumetric soil water content at a depth of 5 cm (B),

and soil respiration (C) in the BSC-covered areas during the experimental periods from November 2015 to

October 2016 in the Shapotou region of the Tengger Desert, northern China. Error bars of the soil temperature are

omitted for clarity (n = 48).

https://doi.org/10.1371/journal.pone.0195606.g001
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temporal variation from November 2015 to October 2016. The relationship between the half-

hourly soil respiration rates and soil temperature at a depth of 5 cm in the two types of BSC-

covered areas showed daily hysteresis loops with semielliptical shapes each month over the

daily cycles, and the hysteresis loops varied at a temporal scale among months (Figs 2 and 3).

Over the daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas

were out of phase with the soil temperature at a depth of 5 cm throughout the entire sampling

year, which is consistent with the diel hysteresis observed in the relationship between the half-

hourly soil respiration rates and the soil temperature in both types of BSC-covered areas

(Figs 2 and 3). The maximum half-hourly soil respiration rates in the moss-dominated crusts

occurred between 11:00 LT (GMT + 8) and 14:30, and the maximum soil temperature at a

depth of 5 cm occurred between 14:00 and 16:00 (Fig 2). For the lichen-dominated crusts, the

maximum half-hourly soil respiration rates occurred between 9:00 and 17:00, and the maxi-

mum soil temperature at a depth of 5 cm occurred between 14:00 and 16:00 (Fig 3). The mean

diel cycles of the half-hourly soil respiration rates and the soil temperature at a depth of 5 cm

in the BSC-covered areas showed significant positive correlations for all months during the

experiment. The lag times between the half-hourly soil respiration rates and soil temperature

at a depth of 5 cm in the BSC-covered areas over the daily cycles were two hours on average

(Table 2), and the soil respiration rates peaked earlier than the soil temperature at a depth of 5

cm in the BSC-covered areas. The time lags between the half-hourly soil respiration rates and

soil temperature at a depth of 5 cm in the BSC-covered areas were negatively and linearly

related to the VWC (Fig 4; Lag (h) = 3.326–16.323 VWC, r = -0.203, p = 0.027).

Discussion

Continuous measurements of half-hourly soil respiration rates in both the moss-dominated

and lichen-dominated crusts were conducted with an automated soil respiration system in a

desert ecosystem and provide new insights into the control of soil respiration in BSC-covered

areas base on environmental variables at diurnal and seasonal time scales. Over the daily

cycles, the half-hourly soil respiration rates in both types of the BSC-covered areas were com-

monly related to soil temperature, and soil temperature often peaked later than the half-hourly

soil respiration rates in the BSC-covered areas.

Diel hysteresis between soil respiration and soil temperature in BSC-

covered areas

Over the course of the diurnal cycles, our results demonstrate that a significant time lag

occurred between the half-hourly soil respiration rates and soil temperature at a depth of 5 cm

in both types of BSC-covered areas, with the soil respiration peaking earlier than the soil tem-

perature (Figs 2 and 3). A similar phenomenon has also been observed in desert ecosystems

[19,26,27]. However, studies on an oak-grass savanna [28], boreal aspen stand [29], mixed

conifer and oak forest [30], and wheat field [31] found an opposite time lag between the soil

respiration rates and the temperature, with soil respiration peaking later than the temperature.

Although the reason for the time lag is still unclear, several mechanisms have been proposed to

explain the causes of the diel hysteresis. First, the photosynthetic C supply presents diurnal var-

iations and fluctuates out of phase with the soil temperature [28,30,32,33]. Second, autotrophic

respiration is affected by photosynthetically active radiation [34] and air temperatures,

whereas heterotrophic respiration is primarily affected by soil temperature [35,36], and the dif-

ferent responses of autotrophic respiration and heterotrophic respiration to environmental

factors may explain the observed diel hysteresis [16]. Third, recent research has shown that

more isotopically depleted values occurred at night along with the diel variation in respiratory

Diel hysteresis between respiration and temperature in crusted areas
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Fig 2. Mean monthly diel cycles of soil respiration (solid points) and soil temperature at a depth of 5 cm (open points) in the moss-

dominated crusts. Each point is the monthly mean for a particular time of day.

https://doi.org/10.1371/journal.pone.0195606.g002
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Fig 3. Mean monthly diel cycles of soil respiration (solid points) and soil temperature at a depth of 5 cm (open points) in the lichen-

dominated crusts. Each point is the monthly mean for a particular time of day.

https://doi.org/10.1371/journal.pone.0195606.g003

Diel hysteresis between respiration and temperature in crusted areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0195606 April 6, 2018 8 / 13

https://doi.org/10.1371/journal.pone.0195606.g003
https://doi.org/10.1371/journal.pone.0195606


13CO2 values, and most of the depletion was observed on nights when the atmospheric CO2

showed strong increases [37]. This observed diurnal variation in respiratory 13CO2 values was

hypothesized to be the result of the non-steady state process “diffusive fractionation”, which is

induced by the increasing atmospheric CO2 concentrations at nighttime, especially in arid eco-

systems [37]. Lastly (and perhaps most importantly), the CO2 efflux is strongly coupled with

the temperature and moisture of the surface BSC layer in the BSC interspaces, whereas it is less

Table 2. Analysis of the mean monthly diel cycles of soil respiration and soil temperature at a depth of 5 cm in the BSC-covered areas, including the correlation

coefficients before synchronization and lag times in the diel cycles. The Pearson correlation coefficients and p values are given.

Time Moss-dominated crust Lichen-dominated crust

Pearson’s r Lag time p value Pearson’s r Lag time p value

Nov 2015 0.600 0.5 h <0.001 0.919 0.5 h <0.001

Dec 2015 0.713 3.5 h <0.001 0.838 2 h <0.001

Jun 2016 0.911 1 h <0.001 0.899 1.5 h <0.001

Feb 2016 0.746 1 h <0.001 0.679 1.5 h <0.001

Mar 2016 0.864 2 h <0.001 0.911 0 h <0.001

Apr 2016 0.840 2.5 h <0.001 0.849 2 h <0.001

May 2016 0.852 0.5 h <0.001 0.935 0.5 h <0.001

Jun 2016 0.814 4 h <0.001 0.427 4 h 0.002

Jul 2016 0.770 1.5 h <0.001 0.837 -1.5 h <0.001

Aug 2016 0.424 3.5 h 0.003 0.723 3 h <0.001

Sep 2016 0.644 3.5 h <0.001 0.708 4 h <0.001

Oct 2016 0.733 3.5 h <0.001 0.876 3 h <0.001

https://doi.org/10.1371/journal.pone.0195606.t002

Fig 4. Lag times between soil respiration and soil temperature at a depth of 5 cm in the BSC-covered areas over

the diel cycles, in relation to the volumetric soil water content. The lag times were calculated from the data in five-

day intervals.

https://doi.org/10.1371/journal.pone.0195606.g004
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strongly correlated with the temperature and moisture of the deeper soil layers [38]. In addi-

tion, BSC represent the major component of autotrophic respiring biomass in BSC-dominated

areas [14,15,39]. Thus, the proximate cause of the diel hysteresis in our study is likely a mis-

match between the depth of the soil temperature and moisture measurements and the depth of

CO2 production [40–42]. Thus, to further investigate the mechanisms underlying the diel hys-

teresis between soil respiration and soil temperature in BSC-covered areas, additional model-

ing and controlled experiments are needed.

Changes in diel hysteresis between soil respiration and soil temperature in

BSC-covered areas under differences in soil moisture

Soil respiration and soil temperature present a time lag, and these variables are plotted against

each other in a semielliptical form, and vary seasonally with the soil moisture [16, 19, 28]. In

our study, the mean lag times between the half-hourly soil respiration rates and soil tempera-

ture at a depth of 5 cm in the two types of BSC-covered areas were on average two hours over

the diel cycle (Table 2), and the lag times were negatively and linearly related to the soil mois-

ture (Fig 4). Our results are supported by Feng et al. [27], who also found that the lag times

between the soil temperature at a depth of 5 cm and soil respiration were negatively correlated

with the VWC in a crusted desert ecosystem. Similarly, a study in a desert shrub ecosystem

revealed that the lag times between the soil temperature at a depth of 10 cm and soil respiration

increased as the VWC decreased [19], and the authors attributed the increased lag times under

decreased VWC to the decoupling of soil respiration from soil temperature under low soil

water contents in desert ecosystems [19,27]. A study in a semi-arid desert showed that the

magnitude of the diel hysteresis between soil respiration and soil temperature at a depth of

10 cm was modified by precipitation, with the lag time decreasing after rainfall when the

soil is wetted up [26]. The decreases lag time with increased VWC is likely because water trans-

fers heat more efficiently than air; thus, when the soil profile is saturated with water (high

VWC), heat is transferred more readily to the lower layers [43] and, smaller temperature dif-

ferences occur throughout the soil profile. Smaller temperature differences will minimize the

differences in the CO2 produced at the topmost soil layer compared with that produced at

lower depths, thereby reducing lag times. Therefore, further investigations of the lag times

between soil respiration and soil temperature under differences in soil water content are

warranted.

Conclusions

In this study, high-frequency soil respiration measurements were performed in a BSC-domi-

nated ecosystem at the southeastern edge of the Tengger Desert in northern China to identify

the temporal variations between soil temperature and soil moisture over the diel and seasonal

cycles. Over the daily cycles, the proximate cause of the diel hysteresis between soil respiration

rates and soil temperatures in the BSC-covered areas is likely a mismatch between the depth of

the soil temperature and moisture measurements and the depth of CO2 production. Lag times

between soil respiration rates and soil temperatures in the BSC-covered areas were negatively

related to the soil moisture, which is possibly because water transfers heat more efficiently

than air. This finding suggests that global carbon cycle models should account for the interac-

tive effects of soil temperature and moisture on soil respiration in BSC-covered desert ecosys-

tems. Moreover, the diel hysteresis phenomenon between soil respiration and soil temperature

should be considered to accurately evaluate the total C budgets in BSC-dominated areas at the

ecosystem level.
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