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Epithelial membrane transporter kinetics portray an irrefutable role in solute transport in
and out of cells. Mechanistic models are used to investigate the transport of solutes at the
organ, tissue, cell or membrane scale. Here, we review the recent advancements in using
computational models to investigate epithelial transport kinetics on the cell membrane.
Various methods have been employed to develop transport phenomena models of solute
flux across the epithelial cell membrane. Interestingly, we noted that many models used
lumped parameters, such as the Michaelis-Menten kinetics, to simplify the transporter-
mediated reaction term. Unfortunately, this assumption neglects transporter numbers or
the fact that transport across the membrane may be affected by external cues. In contrast,
more recent mechanistic transporter kinetics models account for the transporter number.
By creating models closer to reality researchers can investigate the downstream effects of
physical or chemical disturbances on the system. Evidently, there is a need to increase the
complexity of mechanistic models investigating the solute flux across a membrane to gain
more knowledge of transporter-solute interactions by assigning individual parameter
values to the transporter kinetics and capturing their dependence on each other. This
change results in better pharmacokinetic predictions in larger scale platforms. More
reliable and efficient model predictions can be made by creating mechanistic
computational models coupled with dedicated in vitro experiments. It is also vital to
foster collaborative efforts among transporter kinetics researchers in the modeling,
material science and biological fields.

Keywords: transporter, computational mechanistic models, epithelial membrane, lumped parameter,
pharmacokinetics

INTRODUCTION

Epithelial cells form a selective barrier, permitting the controlled transport of solutes across the cell
membrane via various transport mechanisms, including solute transport through transporter
proteins. These transporters play a pivotal role in the pharmacokinetics of solutes. Transporters
are widely studied from the perspective of toxin removal (Howe et al., 2009; Wilmer et al., 2009;
Jansen et al., 2016), understanding drug development and solute interactions (Giacomini et al., 2010;
Mihaila et al., 2020), in vitro/organ-on-chip development (Bens and Vandewalle, 2008; Chevtchik
et al., 2016; Nieskens andWilmer, 2016), solute transport based on sex differences (Veiras et al., 2017;
Prasad, 2019; Hu et al., 2021), or disease models (Hediger et al., 2013; Layton, 2019; Jetter and
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Kullak-Ublick, 2020). However, despite extensive in vitro
functionality studies over the past decade, only 24 out of the
400 genetically identified transporters have been characterized by
mechanism, chemical configuration, and physical structure, and
classified into two main categories, the ATP-Binding Cassette
(ABC) and the SoLute Carrier (SLC) superfamily (Giacomini
et al., 2010).

The ABC transporters are a superfamily of transmembrane
proteins primarily located in the apical cell membrane and
actively export metabolized solutes from the cell’s cytosol to
the extracellular fluid by primary active transport (direct
energy use of ATP hydrolysis) (Juliano and Ling, 1976;
Schinkel et al., 1997; Doyle et al., 1998; Hipfner et al., 1999;
Borst et al., 2000; Maliepaard et al., 2001). The SLC superfamily of
transporters covers a more functionally and structurally diverse
group located on both the apical and basolateral cell membranes.
SLC transporters are responsible for the uptake and efflux of
organic and inorganic solutes via facilitated transport or
secondary active transport (Hediger et al., 2004; Giacomini
et al., 2010). In addition, SLC transporters can transport
solutes with different protein configurations, resulting in
polyspecific transporters (Volk, 2014).

Every organ is characterized by particular modes of solute
transport, which depend heavily on various combinations of SLC
and ABC transporters on their epithelial cell membranes
(Giacomini et al., 2010; Liu and Liu, 2013; Jansen et al., 2016;
Morris et al., 2017; Layton, 2019; Jetter and Kullak-Ublick, 2020).
In the specific case of renal epithelial transport, the proximal
tubule clearance of anionic solutes, such as indoxyl sulfate or
hippuric acid, depends on the uptake by a subset of SLC
transporters (i.e., organic anionic transporters) on the
basolateral membrane (Jha et al., 2013; Wang and Sweet, 2013;
Volk, 2014; Nigam, 2018). After being taken up by the proximal
tubule cells, these anionic solutes are then pumped out of the cell
into the (pro-) urine by the efflux pumps belonging to the ABC
superfamily (Giacomini et al., 2010; Jansen et al., 2016).
Importantly, the proximal tubule clears more than just organic
anionic solutes with these membrane transporters (Prasad et al.,
2016; Hu et al., 2020). There are over 130 studied uremic solutes
(according to the EUTox Database) that can interact with each
other and compete for the same transporter. In this scenario,
high-throughput in vitro screening becomes intractable in
understanding the interactions and potential combinatorial
effects of the essential transporter-solute functions. Moreover,
the organ-dependent transporters are very difficult to study
in vitro since many cells dedifferentiate and lose transporter
expression once isolated from the body. Due to these
complexities, many questions remain unanswered: Is the
membrane transporter number or activity dependent on solute
dynamics, disease state, or sex specificity? How can we distinguish
the influence of the number of transporters from their activity?
Additionally, what mechanisms are involved in transporter-
mediated inter-organ communication or remote sensing to
maintain homeostasis? Furthermore, how do we answer such
questions without suitable in vitro models that sustain long-term
transporter expression in culture? Interestingly, mechanistic
computational models enable researchers to replicate the

epithelial transport phenomena, including the solute-
transporter interactions, providing avenues to explore multiple
currently impossible scenarios to measure in vitro or in vivo.

Here, we aim to provide the scientific community with a
mini-review that can be used to outline computational modeling
of epithelial transport using different methods at the cell scale.
We also aim to provide a starting point for creating new
mechanistic computational models, building on existing
models, and summarizing the open questions in the field. We
do not discuss models of transporter crystalline structures
(Chang et al., 2006), transporter protein configuration
(Marger and Saier, 1993; Saier et al., 2006; Arinaminpathy
et al., 2009; Almeida et al., 2017), or data-driven techniques
(Seve et al., 2004), based on, for example, genomics data
(Karlgren et al., 2012). For these topics, we refer the reader
to the cited literature.

UNDERSTANDING EPITHELIAL
MEMBRANE TRANSPORT PHENOMENA:
CURRENT MODELS, ASSUMPTIONS, AND
LIMITATIONS

Mathematical Background
We can improve our fundamental understanding of epithelial
transport mechanisms and their underlying mechanisms using
transport phenomena equations. Furthermore, mechanistic
models generally deal with multiple variables and (non-linear)
interactions, and as such, are ideal for investigating membrane
transporter function and solute interactions. The following
paragraph provides an overview of the various transport
phenomena formulations used to model the transport across a
membrane (i.e., the diffusive or reactive flux as a boundary
condition).

Mechanistic transport phenomena models utilize reaction-
diffusion-advection equations in the model’s spatial
compartment (Eq. 1). In spatial models, transport
phenomena-related processes can be diffusive [Fickian
diffusion Dn(∇2Cn)], convective [carrying of solute is flow-
dependent-vn · (∇Cn)], and reactive (solute transformation
favors chemical equilibrium-Rn) (Kim, 2020). The boundary
conditions are prescribed at the interface between two spatial
compartments and describe how the interface connects the
transport of the simulated solutes at either side of the
interface. Boundary conditions are typically applied as a molar
flux in biological applications, as shown in Eq. 2, in which flux
continuity is assumed between the diffusive flux (Dn∇Cn) and
reactive flux (JM). Flux is an important term in transport
phenomena models and is defined as a vector (magnitude and
direction) quantity of a substance’s flow over a unit area per unit
time located at a compartment’s boundary

Transport Phenomena Equation:

zCn

zt
� − vn · (∇Cn)︸����︷︷����︸

Convective Term

+Dn(∇2Cn)︸����︷︷����︸
Diffusive Term

+ Rn︸︷︷︸
Reacting Term

1
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General Boundary Equation:

Dn∇Cn � JM 2

In the general equation, the solute is the subscript n, Cn [M] denotes
the concentration of the species, Dn [m

2.s−1] is the diffusivity, and JM
[molecules.m−2.s−1] is the flux term, representing the source or sink
contributions of the species. The reaction term (JM) models whether
there is a species sink (JM < 0) or source (JM > 0).

For a spatial model, the flux term of the general equation (Eq. 2),
captures the membrane transporter interactions with the simulated
solutes. In a non-spatial setting, boundary conditions are not
required and the membrane transporter solute interactions are
captured with the Reacting term (Eq. 1). The reaction term (Rn)
or flux term (JM), depending on a non-spatial or spatial formalism
respectively, can take various kinetic forms (as depicted in Figure 1):

Flux continuity: D2∇C2

• Where the interface between the compartments is considered
to be open. Such that, the concentration of the solute leaving
compartment 1 (C1) is equal to the concentration of the solute
entering compartment 2 (C2).

General Flux: KA*(C1 − C2).
• Describes the bulkmovement of solutes across amembrane using a
variation of Fickian diffusion. The driving force is the concentration
difference of the solute across the membrane, and it relates to the
flux of the membrane by the proportionality constant called the
area mass transfer coefficient (KA).

Michaelis-Menten: VMax*CM
Km+CM

• The Michaelis-Menten kinetic formulation is often proposed
for membrane binding kinetics for the transport across the
epithelial cell membrane. VMax is the maximum reaction rate
at saturation, while Km is considered as half of the maximum
reaction rate (Viaenea et al., 2013).

Briggs-Haldane or law of mass action: (Kf 2 × TCM) −
((Kf 1 × T) C1).
• Where T is the transporter density, TCM is the concentration
of solute bound to the transporter. Describes the forward (Kf1)
and reverse (Kf2) binding kinetics of the biological
phenomenon of the membrane transporter bound species
(TCM) dissociating to the compartment species (C1). Kf1

and Kf2 are related to the equilibrium constant as Keq �
[Products]
[Reactants] � Kf 1

Kf 2
. The reaction rate can be temperature-

dependent, whereby the reaction rate can be zeroth-order
(independent of reacting concentrations), first-order
(linearly dependent on one reacting solute concentration),
or second-order (dependent on the square of the reacting
solute concentration) (House, 2007).

Assuming Transport Across a Membrane is
Independent of Transporter Concentration
Current mechanistic models of the ABC and SLC superfamilies
are limited to lumped parameters or reduced models to describe

FIGURE 1 | Schematic representation of three transporter models. Transporter models are represented by the flux boundary conditions of the transporter
membrane over three time-steps (t0 � initial time point; t1 � intermediate and t2 � steady-state). JM is the resulting membrane flux (molecules.cm−2.s−1). The three
standard equations are: (A) General Flux: with KA as the mass transfer area coefficient, C1 and C2 are the concentrations of the solute in the compartments; (B)
Michaelis-Menten: with CM is the solute concentration in the membrane, Km and Vmax are theMichaelis-Menten constants; (C)Briggs-Haldane (mass action): with T
is transporter concentration; TCM is the solute bound transporter; Kf1 and Kf2 is the on and off binding rate of the transporters with the solute.

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7806203

King et al. Mechanistic Models of Epithelial Cell Transporters

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the transport function and their influences on solute transport
(Weinstein, 1986; Refoyo et al., 2018; Ito et al., 2020). For
example, Weinstein (1986) developed a model to investigate
the transport of solutes in the proximal tubule (PT) and distal
convoluted tubule (DCT). Here, Weinstein modeled the
reabsorption of Cl−, HCO3−, HPO42−, H2PO4−1, glucose, urea,
Na+, and K+ across the epithelial membrane as a general flux
dependent on solute concentration, flow rate, epithelial area, and
membrane electrical conductance (see Figure 1A). The general
solute flux (JB) was one of the many fluxes included, modeling the
entire rat proximal tubule reabsorption. Using this model,
Weinstein predicted K+ by a diffusive and convective flux,
with a lag in the K+ convective flux in the early segment of
the tubule, which corresponds to the previous experimental
reports in rats (Weinstein, 1986).

Another lumped model was published by Refoyo et al. (2018),
where they approximated indoxyl sulfate transport by the
basolateral SLC22A6 transporter with Michaelis-Menten
kinetics (see Figure 1B) to represent the transport mechanism
in a perfused bioartificial kidney. They used a parametric study to
identify particular model parameters such as the active transport
kinetics through the cell monolayer as this information was not
experimentally available. They concluded that the concentration
of the SLC22A6 transporters (represented by the Michaelis-
Menten kinetic parameters) was the most influential parameter
on indoxyl sulfate clearance.

Michaelis-Menten kinetics is often applied to transporters and
can also be seen in a model developed by Howe et al. (2009). Here,
they developed a carboxydichlorofluroscein (CDF) transport
model by the ABCC2 transporter in a hepatocyte. They used a
mixture of parameter values available in the literature and
experimentally determined through fitting their model to the
experimental data. Their model development was similar to
Refoyo et al. as they use Michaelis-Menten kinetics to lump
the ABCC2 function and expression parameter values. Their
simulations resulted in ABCC2 having the most significant
influence on the flux of CDF.

Assuming Transport Across a Membrane is
Dependent on Transporter Concentration
More recent mechanistic models consider the transporter as a
separate variable in the flux formulation. Layton and Layton
(2019) developed a model to predict the transport of 15 solutes in
the various nephron segments. They included the dependency of
solute transport on solute concentration, fluid flow and
transcellular, and paracellular fluxes. The model is developed
with an extensive system of ordinary differential equations and
algebraic expressions at steady-state. Moreover, they represented
the SGLT2 transporter density as being linearly dependent on
flow. As such, the number of transporters can change within the
compliant tubule depending on the flow conditions. Using this
model, they investigated SGLT2 and NKCC2 transporter
inhibition in humans, which is impossible to measure in vivo
due to ethical limitations. They used available parameters from
rat renal physiological models to overcome this issue and made
appropriate scaling-up assumptions for the human tubules’

geometry, transporter numbers, and flow rate. The model
predictions were then successfully validated by comparing
human urine clearance data to produce an accurate human
proximal tubule mechanistic model. Finally, Layton et al. used
the model to predict the effects of a diabetic treatment on the
human proximal tubule through the inhibition of SLGT2 (Layton
and Layton, 2019) and sex-difference effects on solute
transporters (Hu et al., 2020, 2021).

Another model that displays excellent specificity in describing
transport function is the research conducted by Leedale et al.
(2020). In 2D and 3D spheroids, the liver transporters are
modeled as microscale kinetic reactions between generic liver
transporters and a generic drug. They included both passive and
carrier-mediated transport as a boundary condition at the cell
membrane. The carrier-mediated transport was explicitly
modeled to incorporate the density of the membrane
transporters, T0, and the multiscale effects of geometry on
membrane transport. They investigated the spatio-temporal
hepatic drug penetration dynamics by capturing varying
metabolism rates in selected liver organoid zones. Their
predictions can be used to inform the optimal dosages and
delivery system required for in vivo experiments involving
lipophilic drugs.

Modeling the transporters explicitly is instrumental when
investigating the effects of disease on epithelial membrane
transport. Afshar et al. (2019) developed and validated a
mechanistic model of the glucose uptake by the SLGT1 and
GLUT2 (both categorized in the SLC family) present in the small
intestine. First, they were able to test the hypothesis that there is a
varying combination of SLGT1 and GLUT2 expression along the
epithelial membrane to capture the change in apical glucose
concentration uptake kinetics above 10 mM. Next, they
expanded the model to develop a diabetic model using a
three-fold increase of SLGT1 and GLUT2 expression. The
results suggested that GLUT2 expression has a more critical
role in glucose uptake in a diabetic patient than SLGT1.
Importantly, these hypotheses required that glucose flux across
the epithelial membrane was modeled as a transporter expression
function.

Applications and Limitations: Use of
Transporter Independent or Dependent
Models
It is critical to select and develop an epithelial transport model
that optimally aligns with the model scale, scope of research, and
data availability. For example, when observing the overall input
and output of the nephron, and not the individual transporter
kinetics, as seen in Weinstein (1986) (Table 1), it is beneficial to
use a generalized flux term for solute transport as it is part of the
broader scope of the research question. However, in the Refoyo
et al. (2018) and Howe et al. (2009) models (Table 1), they wanted
to explore the importance of membrane transporters on solute
clearance and thus use Michaelis-Menten kinetics, capturing the
activity and amount of transporters (albeit in a lumped fashion).
Michaelis-Menten kinetics is a standard kinetic formulation used
to describe membrane transport in pharmacokinetics as it

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7806204

King et al. Mechanistic Models of Epithelial Cell Transporters

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


assumes the rate of transport increases non-linearly with the
reacting solute concentration. It should be noted that the
Michaelis-Menten equation was initially developed to describe
enzyme kinetics and has a list of underlying assumptions that are
sometimes neglected when applied to transport phenomena
(Keener and Sneyd, 2009; Kim and Tyson, 2020).

When using Michaelis-Menten kinetics, the researcher
simplifies the mechanisms affecting the transport rate and
only models the overall rate while implying transporter
number effects with the Michaelis-Menten parameters. More
specifically, the researcher assumes that the VMax term,
representing the maximal transport rate, is a product of the
transporter number and activity. In other words, the number
of transporters and their activity is lumped together into one rate
parameter. However, the transporter activity, in reality, depends
on a combination of physical, and chemical parameters, such as
the solute concentration on either side of the membrane, the
particular transporter mechanism, and solute interactions.

This oversimplification concern is also applicable when using
a general flux term. There is no distinction between the activities
of the transporters versus their number mathematically.
Additionally, transporter location is often neglected by
assuming a uniform distribution over the entire transporting
surface. Finally, as also discussed by Zamek-gliszczynski et al.
(2003), the problem with oversimplifying the transport processes
in whole organ modeling is that there is an assumption of
attributing the overall kinetics to the kinetics of a single
transporter, when in fact, multiple transport processes may co-
exist.

There are limitations when explicitly modeling transporter
density along the cell membrane. For example, in Leedale et al.
(2020) the hepatic uptake was modeled as being dependent on
trans (Layton and Layton, 2019) porter expression and binding
kinetics on a transporter scale. They modeled the membrane
transporter in general [T0, see Eq. 2.9 in Leedale et al. (2020)]
but considered the flux across the hepatocyte cell membrane as a
combination of active transport and passive diffusion by
altering the αn terms. However, the multiscale model was

simplified to account for only passive diffusion across the
epithelium since more compound-specific data was needed
accurately to parameterize the model at all scales entirely.
Similar efforts were described by Layton and Layton (2019),
where they assumed a linear relationship between transporter
density and fluid flow (microvilli torque) due to lack of data
availability.

The models of Layton and Layton, (2019); Hu et al., 2021,
Leedale et al. (2020), and Afshar et al. (2019) (summarized in
Table 1), are ideal examples of the importance of explicitly
modeling the transport information to investigate the
downstream effects on the entire system (see also Figure 1C).
Layton and Layton (2019); Hu et al., 2021 were only able to
investigate the influence of blood pressure, diabetes, and sex
differences on solute transporters by explicitly including a
transporter density in the functions. Similarly, Leedale et al.
(2020) could only illustrate a non-linear increase in
intracellular drug concentration with transporter protein
concentration by explicitly modeling the transporter density.
Afshar et al. (2019) predicted that the GLUT2 expression was
the most influential parameter altered in a diabetic state instead of
the SLGT1 expression. The results suggested that further research
needs to be conducted on the expression of other transporters in
diabetic patients and the effect thereon on solute transport.
However, these investigations will only be possible if the
transporter expression is an independent variable in the
system of equations. Thus, it is evident that the solute-
transporter relationship is intricate, and many factors may
affect transporter concentration and function. However, an
integrated understanding of the solute-transporter relationship
is currently missing due to the following challenges:

1) Limited access to or inability to measure in vivo readouts.
2) Limited data availability due to in vitro experimentation

challenges.
3) Limited multiscale models lead to a reduction in the accuracy

of transporter mechanisms due to parameter
oversimplification in lumped parameters.

TABLE 1 | Differences in model results when using mechanistic computational models with a flux boundary condition dependent on transporter density or not by various
researchers.

Type Application Model specifications Example
References

Transporter
independent flux

Organ model
development

Transport of multiple solutes across the nephron cell membrane, where themembrane flux was
dependent on electrical conductance and solute concentration gradients

Weinstein, (1986)

Device design Improving clearance rates of indoxyl sulfate in the media perfused hollow fiber membrane of a
bioartificial kidney

Refoyo et al. (2018)

Estimate drug impact The model was used to rapidly estimate the inhibitory value of CDF and investigate the impact
ABCC2 has on the flux of CDF across the hepatocytes

Howe et al., 2008

Transporter
dependent flux

Genetic differences Transporter expression is dependent on the sex differences in species Hu et al. (2020)
Disease state The model alters the expression of GLUT2 and SLGT1 to investigate their contribution to

glucose transport in a diabetic patient, resulting in GLUT2 expression being most important for
glucose

Afshar et al. (2019)

Flow rate effects Models change in transporter expression based on stimulation by flow rate in the tubules via
microvilli torque

Layton et al. (2019)

Transporter-independent flux boundary conditions are used in lumped parameter models such as device design and whole organ models. Transporter-dependent flux boundary
conditions are used in a model that investigates the direct effect of the epithelial membrane transporters on membrane transport.
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4) Increased complexity of competition and solute-transporter
interactions, which involve multiple possible combinations.

PERSPECTIVE AND OUTLOOK ON
MECHANISTIC MODELS OF EPITHELIAL
MEMBRANE TRANSPORTERS
As mentioned above, one of the challenges when developing
mechanistic models is the lack of adequate and relevant data for
calibration and validation. This is seen in Layton and Layton
(2019), where the relationship between apical flow rate and
SLGT2 expression is unknown and assumed to be linear. The
assumption is valid with the data currently available and the
scope of the model. Since the models predict spatiotemporal
phenomena, time-series data are necessary for calibration. Model
validation could be done by endpoint measurements, although
data-rich experiments utilizing micro (bio) sensors or
microfluidic sampling allow for better validation and
identification of essential model extensions.

Regarding transporter models, we do not know the exact
number of transporters present on the cell membrane, nor do
we know the influence of various microenvironmental cues,
native to the in vivo epithelium, on the individual transporter
rate. In vitro transporter studies are challenging to perform due to
the lack of epithelial cell lines that robustly express all the relevant
epithelial transporters and their inability to maintain these
transporters systems over extended culture periods. To
characterize transporter activity, researcher used indirect
measurements to simplify the experiments, such as
fluorescently labeled solutes, to stand in for the real
physiological solutes interacting with the transporters.
Quantification of transporter numbers is also a challenging
process. Protein identification techniques, such as western blot
analyses and mass spectrometry, only quantify relative protein
content (Pelkonen et al., 2017). Image analysis techniques using
immunofluorescence staining require high-resolution imaging
and computational resources for quantifying the transporters
on the cell membrane due to the small size of these
transporters. Transporters are usually measured between 60
and 80 Å and require higher resolution imaging equipment
such as stimulated emission depletion (STED) microscopy
(Vicidomini et al., 2018) or freeze-fracture electron
microscopy (Severs, 2007).

In situ, tissues are in an established hierarchy from the
molecular scale up to the bulk mesoscale. Moreover, all scales
influence each other, i.e., the micro- or nanoscale information
predicts the macroscale concentration. Therefore, it is vital to
develop mechanistic models that can couple multiple scales to
explore the solute interactions from the molecular (transporter-
solute interaction) to the tissue/organ scale (including
communication between different tissues via electrical,
metabolite sensing, or hormonal cues). For instance, as
described in the remote sensing and signaling hypothesis, SLC
and ABC transporter networks have interconnected pathways to
sense and signal environmental changes and maintain
homeostasis (Wu et al., 2011; Nigam, 2018). Furthermore,

these transporter networks function together and result in
multi-organ failure in disease states, such as chronic kidney
disease (Torres et al., 2021). Multiscale mechanistic models
could give better insights and understanding to drug handling
in multiple organs and disease states, resulting in multi-organ
failure.

There are some exciting multiscale developments such as the
FDA-approved closed-loop artificial pancreas (Kovatchev, 2018);
the Virtual Liver Project (Holzhütter et al., 2012), which simulates
drug dosage, metabolism, and excretion by the liver; and, on a
larger scale, the Virtual Physiological Human (Kohl and Noble,
2009) or simulation patient avatars to assist with personalized
medicine (Brown, 2015).

Future work should build on the transport models
mentioned above and investigate the multitude of physical
and chemical cues, sex differences, remote sensing, and
disease effects on the transporter number and activity by
making all contributions explicit in the flux term. Modeling
the explicit fundamental transporter mechanisms adds
flexibility to the model investigations and captures the
underlying biological mechanisms more closely than
simply using lumped parameters. More integrated in silico
and in vitro studies can focus on the intricate mechanisms of
the solute-transporter relationship by using high-throughput
platforms that allow large-scale screening of multiple solutes.
Expanding accurate physiological models of transporter
expression to disease or multiple scales, these models will
provide critical evidence for researchers on future
breakthroughs.

CONCLUSION

Mechanistic computational models can help unravel the
complexity of interacting spatio-temporal transport processes
by providing a quantitative framework for generating and
exploring research hypotheses on the governing mechanisms.
By coupling mechanistic models to dedicated
microphysiological in vitro models, a system of equations can
be built to study leaky barriers, reduced efficacy of the
transporters, and other inconsistencies in the in vitro
experiments. Membrane transporter availability and function
contribute directly to the overall solute flux across the epithelial
cell membrane and is defined by the modeler with an
appropriate boundary condition. Therefore, modelers need to
critically assess how they select the type of boundary conditions
applied to the epithelial membrane flux models. Both
transporter-dependent and -independent flux boundary
conditions are valid in epithelial membrane research. On the
one hand, if a detailed model investigates the influence of sex
differences (Prasad, 2019; Hu et al., 2020), disease (Hediger
et al., 2004, 2013), flow rate (Kohl and Noble, 2009; Holzhütter
et al., 2012; Brown, 2015) drug (Howe et al., 2009; Brown, 2015),
or solute (Afshar et al., 2019) concentration on transporter
expression and function, including explicitly the transporter as a
variable, is essential. On the other hand, if the variables do not
influence the transporter expression in the model or this is not
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of interest for the research question at hand, a lumped model is
an excellent alternative to investigate the overall system kinetics.

As reviewed here, it is apparent that the boundary conditions
selected for the transporter models depend on the research questions
and the desired scope the modelers wish to investigate. The selected
boundary condition directly impacts the conclusions made about the
epithelial transporters. The transporter function has often been
modeled as a generalized flux, making it impossible to explore and
understand the intricate solute-transporter relationship. With
increased available accurate data, advanced mechanistic models of
transporter-dependent flux can be developed to predict the transport
phenomena occurring in cell monolayers, tissues, organs, and whole
humans. We believe that by tapping into advances in the field of
pharmacokinetics andmolecular biology through a close collaboration
between modelers, materials scientists, and biologists, significant
insights on transporter biology can be made.
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