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Neurons integrate inputs over different time and space scales. Fast excitatory synapses

at boutons (ms and µm), and slow modulation over entire dendritic arbors (seconds

and mm) are all ultimately combined to produce behavior. Understanding the timing of

signaling events mediated by G-protein-coupled receptors is necessary to elucidate the

mechanism of action of therapeutics targeting the nervous system. Measuring signaling

kinetics in live cells has been transformed by the adoption of fluorescent biosensors and

dyes that convert biological signals into optical signals that are conveniently recorded by

microscopic imaging or by fluorescence plate readers. Quantifying the timing of signaling

has now become routine with the application of equations in familiar curve fitting software

to estimate the rates of signaling from the waveform. Here we describe examples of the

application of these methods, including (1) Kinetic analysis of opioid signaling dynamics

and partial agonism measured using cAMP and arrestin biosensors; (2) Quantifying

the signaling activity of illicit synthetic cannabinoid receptor agonists measured using

a fluorescent membrane potential dye; (3) Demonstration of multiplicity of arrestin

functions from analysis of biosensor waveforms and quantification of the rates of these

processes. These examples show how temporal analysis provides additional dimensions

to enhance the understanding of GPCR signaling and therapeutic mechanisms in the

nervous system.

Keywords: arrestin, biosensor, cannabinoid, dynamics, G protein coupled receptor (GPCR), kinetics, opioid, partial

agonist

INTRODUCTION

The timing of molecular events is central to the orchestration of cellular activity that underlies
the functions of the nervous system. Quantifying activity over time, from the action potential
to synaptic plasticity to neural oscillations, has been essential to understand cellular physiology
in neuroscience research. Recent advances have greatly expanded the temporal understanding of
G-protein-coupled receptor activity (GPCR) in the nervous system. A new class of genetically
encoded, fluorescent biosensors make it possible to image the release, spread, and clearance
of important neurotransmitters and modulators in the extracellular space (Marvin et al., 2013;
Patriarchi et al., 2018; Unger et al., 2020). In turn the stimulation of the GPCRs and subsequent
intracellular signaling pathways can now be studied in real time, capturing the kinetics and spatial
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distribution of the signaling that the neurotransmitters provoke
(Ferrandon et al., 2009; Zhao et al., 2011; Lohse et al., 2012;
Vilardaga et al., 2014; Irannejad et al., 2015; Ohno et al., 2017;
Greenwald et al., 2018; Halls and Canals, 2018; Jullie et al., 2020;
Olsen et al., 2020; Kuroda et al., 2021; Wright and Bouvier, 2021;
Zhang et al., 2021b). We are moving beyond the question of
whether signaling has occurred to a new era in which we can
watch in real time the exact nature of where and when these
important events occur.

Until recently, the timing of GPCR signaling was not routinely
measured [with the notable exception of GPCR regulation of
ion channel activity (Suh et al., 2004; Johnson et al., 2005)].
For example, for the cAMP signaling pathway, it was typical to
measure this response at only a single time point, using end-
point assays in which the cells are lysed and the signal analyte
measured chemically or with antibody-based detection methods.
Such single time point (“Endpoint”) assays have been used
overwhelmingly in GPCR research. End-point assays measure
the summed outputs of signaling from activated, desensitized
and internalized receptors while providing little insight into the
real-time dynamics of receptor activation, and this may have
a profound influence on the detection and interpretation of
receptor signaling by different drugs (Suh et al., 2004; Charlton
and Vauquelin, 2010; Klein Herenbrink et al., 2016; Bdioui et al.,
2018; Hoare et al., 2018, 2020b; Zhao and Furness, 2019; Zhu
et al., 2019; Finlay et al., 2020).

Quantifying the whole time course of signaling has now
been enabled with the development of sensors that convert
the biological signal into a light signal which can be recorded
repeatedly or continuously in live cells. The first such reagents
developed were the calcium indicators, chemical dyes that change
in fluorescence on binding calcium (Minta et al., 1989). This
paradigm has also been applied to detect other signals, such as
changes of voltage (Waggoner, 1979). The study of signaling
kinetics has now been broadly enabled by the development of
genetically-encoded biosensors (Figure 1). These proteins have
enabled optical detection of a very broad diversity of signal
transduction molecules and protein-protein interaction events
in a large diversity of cell types, tissues and whole organisms
(Lohse et al., 2008; Ohno et al., 2017; Greenwald et al., 2018;
Ehrlich et al., 2019; Wright and Bouvier, 2021; Zhang et al.,
2021b). The biosensor modality comprises protein(s) involved
in a signal transduction event coupled to fluorescent and/or
luminescent proteins that change in their optical properties when
the signaling event occurs (e.g., elevation of cAMP, arrestin
recruitment, receptor internalization) (Figure 1). The sensor can
be delivered into cells via a suitable viral or plasmid vector
or incorporated into the germline in genetically-manipulated
animals. The sensors can be targeted to specific locations within
the cell with the incorporation of localization sequences, enabling
spatial resolution of signaling events (Vilardaga et al., 2014;
Moore et al., 2016; Halls and Canals, 2018; Hilgendorf et al., 2019;

Abbreviations: DPBS, Dulbecco’s phosphate buffered saline; EMEM,

Eagle’s minimum essential media; GPCR, G-protein-coupled receptor;

GRK2, G-protein-coupled receptor kinase 2, G IRmax, maximal initial rate;

N/OFQ, nociceptin/orphanin FQ(1-13)NH2 SCRA, synthetic cannabinoid

receptor agonist.

Lobingier and Von Zastrow, 2019; Jullie et al., 2020; Zhang et al.,
2021a). The time course of signaling is typically measured by
default in these experiments, which has stimulated an explosion
in the kinetic quantification of GPCR signaling. This has resulted
in the discovery of new signaling mechanisms that modulate
neuronal activity, for example persistent signaling by internalized
GPCRs, and initiation of signaling at intracellular locations.
These spatiotemporal mechanisms mediate GPCR function in
pathophysiological conditions and are being targeted in the
discovery and development of novel therapeutics (Vilardaga
et al., 2014; Yarwood et al., 2017; Stoeber et al., 2018; Jimenez-
Vargas et al., 2020).

Surprisingly, the wealth of time course data now being
generated is rarely analyzed by curve fitting to extract kinetic
signaling parameters. Instead, the time course data are typically
represented in graphs and the insight is limited to qualitative
interpretations derived from visual observation of the graphical
data. Historically, curve fitting has transformed pharmacology
and receptor research into rigorously quantitative disciplines
(Kenakin, 2019). For example, the fitting of concentration-
response data to the sigmoid curve equation using non-linear
regression software enabled accurate and rapid quantification of
potency and efficacy measurements (e.g., EC50 and Emax). These
measurements revealed the mechanisms of receptor function
and provide the data that guides modern medicinal chemistry
(Rang, 2006; Kenakin, 2019). This required two developments–
equations that provide informative parameters such as EC50,
Emax, K i, and signal transduction parameters such as τ (Hill,
1909; Langmuir, 1918; Clark, 1926; Gaddum, 1937; Arunlakshana
and Schild, 1959; Cheng and Prusoff, 1973; Black and Leff,
1983); and curve fitting software that can be easily used by
scientists doing the research (Munson and Rodbard, 1980;
Motulsky and Ransnas, 1987; Beck et al., 2004). Until recently
such tools were not generally available for analyzing signaling
kinetic data for GPCRs. To enable such analysis, we have
introduced a data analysis framework for curve fitting to time
course data for GPCR signaling. In this framework, data are
fit to straightforward equations using familiar curve fitting
software. The analysis provides fitted values of useful parameters,
such as the initial rate of signaling and the rates of receptor
desensitization and second messenger degradation. We have
presented theoretical and practical studies of this new and
evolving analysis paradigm (Hoare et al., 2018, 2020a,b; Hoare
and Hughes, 2021) (see also https://youtu.be/_Pb7Sq6lZIY).
Other straightforward approaches for curve fitting time course
data have also been introduced recently (Zhu et al., 2019,
2020).

The goals of this study were to extend the practical application
of signaling dynamic measurements and time course curve fitting
to GPCR drug targets and receptor mechanisms relevant to
the central nervous system. First, we introduce an updated
and comprehensive collection of equations, provided as a
plug-in for the popular program GraphPad Prism, to enable
investigators to fit time course data for a variety of different
experimental paradigms (see https://drive.google.com/drive/u/1/
folders/1F5Qlyi30a3VNu9ZzCTKuTCDEmH6B4rdX). Second,
we apply the kinetic signaling biosensor assays and data analysis
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FIGURE 1 | Fluorescent biosensor architecture and function, illustrated using the cADDis cAMP sensor (Tewson et al., 2016). (A) Direct fluorescent biosensors

comprise a fluorescent protein (in this case mNeon Green) coupled to a protein that binds the analyte to be detected (in this case EPAC2 binding cAMP). Binding of

cAMP to the biosensor causes a change in conformation that results in a change in the optical properties of the fluorescent protein. (B) This change, in this case a

change of fluorescence emission intensity, can be recorded in a fluorescence plate reader. (C) Architecture of fluorescent arrestin sensor employed in this study.

Arrestin-3 was engineered to incorporate mNeonGreen, as described (Hoare et al., 2020a). Interaction with the receptor causes a change in fluorescence intensity

that can be detected in a plate reader.

to high-value CNS research questions, including the real-time
quantitative determination of the signaling efficacy of opioid and
cannabinoid receptors, and mechanisms of arrestin recruitment.
This quantification of signaling kinetics provides quantitative
insight into drug activity and receptor mechanisms and provides
a framework for investigators to apply to their systems and
questions of interest.

CURVE FITTING FOR TIME COURSE
SIGNALING DATA

Recently, routine curve fitting methods have been introduced
for analysis of time course data for GPCR signaling (Hoare
et al., 2020b; Hoare and Hughes, 2021). Equations have been
derived that describe the time course curve shapes, and the
data are fit to these equations to estimate useful parameters
such as rate constants and steady-state signaling levels. The
shape of the curve and the equation used is dependent on the
signal being measured. Some responses rise and then plateau
at a steady-state level, whereas others rise to a peak and then
decline. We recently published a survey of the time course curve
shapes and discovered that four shapes/equations account for

the large majority of GPCR signaling time course data (Hoare
et al., 2020b). This limited number enables the curve fitting to
be reduced to practice. Importantly, the curve shapes all emerge
from amechanistic foundation; when formulatedmathematically
the known mechanisms of GPCR signaling and regulation yield
the four curve shape equations (Hoare et al., 2018, 2020b). GPCR
signaling is regulated to prevent excessive stimulation of the cell,
by the process of receptor desensitization which prevents further
generation of the signal, and by degradation of the signal itself
(for example, metabolism of second messengers) (Chang, 1968;
Moore et al., 2007). The regulation mechanisms in operation in
the cell control the shape of the time course (Hoare et al., 2020b).

The four curve shapes are shown in Figure 2 and are
as follows:

1. Straight line (Figure 2A). The signal increases continuously
over time at a constant rate. This time course occurs when
there is no regulation of signaling and arises because the
receptor continuously generates the signal. See Equation 1 in
the Appendix in Supplementary Material.

2. Rise to steady-state curve (Figure 2B, Equation 2 in
Appendix), also called the association exponential curve. The
signal increases rapidly at first, then slows, then approaches a
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FIGURE 2 | The four time course curve shapes for GPCR signaling. Almost all signaling time course data can be described by one of the four shapes shown here.

The shape is determined by the regulation of signaling mechanisms in operation in the assay system (Hoare et al., 2020b). (A) Straight line time course, exemplified by

inositol phosphates accumulation stimulated by angiotensinII (Ang II) via the AT1 angiotensin receptor (Kohout et al., 2001). Note there is no regulation of signaling in

operation in the cells; receptor desensitization was blocked by the use of arrestin knock-out cells, and degradation of the inositol phosphates signal was blocked

using LiCl. (B) Rise to steady-state curve, exemplified by AT1 receptor-stimulated diacylglycerol (DAG) production (Violin et al., 2006a). This curve results from a single

regulation of signaling mechanism, in this case clearance of the DAG signal by DAG kinases. (Desensitization was blocked using a mutant receptor). (C) Rise and fall

to baseline curve, exemplified by exemplified by AT1 receptor-stimulated DAG production via the wild-type receptor. This shape results when two regulation of

signaling mechanisms are operative, in this case DAG degradation and receptor desensitization. (D) Rise and fall to steady-state curve, exemplified by β2

adrenoceptor-stimulated cAMP production (Thomsen et al., 2016). This mechanism results from more complex mechanisms, in this case likely involving receptor

resensitization as well-desensitization (Hoare et al., 2020b).

plateau at which the signal remains constant over time. This
is a commonly-observed shape in GPCR second messenger
assays and emerges because the signal becomes limited by
a regulation of signaling mechanism (for example receptor

desensitization or signal degradation). This shape arises when

there is one predominant regulation mechanism.

3. The rise-and-fall to baseline curve (Figure 2C, Equation 3).

The signal rises rapidly, then slows, then reaches a peak,

following which the signal declines back down to the baseline
level before initiation of the signal. This shape is observed

in calcium mobilization assays, and in second messenger

assays when blockers of metabolism of the messenger are
excluded from the assay. Again, the shape is a manifestation
of the regulation of signaling mechanisms. It arises when
there are two mechanisms regulating the signal transduction
pathway being measured (e.g., receptor desensitization and
signal degradation).

4. The rise-and-fall to steady-state curve (Figure 2D, Equation
4). The signal rises rapidly, then slows, then reaches a peak,
then declines. The signal then declines to a plateau level
which is above the baseline but below the peak. This shape
is a manifestation of more complex regulation mechanisms,
including receptor resensitization, reformation of the signal
after it has been degraded, and signaling by internalized
receptors. These mechanisms have in common an initial burst
of signaling, followed by processes that produce a steady-state
of continuous signaling over time.

The equations defining these curve shapes are reasonably
straightforward – investigators capable of performing
concentration-response analysis should be able to perform
time course signaling analysis with some training and
experience. To aid investigators, in this study we introduce
a plug-in for the program Prism (GraphPad Software Inc)
comprising a suite of equations written in a common format,
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available at this location: https://drive.google.com/drive/folders/
1F5Qlyi30a3VNu9ZzCTKuTCDEmH6B4rdX?usp=sharing. A
guide for uploading the equations into Prism is provided in a
file at the location above called “Guide for loading equations
into Prism from a file”. We have also created a video training
workshop, available here: https://youtu.be/_Pb7Sq6lZIY.

The suite of equations is comprehensive. It includes variants
for downward signals (fall to steady-state curve, and fall
and rise curves), to accommodate signals that decrease on
receptor activation (e.g., inhibition of cAMP production by Gi-
activated receptors). Variants also accommodate a baseline run-
in period, where signal is measured before receptor is activated
by application of the agonist. Finally, the equations are extended
to allow for baseline drift, the slight change of baseline signal
over time that can occur for biological or technical reasons (e.g.,
slight bleaching of fluorescent biosensors). A complete list of the
equations together with illustrative graphs of the curve shapes, is
in the Supplementary Material File, “Time course equation list.”

QUANTIFYING SIGNAL GENERATION
USING THE INITIAL RATE OF SIGNALING

The time course curve shapes arise from two biological processes.
The first process to occur is the generation of the signal, where the
agonist-occupied receptor generates the signal from precursors
of the signal (for example, activated GTP-bound G-protein
generated from inactive GDP-bound G-protein) (Gilman, 1987).
The second process, which occurs after signal generation, is the
regulation of signaling steps that act to dampen down or turn
off the signal (for example, receptor desensitization and signal
degradation) (Moore et al., 2007). One of the benefits of kinetic
analysis, which is not possible with endpoint analysis, is that these
processes can be separated and then quantified independently in
the curve fitting analysis (Hoare et al., 2020b; Zhu et al., 2020).

The first process, the generation of the signal, is surprisingly
easy to quantify. Signal generation can be quantified as the initial
rate of signaling, analogous to the initial rate of enzyme activity.
Traditional methods tomeasure the initial rate, involvingmanual
assessments of which part of the curve is linear, are not suitable
for the modern automated era of data analysis. Instead, we have
developed a method that employs the curve fit parameter values
to calculate the initial rate (Hoare et al., 2020b). In this method,
the time course data are fit to the appropriate equation, then the
fitted parameter values are entered into a formula that calculates
the initial rate. These formulas are shown in Equations 5–8 in
Appendix. To aid investigators, the Prism analysis we developed
performs the initial rate calculation automatically as part of the
analysis in most cases.

The rate of signal generation is highly useful because it
represents the efficacy of the agonist for activating the receptor,
unencumbered by regulation of signaling mechanisms (Hoare
et al., 2020b). In pharmacology research, measuring receptor
activation by drug molecules is of primary importance because
it can translate to how well the drug will produce a therapeutic
effect (Kenakin, 2009). Two targets in the CNS where this is
of high importance are the µ-opioid receptor (Schmid et al.,

2017; Gillis et al., 2020a; Pineyro and Nagi, 2021) and CB1
cannabinoid receptor (Banister and Connor, 2018a; Sachdev
et al., 2019). Precisely defining receptor activation for these
targets is important for defining therapeutic efficacy, and also for
assessing the risk of adverse events. Consequently, in this study
we quantified the rate of signal generation, using the initial rate
of signaling, for these targets (see below).

The second process, the regulation of signaling steps, can
also be quantified (Hoare et al., 2018, 2020b; Zhu et al., 2020).
Macroscopically, the rate(s) of signal regulation can be quantified
empirically as an overall rate constant or constants (Hoare et al.,
2020b). From the rate constant value(s), the half-time(s) of the
signal regulation step(s) can be determined. Microscopically, if
the mechanisms of signal regulation are known, then it is also
possible to quantify the rates of these processes, for example the
rates of receptor desensitization and signal degradation (Hoare
et al., 2020b). This aspect of the kinetic analysis is applied here
to arrestin recruitment to a series of GPCRs under a variety
of conditions.

QUANTIFYING SIGNAL GENERATION BY
THE µ-OPIOID RECEPTOR

Introduction
Drugs that activate the µ-opioid receptor (MOR) are highly
effective analgesics, the classic example being morphine.
Analgesia is achieved by activation of this receptor at multiple
CNS sites (Pasternak, 1993). However, side effects result
from MOR activation at other locations, including respiratory
depression (which can be fatal) and constipation (Pasternak,
1993; Gillis et al., 2020b). In addition, tolerance and dependence
can result on repeated dosing of MOR agonists (Johnson
et al., 2005; Morgan and Christie, 2011), which has resulted
in widespread opioid use disorder, contributing to the opioid
crisis which led to 70,000 fatalities in the United States in 2019
(Mattson et al., 2021). Accurately quantifying the extent to which
MOR agonists activate the receptor is essential for understanding
the liabilities of current mediations and in the optimization of
safer new therapeutics targeting this receptor (Thompson et al.,
2016; Schmid et al., 2017; Gillis et al., 2020c; Hill and Canals,
2021; Pineyro and Nagi, 2021). This quantification is central to
the two approaches currently being advocated, which are: (1)
Partial agonism, the development of ligands that only partially
activate the receptor, sufficient to achieve analgesia but low
enough to minimize side effects (Gillis et al., 2020a). (2) Biased
agonism, the development of ligands that are biased for activating
G-protein vs. recruiting arrestin (Schmid et al., 2017).

Kinetic analysis enables accurate quantification of the strength
of the signal generation event stimulated by agonists (Hoare
et al., 2020a,b; Yang et al., 2021). Notably, the analysis allows the
quantification of the signal generation event to be separated from
the regulation of signaling events, important because differential
regulation can result in differences in apparent efficacy of ligands
(Klein Herenbrink et al., 2016). In this study we used high-
resolution kinetic data obtained using biosensors to quantify the
rate of signal generation by agonist-bound MORs. We measured
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the G-protein pathway by measuring cAMP using the Green
Downward cADDis sensor (Tewson et al., 2016, 2018). The
MOR receptor couples to Gi, which inhibits adenylyl cyclase,
and this pathway can be quantified by measuring the decrease
of cAMP generation after application of the MOR agonist.
We measured the arrestin pathway using a fluorescent arrestin
biosensor (Hoare et al., 2020a). Both biosensors are direct
fluorescent biosensors in which the signaling event (binding of
cAMP, or receptor-arrestin interaction) results in a change in
fluorescence intensity which can be measured in a plate reader
(Figure 1). These sensors are ideal for kinetic measurements
because they are bright, enabling short read times and so
a large number of time points, and because the signal is
not susceptible to rapid decay effects such as decay of light-
generating substrates in BRET assays and photobleaching in
FRET assays. The receptor and the biosensor were expressed
together in HEK293 cells using the BacMam expression system
(Kost et al., 2007). Signaling was quantified as the change
of fluorescence intensity, measured using the Hamamatsu
FDSS/µCell Functional Drug Screening System (Hamamatsu
Photonics), which enabled simultaneous scanning of an entire
384-well-plate. For the cAMP assay, inhibition of forskolin-
stimulated cAMP was measured. Forskolin was applied 50min
before theMOR agonist, which was long enough for the forskolin
response to reach steady-state [see Figure 5 of Hoare and Hughes
(2021)]. This enables the kinetics of the MOR agonist activity to
be assessed independently of the kinetics of forskolin activity.

Signal Generation Rate of cAMP Inhibition
by µ Opioid Receptor Agonists
Figures 3A,B shows the time course of inhibition of cAMP
production stimulated by forskolin after application of MOR
agonists DAMGO (the standard reference agonist) and the
analgesic drug morphine. After application of the agonist, there
was a rapid reduction of the cAMP level over the first few
minutes, which was presumably a result of Gi activation by the
receptor. The effect slowed down over time and the inhibition
reached a lower plateau, described by a fall to steady-state curve.
However, this plateau drifted over time, evident by the slightly
increasing signal over the later time points (Figures 3A,B). This
baseline drift is probably a result of slight photobleaching of the
biosensor since a high scan frequency (2 sec) was applied for a
prolonged period of time (90min), and because it was evident in
vehicle-treated cells.

Next we analyzed the cAMP inhibition time course data by
curve fitting (Figures 3A,B). The curve shape can be analyzed
by incorporating baseline drift into the curve fitting analysis
(Hoare et al., 2020a; Hoare and Hughes, 2021) and we have
developed equations to handle this scenario. Data were analyzed
using a fall to plateau equation with baseline drift, as described
in Materials and Methods. This was performed with GraphPad
Prism using the custom equation “Baseline then fall to steady
state with drift” available in the file “[Pharmechanics] Fall to
steady state equations” at https://drive.google.com/drive/folders/
1F5Qlyi30a3VNu9ZzCTKuTCDEmH6B4rdX?usp=sharing. The
data were fit well by the equation (R2 values of 0.967–0.999 for

the data in Figures 3A,B). The parameters fitted by this equation
are the steady-state level of cAMP inhibition (“SteadyState”),
which is the baseline before application of the agonist minus
the lower plateau; the rate constant (K), which defines the
timeframe over which the cAMP inhibition occurs and is related
to the half-time of the response (t1/2 = 0.693/K); and the drift
factor, which defines the rate of drift of the response over time.
The Supplementary Material File “Mu opioid time course curve
fit results” shows the SteadyState, K and t1/2 values from the
analysis. From these results we can determine the dependence
on the agonist concentration of the fitted values. Increasing the
agonist concentration increased the steady-state level of cAMP
inhibition but did not appreciably affect the t1/2. This is also
evident by visual inspection of Figures 3A,B. The mechanisms
underlying the dependence of the SteadyState and K values on
agonist concentration can be complex, as described previously
(Hoare et al., 2018).

We used these data to determine the rate of signal-generation
by the agonist-bound receptor, which is the initial rate of
signaling by the receptor when it is fully occupied by the
agonist; this is the efficacy of the agonist-occupied receptor
for generating the signal. This parameter is termed IRmax

(Hoare et al., 2020b), meaning the initial rate at a maximally-
effective concentration of agonist. First, we calculated the initial
rate for all the agonist concentrations. This was done by
entering the curve fit parameters into a simple formula, which
is: Initial rate = SteadyState × K (Hoare et al., 2020b; see
Supplementary Material File “Mu opioid time course curve fit
results” for values). These initial rate values were then plotted
vs. the agonist concentration, as shown in Figure 3C. This plot
shows that as the agonist concentration increases, the initial rate
of signal generation increases, and this is because the number of
agonist-bound receptors is increasing. These data were analyzed
to determine IRmax. This was done by fitting the initial rate
vs. concentration data to a standard sigmoid curve equation
(Motulsky, 2019) (see Materials and Methods). The IRmax is the
maximal span of the curve, which is the Top minus the Bottom
(Note the Bottom value is slightly above zero and this is because
of a small injection artifact, evident from the vehicle data in
Figures 3A,B). This analysis yielded an IRmax value of 0.120
relative fluorescence units (RFU) per min for DAMGO and 0.114
RFU per min for morphine for the representative experiment in
Figure 3. It is convenient to express the IRmax as a percentage
of that for a reference agonist, as is done for more traditional
measures of agonist efficacy. This gave normalized IRmax values
of 100 % for DAMGO and 103 % for morphine (mean of two
independent experiments,Table 1). This result demonstrates that
morphine is a full agonist for generating the inhibition of cAMP
signal via the MOR in this cell system.

We next tested a panel of MOR agonists in the cAMP
inhibition assay (Figures 4A,B). The time course curve data are
shown in Supplementary Figure 1 and the curve fit results in
the Supplementary Material File “Mu opioid time course curve
fit results.” The time course curve shape for all ligands was the
same as that for DAMGO and morphine (fall to steady-state
with baseline drift). The initial rate of cAMP inhibition was
determined as described above and the values were normalized
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FIGURE 3 | Signaling kinetics and signal generation rate of the µ opioid receptor for inhibition of cAMP production and stimulation of arrestin recruitment. The signals

were measured repeatedly over time using fluorescent biosensors in HEK293 cells. (A,B) Time course of cAMP inhibition by DAMGO (A) and morphine (B). Data were

fit to the “Baseline then fall to steady state with drift” equation in GraphPad Prism (gray lines). From the fitted parameter values, the initial rate of cAMP inhibition was

calculated using the formula Initial rate = SteadyState × K. In (C), the initial rate is plotted vs. the DAMGO or morphine concentration and the data fit to a sigmoid

curve concentration response equation (Motulsky, 2019). From this fit, the initial rate of cAMP inhibition by the agonist-occupied receptor (IRmax) was determined, as

the Span value (Top minus Bottom). Note morphine is a full agonist (IRmax of 95 % of DAMGO IRmax). (D,E) Time course of arrestin recruitment to the MOR stimulated

by DAMGO (D) and morphine (E). Data were fit to fit to the “Baseline then rise to steady state with drift” equation in GraphPad Prism (gray lines). The initial rate of

arrestin recruitment was calculated from the fit parameters using the formula Initial rate = SteadyState × K. (F) Initial rate of arrestin recruitment vs. agonist

concentration. The IRmax for the agonists was determined as the Span value of the sigmoid curve fit. Note morphine is a partial agonist (IRmax of 28 % of DAMGO

IRmax). Data are from a representative experiment. Data points in (A,B,D,E) are the mean of two technical replicates (note, error bars have been excluded for clarity).
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TABLE 1 | µ opioid signal generation rate values for inhibition of cAMP production

and stimulation of arrestin recruitment.

Agonist cAMP IRmax (% DAMGO) Arrestin IRmax (% DAMGO)

DAMGO 100 100

Met-enkephalin 90 ± 10 97 ± 2

Endomorphin-2 96 ± 1 71 ± 2

Morphine 103 ± 7 33 ± 4

Hydromorphone 94 ± 5 22 ± 3

Oxymorphone 106 ± 16 26 ± 6

Fentanyl 107 ± 16 46 ± 4

Buprenorphine 78 ± 4 ND

The signal generation rate of the agonist-occupied receptor, which is the initial rate of

signaling at maximally-effective agonist concentrations (IRmax ), was quantified as the

maximum span of the initial rate concentration response curve (Figure 4), normalized to

that of DAMGO. Values are themean± SEM of values from two independent experiments.

ND, not detected.

as a percentage of the maximal initial rate (IRmax) of DAMGO,
run as a control in each experiment. These normalized initial
rate values are shown in Figures 4A,B. From these data the
IRmax of the ligands, representing the signal generation rate
by the agonist-bound receptor, was calculated as the Span of
the sigmoid equation fit (Table 1). Seven of the eight agonists
tested were full agonists for generation of cAMP inhibition, with
IRmax values close to 100% (Table 1). These were the peptide
agonists DAMGO, met-enkephalin and endomorphin-2, and
the small molecule analgesic drugs morphine, hydromorphone,
oxymorphone and fentanyl (Table 1). One of the agonists
was a partial agonist for generation of cAMP inhibition; for
buprenorphine the IRmax was 78%.

Signal Generation Rate of Arrestin
Recruitment by µ Opioid Receptor
Agonists
We next measured the signal generation rate for arrestin
recruitment to the MOR, using the fluorescent biosensor
technology. We employed a fluorescent arrestin-3 (β-arrestin 2)
biosensor described previously (Hoare et al., 2020a). This direct
fluorescent sensor comprises arrestin-3 coupled to mNeonGreen
(Figure 1C) and interaction with the receptor results in a change
in fluorescence intensity that can be recorded in a plate reader.
The time course of arrestin recruitment following application
of the agonist is shown in Figures 3D,E, for DAMGO and
morphine. There was a rapid initial rise phase occurring over
the first few minutes, then the signal approached a plateau. This
is represented by the rise to steady-state curve and equation.
However, like in the cAMP assay, there was slight baseline
drift, evident from the decline of the signal over time at
the later time points (Figures 3D,E). The data were fit to an
equation that describes these features, the “Baseline then rise
to steady state with drift” equation, using GraphPad Prism, as
described in Materials and Methods. The data were fit well
by the equation (R2-values of 0.959–0.996 for the data in
Figures 3D,E). The fitted parameter values are SteadyState (the
steady-state level of arrestin recruitment), the rate constant K

(from which the half-time can be calculated as 0.693 / K), and
the drift factor. Increasing the agonist concentration increases
the steady-state level of arrestin recruitment, and decreases the
half-time (Figures 3D,E; see Supplementary Material File “Mu
opioid time course curve fit results”). However, a difference
between DAMGO and morphine is evident. Morphine is
less effective for recruiting arrestin. The maximal steady-state
level is less, and the half-time is greater (Figures 3D,E; see
Supplementary Material File “Mu opioid time course curve
fit results”).

Now we determined the signal generation rate for recruitment
of arrestin by the agonist-occupied receptor (IRmax). This was
done as described above for the cAMP response. First, the
initial rate for each concentration of agonist was calculated
using the formula Initial rate = SteadyState × K (Hoare et al.,
2020b; see Supplementary Material File “Mu opioid time course
curve fit results” for values). Next the initial rate values were
plotted against the agonist concentration (Figure 3F) and the
data analyzed using a sigmoid curve equation (Motulsky, 2019).
The IRmax was calculated as the Span value from this fit. It
is immediately obvious from inspection of Figure 3F that the
IRmax of morphine is considerably less than that of the reference
agonist DAMGO (IRmax values of 0.0330 and 0.118 RFU per
min, respectively). The mean normalized IRmax values, relative
to DAMGO, are 33% for morphine and 100% for DAMGO
(Table 1). This result demonstrates morphine is a partial agonist
for generating recruitment of arrestin.

We next tested the panel of MOR agonists in this assay to
quantify the generation of arrestin recruitment (time course data
shown in Supplementary Figure 2, note data for all agonists
were fit well by the rise to steady-state with drift equation).
The normalized initial rate values are shown in Figures 4C,D

and the IRmax values in Table 1. It is clear from these data
that the small molecule analgesic drugs are all partial agonists
for generating arrestin recruitment (morphine, hydromorphone,
oxymorphone and fentanyl, IRmax ranging from 22 to 46%).
Notably, buprenorphine did not detectably recruit arrestin
(Figure 4D, Supplementary Figure 2F). The peptide agonist
met-enkephalin was a full agonist relative to DAMGO (IRmax of
97 %), and the second peptide agonist tested, endomorphin-2,
was a partial agonist (IRmax of 71 %).

Comparison With Other Methods
Precisely quantifying ligand efficacy for signaling is critically
important for developing next-generation analgesics targeting
the µ opioid receptor, whether this is based on the partial agonist
hypothesis (Gillis et al., 2020a) or the G-protein over arrestin
bias hypothesis (Schmid et al., 2017). The IRmax signal generation
rate measurement developed here is one of many scales of
signaling strength employed, including Emax, and transduction
coefficients such as τ and Emax/EC50 (Mcpherson et al., 2010;
Thompson et al., 2016; Schmid et al., 2017; Ehrlich et al., 2019;
Gillis et al., 2020a; Uprety et al., 2021). The signal generation
rate measurement has benefits and limitations. It quantifies
signal generation before the signal is modified by regulation
of signaling mechanisms (Hoare et al., 2020b). Consequently,
this measurement reflects the activating conformation of the
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FIGURE 4 | Initial rate of signal generation by the µ opioid receptor in response to endogenous peptide ligands (A,C) and small molecule therapeutics (B,D). The

initial rate of cAMP inhibition (A,B) and arrestin recruitment (C,D) was calculated from the time course data curve fit parameters (Figure 3,

Supplementary Figures 1, 2). Data points are the mean ± SEM from two separate experiments. The curves were generated using the sigmoid curve equation

(Motulsky, 2019), defined by the average curve fit values from the two experiments from Supplementary Table 1. Note that the small molecules are all partial

agonists for generating arrestin recruitment.

receptor before regulation of signaling, providing an assessment
of molecular efficacy of the agonist for activating the receptor.
In addition, using the signal generation rate avoids the time-
dependence of agonist efficacy measurements that can emerge in
endpoint assays (Klein Herenbrink et al., 2016; Thompson et al.,
2016; Zhu et al., 2019; Hoare et al., 2020b). This time dependence
is likely a result of regulation of signaling mechanisms that are
dependent on the agonist, such as receptor desensitization and
internalization (Zhu et al., 2019; Hoare et al., 2020b). However,
the signal generation rate does not provide an estimate of tonic
signaling that would be important for translation to in vivo
models for agonists that produce sustained signaling. For this
application, the time course method described here can still
be applied – the relevant parameter from the curve fitting is
SteadyState, the signal level at the plateau.

A major limitation of the signal generation rate measurement
is that it can be difficult to incorporate the potency or affinity

of the agonist for the receptor for rapid responses. This is
because the method assumes the rate limiting step is generation
of the signal by the agonist-occupied receptor. This assumption
might be infringed at low concentrations of agonist needed to
define the EC50, where the rate limiting step instead can be the
binding of the agonist to the receptor (Hoare et al., 2018). This
limitation profoundly distorts measurements when the response
is very rapid [e.g., intracellular Ca2+ mobilization (Charlton and
Vauquelin, 2010)], but is likely less of an issue for more slowly-
generated signals (Bdioui et al., 2018; Hoare et al., 2018, 2020b).
A second limitation is that receptor reserve / signal amplification
is not presently incorporated into the signal generation rate
measurement. Consequently, caution is required when using the
signal generation rate in assessing biased agonism when one of
the pathways is more amplified than the other, as is likely the
case here, where inhibition of cAMP production is likely more
amplified than arrestin recruitment.
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Broadly, the signal generation rate IRmax results were in
agreement with traditional measures of the maximal response
(These traditional measures are usually single time point
measurements, typically at later time points when the response
is approaching or has reached steady-state). Specifically, for
inhibition of cAMP the small molecule analgesics were full
agonists, with the exception of buprenorphine which was a
partial agonist, albeit with an efficacy >50% (Table 1), and these
findings are in agreement with previous studies (Zaki et al., 2000;
Knapman et al., 2014; Schmid et al., 2017; Gillis et al., 2020a). This
agreement between the initial rate and steady-state methods for
cAMP inhibition likely results because the initial rate is defined
largely by the magnitude of the SteadyState parameter, with the
rate parameter K being similar for the different agonists, as
described inHoare et al. (2018; see Supplementary Material File,
“Mu opioid time course curve fit results” for SteadyState and
K values). For arrestin recruitment, the rank order of efficacy
quantified using IRmax was similar to that of Emax measured
in previous studies at a single time point, specifically DAMGO
= met-enkephalin > endomorphin-2 > fentanyl > morphine
> buprenorphine (Mcpherson et al., 2010; Rivero et al., 2012;
Thompson et al., 2016; Schmid et al., 2017; Gillis et al., 2020a).
The absolute values in the literature can vary widely. For example,
the Emax for morphine varies from 15% (Mcpherson et al., 2010)
to 72% (Thompson et al., 2016). This variability might be in
part due to the time point used to make the measurement;
in arrestin assays, the Emax of agonists can increase at later
time points (Hoare et al., 2020a). This results from both the
rate constant K and the SteadyState value being dependent on
the concentration of the agonist (Hoare et al., 2020a), as was
observed in this study (see Supplementary Material File, “Mu
opioid time course curve fit results”). The signal generation rate
method avoids this complication. Overall, the signal generation
rate for arrestin recruitment described in this study provides
one of the most sensitive and unambiguous assessments of
agonist efficacy at the µ-opioid receptor, because it is not
susceptible to amplification effects, is not time dependent, and
is conceptually straightforward.

ILLICIT SYNTHETIC CANNABINOID
SIGNAL GENERATION RATE VIA THE CB1

RECEPTOR

Introduction
The CB1 receptor is the primary site of action of the
natural cannabinoid 19-tetrahydrocannibinol (THC), the main
psychoactive ingredient of cannabis (Paton and Pertwee,
1973). In recent times, synthetic cannabinoid receptor agonists
(SCRAs) have been developed for research purposes that have
subsequently been diverted and modified by illicit laboratories
for recreational use (Bretteville-Jensen et al., 2013; Banister
and Connor, 2018a,b). Unlike THC, some of these compounds
have been associated with severe toxicological events, including
seizures, cardiotoxicity, psychosis, hypothermia, and kidney
injury, resulting in hundreds of hospitalizations and dozens of
fatalities (Trecki et al., 2015; Adams et al., 2017). This increased

morbidity and mortality of some of the SCRAs is correlated with
a stronger efficacy for activation of the CB1 receptor (Wiley et al.,
2015; Banister et al., 2016; Cannaert et al., 2016; Hess et al., 2016;
Costain et al., 2018; Gamage et al., 2018; Grafinger et al., 2021a,b).
For example, the SCRA 5F-MDMB-PICA was recently shown
to activate the CB1 receptor with an efficacy 260-fold higher
than that of THC, demonstrated using the operational model of
agonism and varying levels of receptor expression (Sachdev et al.,
2019).

Rate of Signal Generation via the CB1

Receptor
We examined whether this difference of signaling strength was
also evident in terms of the rate of signal generation. For this
purpose, we utilized time course data for activation of CB1
receptor signaling from a recent study which included extensive
characterization of SCRA pharmacological efficacy at the CB1
receptor (Sachdev et al., 2019). The response measured was
hyperpolarization of AtT-20 cells expressing the human CB1
receptor and this was detected using a fluorescent membrane
potential-sensing dye. The change of fluorescence was directly
related to the change of membrane potential resulting from
CB1 receptor activation, followed by release of G-protein βγ

subunits, and subsequent downstream activation of endogenous
GIRK channels (Mackie et al., 1995; Garcia et al., 1998; Sachdev
et al., 2019). This assay has a wide dynamic range for detecting
differences of ligand efficacy because it is not highly amplified;
four G-protein βγ subunits are likely required to fully activate the
GIRK channel (Whorton andMackinnon, 2013). In addition, the
number of CB1 receptors in the cells was relatively low because
an irreversible antagonist was used to reduce the number of
receptors accessible to the agonist ligands (Sachdev et al., 2019).

We quantified the kinetics of ten CB1 agonists in this assay
using a maximally-effective concentration of agonist (Table 2).
This enabled us to quantify the IRmax of the ligands. Figure 5
shows the time course data for the change of membrane
potential following application of three of the agonists or the
vehicle. Note that in this assay there was a small injection
artifact that produced an immediate reduction of the signal,
evident in the vehicle and THC condition; this was taken into
account in the curve fitting and data analysis (see Materials
and Methods). THC produced a slow, small reduction of
the membrane potential. By contrast, the synthetic ligands
CP 55,940 and MDMB-FUBINACA produced a much more
rapid and larger reduction of membrane potential (Figure 5,
Table 2). The data were fit to the fall to steady-state equation
to quantify SteadyState (the final reduction of the response)
and the rate constant K (mean values shown in Table 2). The
SteadyState value was corrected for the small signal deflection
caused by the injection artifact as described in Materials and
Methods. The fitted values for each experiment are provided in
the Supplementary Material File, “CB1 hyperpolarization time
course fit results” and the time course curve fit for each ligand
shown in Supplementary Figure 3.

Now we examined the signal generation rate by the agonist-
occupied receptor. The IRmax value for each ligand was calculated
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by multiplying the corrected SteadyState value by the K value.
The IRmax values are provided in Table 2 and shown in Figure 6.
Clearly there was a very large difference of the signal generation
rate between THC and the SCRAs. The IRmax value for THC
was 3.0 % reduction of membrane potential per minute, whereas
the values for the SCRAs were much higher. For example,
for MDMB-FUBINACA the IRmax value was 40 times higher,

FIGURE 5 | Signaling kinetics of CB1 receptor-mediated membrane potential

reduction stimulated by CB1 agonists. Membrane potential was measured

using a fluorescent dye in AtT20 cells and data normalized to the baseline

signal before application of agonist or vehicle (indicated by arrow). Data were

analyzed by curve fitting to fall to steady-state equations as described in

Materials and Methods. A maximally-stimulating concentration was used

(Table 2). THC produced a slow, small reduction of membrane potential,

detectable beyond the small injection artifact reduction evident in the vehicle

condition. The synthetic agonists CP 55,940 and MDMB-FUBINACA produced

a more rapid and larger reduction (See the Supplementary Material File

“CB1 hyperpolarization time course fit results” for curve fit parameter results).

The initial rate of signal generation by the agonist-occupied receptor (IRmax)

was calculated from the curve fit parameters and this rate is indicated by the

dashed line on the graph. Note the initial rate is much faster for CP 55,940 and

MDMB-FUBINACA compared with THC. Data points are the mean of two

technical replicates and data are from representative experiments.

at 120% reduction per minute. In all cases except JWH-018,
the IRmax value was significantly different from that for THC
(Table 2). This difference of IRmax value is clearly evident when
the initial rate is plotted on the time course graph, as indicated
by the dashed lines in Figure 5. Overall, the signal generation
rate for SCRAs ranged from 9-fold to 49-fold higher than
that of THC (Table 2). This result supports the hypothesis that
the SCRAs more strongly activate CB1 receptor signaling. It
seems probable that this difference contributes to the more
severe CB1-mediated toxicology of SCRAs compared with THC.
The difference between THC and MDMB-FUBINACA can
be rationalized by differences of structure of the agonist-CB1
receptor complex; MDMB-FUBINACA demonstrated a “toggle
twin switch” interaction that THC did not (Krishna Kumar et al.,
2019). The present results suggest the different activate state
of the receptor when bound by MDMB-FUBINACA accelerates
activation of the receptor and subsequent signaling.

QUANTITATIVE MECHANISTIC ANALYSIS
OF ARRESTIN RECRUITMENT
WAVEFORMS

Introduction
The arrestin proteins perform multiple functions in regulating
and mediating GPCR signaling. For most GPCRs, arrestins
mediate GPCR desensitization, the process that blocks
continuous G-protein activation by the receptor (Wilden
et al., 1986; Lohse et al., 1990; Krupnick and Benovic, 1998;
Ferguson, 2001; Moore et al., 2007; Peterson and Luttrell, 2017;
Gurevich and Gurevich, 2019a). In the canonical desensitization
mechanism, the receptor is first phosphorylated by kinase
enzymes, then arrestin binds to the phosphorylated receptor
(commonly referred to as arrestin recruitment). This arrestin
binding usually sterically blocks G-protein interaction with the
receptor, so attenuating G-protein activation by the receptor
(Moore et al., 2007; Gurevich and Gurevich, 2019a). Arrestins

TABLE 2 | THC and SRCA signal generation rate via the CB1 receptor.

Agonist IRmax (% per min) IRmax/THC IRmax SteadyState (% reduction) K (min−1) Concentration (µM)

THC 3.0 ± 0.4 1.0 15 ± 3 0.29 ± 0.09 10

CP 55,940 48 ± 7* 16 27 ± 1 1.8 ± 0.2 30

JWH-018 27 ± 4 NS 9.0 20 ± 3 1.3 ± 0.07 10

AM-2201 59 ± 7*** 20 21 ± 3 3.0 ± 0.3 10

XLR-11 60 ± 10** 20 24 ± 3 2.6 ± 0.2 10

5F-PB-22 100 ± 10*** 35 22 ± 2 4.8 ± 0.2 1

MDMB-CHMICA 140 ± 12*** 45 28 ± 3 4.9 ± 0.3 1

MDMB-FUBINACA 120 ± 10*** 41 27 ± 3 4.7 ± 0.5 1

5F-MDMB-PICA 150 ± 10*** 49 30 ± 2 4.9 ± 0.3 1

CUMYL-4CN-BINACA 110 ± 10*** 36 25 ± 1 4.2 ± 0.5 10

The IRmax was quantified for reduction of membrane potential stimulated by a maximally-effective concentration of the agonist. Also shown are the SteadyState and K rate constant

values from the curve fitting to the time course data, used to calculate the IRmax using the equation, Initial rate = SteadyState × K. The SteadyState value was corrected for the injection

artifact which resulted in a slight, immediate drop of the signal (see Materials and Methods). Values are mean ± SEM from 5 to 9 independent experiments. Differences of IRmax between

test compounds and THC were tested statistically by single-factor ANOVA followed by the Dunnett multiple comparison test, comparing each compound with THC (*P < 0.05; **P <

0.01; ***P < 0.001; NS, not significant, P > 0.05).
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FIGURE 6 | Signal generation rate IRmax values of CB1 receptor agonists. The

IRmax was calculated as the initial rate of membrane potential reduction at a

maximally-stimulating concentration of the agonists (10µM), as described in

Materials and Methods. Note the signal generation rate of SRCAs and the

synthetic agonist CP 55,940 is much higher than that of the natural

cannabinoid THC. IRmax values and statistical analysis are in Table 2.

are also involved in the next event in the desensitization pathway,
receptor internalization (Ferguson et al., 1996; Gurevich and
Gurevich, 2006; Moore et al., 2007; Shenoy and Lefkowitz,
2011). In this process, arrestins act as scaffolds for proteins
involved in endocytosis, e.g., AP2 and calthrin in clathrin-coated
pits (Goodman et al., 1996; Laporte et al., 2000). Following
internalization, GPCRs in intracellular vesicles are trafficked
via two primary pathways, as illustrated in Figure 7 (Gurevich
and Gurevich, 2006; Moore et al., 2007; Shenoy and Lefkowitz,
2011). Either the receptor is removed via sorting to degradation
compartments, or it is recycled back to the plasma membrane
where it can contribute again to G-protein signaling (Oakley
et al., 1999, 2000; Zhang et al., 1999; Bremnes et al., 2000;
Klein et al., 2001). Arrestins also mediate intracellular signaling
by acting as adapter proteins, notably modulation of protein
kinase cascades (Luttrell and Gesty-Palmer, 2010; Shenoy and
Lefkowitz, 2011; Peterson and Luttrell, 2017; Gurevich and
Gurevich, 2019b).

The specific events and pathways mediated by arrestin are
controlled by how the arrestin interacts with the GPCR. The
interaction is controlled by the pattern of phosphorylation of the
GPCR (the phosphorylation barcode) (Orsini et al., 1999; Oakley
et al., 2001; Tobin, 2008; Nobles et al., 2011; Pal et al., 2013;
Zhou et al., 2017; Sente et al., 2018; Baidya et al., 2020; Dwivedi-
Agnihotri et al., 2020; Latorraca et al., 2020) and also by the size
and sequence of the intracellular regions of the receptor that form
the binding site for arrestin (Oakley et al., 1999; Barak et al.,
2001; Thomsen et al., 2016; Chaturvedi et al., 2020). Arrestin
interacts with the intracellular face of the GPCR, engaging both
the C-terminal tail and the transmembrane core (Shukla et al.,
2014; Kang et al., 2015; Nguyen et al., 2019; Yin et al., 2019;

FIGURE 7 | Canonical mechanism of arrestin recruitment and subsequent

regulation of signaling events. The agonist-activated GPCR is phosphorylated

by kinase enzymes on intracellular regions. The phosphorylated GPCR then

recruits arrestin. This step blocks G-protein interaction and subsequent

signaling and is the canonical mechanism of receptor desensitization. The

receptor-arrestin complex is then internalized into endosomes via

clathrin-coated pits. Following internalization, the receptor is trafficked via two

primary pathways. Either the receptor is transported to lysosomes where it is

degraded or it is recycled to the plasma membrane where it can contribute

again to G-protein signaling.

Lee et al., 2020; Staus et al., 2020). The binding mechanism
has been correlated with the functions that arrestin mediates
via the GPCR. For example, tight binding has been associated
with internalization and prolonged localization in intracellular
compartments (the so-called Type A receptors), whereas looser
binding is correlated with shorter intracellular residence time
and recycling back to the plasma membrane (Type B receptor)
(Figure 7) (Oakley et al., 1999, 2000; Zhang et al., 1999; Bremnes
et al., 2000; Klein et al., 2001).

Evaluating Arrestin Mechanisms From the
Arrestin Recruitment Waveform
The time course curve shape, i.e., the waveform, of GPCR
signaling can reveal mechanistic insight into the processes of
signal transduction and the regulation of signaling events in
operation in the cell (Hoare et al., 2018, 2020b). In addition,
analyzing the waveform can allow the mechanisms to be
quantified kinetically, for example in terms of the rates of
the processes. In this study we applied this approach to
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arrestin recruitment waveforms. We found the waveform shape
differed between receptors and this could be accounted for
by different regulation pathways, for example degradation vs.
recycling. In addition, we identified and quantified the effect of
modulators of arrestin-receptor interaction, specifically GPCR
kinase (GRK) expression, and the grafting onto the GPCR of the
V2 vasopressin receptor tail. The new experimental and analysis
system developed in this study is designed to be straightforward
for investigators to use in studying their receptor systems
of interest.

In order to precisely evaluate the waveform, we sought an
experimental system, with minimal interference from technical
artifacts, that could be run for the time span necessary to properly
capture the waveform shape. The direct fluorescent arrestin-3
(β-arrestin 2) biosensor we developed previously is potentially
suitable for this application (Hoare et al., 2020a). Notably, it does
not involve the use of the unstable substrates that are employed
by BRET and luminescent protein complementation sensors that
can make it challenging to run these assays for extended periods
of time. However, we did need to minimize the baseline drift we
had observed in the MOR agonist characterization experiments
(Figures 3D,E). To do this, we utilized the BioTek Synergy
Mx reader, which enabled control of the stimulation/read
frequency. The time interval between stimulation/reads we
employed with this instrument was 20 s (compared with 2 s in the
MOR agonist characterization experiments on the FDSS/µCell
reader). This modification almost eliminated baseline drift, as
shown in Supplementary Figure 4. In a second modification,
we subtracted the baseline signal from the data before the
curve fitting analysis (Supplementary Figure 4). This was done
by subtracting baseline data from vehicle control wells run
in parallel in each experiment, as described in Materials and
Methods. The resulting waveform data was of exceptional
quality, with 290 data points spanning a time course of 97min
(Supplementary Figure 4). This enabled precise analysis of the
waveform by nonlinear regression (see below).

We evaluated five GPCRs–the V2 vasopressin receptor, β2
adrenoceptor, µ opioid receptor, NOP nociceptin receptor,
and glucagon-like peptide 1 (GLP-1) receptor. These receptors
were stimulated using vasopressin, isoproterenol, DAMGO,
nociceptin/orphanin FQ(1-13)NH2, and exendin-4, respectively.
A maximally-stimulating concentration of the agonist was used
(10µM) to enable the response to the fully-occupied receptor
to be evaluated. The high agonist concentration also ensures
agonist binding to the receptor is not rate limiting; at such
high concentrations the receptor is likely fully occupied within
seconds by the agonist (Hoare et al., 2020b). In these experiments
the arrestin recruitment was optimized by expression of GRK
enzymes in the HEK293T cells. In pilot experiments we
found arrestin recruitment was maximal when GRK2 was
overexpressed in the cells for the β2, MOR, NOP and GLP-1
receptors, but that recruitment to the V2 receptor was maximal
when there was no exogenous expression of GRKs (data not
shown). These were the conditions used for the waveform
analysis below.

The arrestin recruitment waveform for the five GPCRs is
shown in Figure 8. Different shapes of the waveform were

FIGURE 8 | Diversity of arrestin recruitment waveforms for GPCRs. The time

course was evaluated for five GPCRs in HEK293T cells, with recruitment

optimized by expression of GRK enzymes. Note the different shapes of the

waveforms. For the V2 vasopressin and µ opioid (MOR) receptors, the

waveform rapidly rose to a steady-state then slowly declined. The data were fit

best by a model that assumes recruitment followed by slow degradation,

representing the degradation pathway in Figure 7. For the GLP-1 and β2

adrenergic receptors, the waveform was a rise and fall to steady-state curve,

the recruitment rising rapidly, peaking, then falling back down to a steady-state

level. The data were fit best by a recruitment followed by recycling model,

representing the recycling pathway (Figure 7). For the NOP nociceptin

receptor the recruitment rose to a steady-state, the data described best by

simple recruitment (over the duration of the experiment). Data points are the

mean ± SEM of three technical replicates from a representative experiment,

with the curve fitting performed as described in Materials and Methods. GRK2

was expressed in the cells to maximize recruitment for all receptors except the

V2 receptor. The curves are the fits to the model that fit the data best

[recruitment and degradation model (Figure 9B) for V2 and MOR receptors;

recruitment and recycling model (Figure 9C) for GLP-1 and β2 receptors; and

recruitment alone model for the NOP receptor (Figure 9A)]. The curve fit

parameter values are in Table 3.

evident. For the V2 vasopressin receptor, reported to form
stable complexes with arrestin (a Type A receptor), the arrestin
recruitment waveform rapidly rose to a steady-state then slowly
declined (Figure 8). By contrast, for the β2 adrenoceptor,
reported to form transient, recycling complexes with arrestin (a
Type B receptor), the waveform was a rise and fall to steady-state
curve; the response rose rapidly, then peaked, then declined back
to a steady-state level that was above the baseline (Figure 8). This
difference suggests the different recruitment mechanisms of Type
1 and Type 2 receptors are manifest in the shape of the waveform.

We tested this more rigorously by deriving equations for
the different mechanisms and applying them to the data.
The equations used to analyze the data were derived from
macroscopic reaction models (Figure 9). This macroscopic
approach, frequently used in pharmacological modeling and
analysis, allows quantification of the processes in terms of
bulk rate constants and steady-state levels of recruitment,
using routine curve fitting software such as GraphPad Prism.
For example, we were able to quantify the observed arrestin
recruitment rate constant (kRobs) for all the waveforms, and the
degradation rate constant kD for the degradation waveform. The
limitation of the method is that it lacks the high mechanistic
resolution of more sophisticated approaches such as systems
biology analysis (Bridge et al., 2018); the individual steps in
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the mechanisms are not quantified and instead are incorporated
into macroscopic rates (Hoare et al., 2018, 2020b; Zhu et al.,
2019) (For example, receptor phosphorylation and subsequent
recruitment are amalgamated into a single rate constant, the
observed recruitment rate constant). Stable recruitment is
represented in Figure 9A where the arrestin binds the receptor
with no further regulation steps. In Figure 9B, the degradation
pathway is represented, where the complex forms and then
is degraded over time. Figure 9C shows a formulation of the
recycling mechanism where there is no degradation and instead
the receptor-arrestin complex can reform after breaking down.
The waveform data were analyzed with the equations derived
from these models (see Appendix for derivation), and the best
fit to the experimental data was determined statistically using
a partial F-test in Prism (Motulsky, 2021a), as described in
Materials and Methods. The V2 receptor data were fit best by
the degradation model (with no recycling over the duration of
the experiment), with rapid recruitment and slow degradation
(Figure 8, Table 3). By contrast, the β2 adrenoceptor data were
fit best by the recycling model (Figure 8, Table 3). These results
confirm that the different arrestin mechanisms postulated for
these receptors can be manifest as differences in the waveform
curve shape.

We next examined the three other receptors. For the
MOR receptor with GRK2, the arrestin recruitment waveform
resembled that of the V2 vasopressin receptor. The waveform
rose to a steady-state then slowly declined (Figure 8). The data
were fit best by the recruitment followed by degradation model
(Table 3). By contrast, for the GLP-1 receptor with GRK2, the
waveform was similar to that of the β2 adrenoceptor, being a
rise and fall to steady-state curve, with the data being fit best by
the recycling model (Figure 8, Table 3). For the NOP receptor
with GRK2, the extent of recruitment was lower than that of
the other receptors. The waveform was a rise to steady-state
curve and the data over the duration of the experiment were
fit best by a model that assumes recruitment to the receptor
without further regulation (Figure 8, Table 3). These findings
demonstrate a diversity of arrestin recruitment waveform types,
which can be rationalized by differences in the mechanisms
of post-recruitment events. These waveform shapes are also
apparent from visual inspection of numerous previous studies
of arrestin-receptor interaction (Charest et al., 2005; Violin
et al., 2006b; Nuber et al., 2016; Gillis et al., 2020a; Dijon
et al., 2021), suggesting they are a common feature of arrestin-
GPCR interaction.

Quantifying Arrestin Recruitment by
Analyzing the Waveform
The curve fitting also enables quantification of the rates of
the processes involved in the mechanisms, enabling these rates
to be compared between receptors. In order to compare rates
across different mechanisms, the models were formulated with
certain common parameters across the different mechanisms, as
illustrated in Supplementary Figure 5. The arrestin recruitment
rate was quantified in all three models as kRobs, the observed

FIGURE 9 | Mechanism schemes used to formulate the arrestin recruitment

equations. Simplified pharmacological models of arrestin recruitment and

subsequent regulation steps were formulated for analyzing the arrestin

waveform data, to evaluate the mechanism in operation and to enable

estimation of the macroscopic rates of the processes. These models employ a

previously-published conceptual framework (Hoare et al., 2018, 2020b). (A)

Arrestin recruitment model. EP is free arrestin, E is arrestin bound to the

receptor, RA is the receptor bound by the agonist, and kE the microscopic rate

constant for arrestin binding to the receptor. kR(obs) is the observed rate of

arrestin recruitment (equal to kE multiplied by the agonist-occupied receptor

concentration). (B) Arrestin recruitment and degradation pathway model.

Following recruitment, the complex is degraded, represented by formation of

the degraded product D, defined by the rate constant kD. (C) Arrestin

recruitment and recycling pathway model. Here the complex breaks down,

represented by formation of EI, governed by the rate constant kI. The complex

can then recycle, governed by the rate constant kC.

rate of recruitment. Here this rate is represented as a half-
time, which facilitates intuitive interpretation of the data
(The initial rate of recruitment could also be determined
but was not used here). It was also possible to quantify
the steady-state level of recruitment from all three models
(Supplementary Figure 5). For the recruitment only model, this
was the plateau of the waveform. For the degradation model,
this was the extrapolated maximal level of recruitment, and for
the recycling model this was the extrapolated maximal level
of the initial phase of recruitment, before recycling (illustrated
in Supplementary Figure 5). This steady-state level, referred
to as RecruitMax, provides an assessment of the affinity of
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TABLE 3 | Arrestin recruitment waveform quantification results.

Receptor Recruitment t½

(kR(obs) t½, min)

Maximal recruitment

(% change from

baseline)

Regulation

process

Degradation

t½ (kD t½, h)

Inactivation t½

(kI t½, min)

Recycling t½

(kC t½, min)

Va
2 2.5 ± 0.3 (2.0–2.9) 41 ± 3 (36–44) Degradation 27 ± 8 (14–43)

MOR 8.3 ± 1.5 (6.4–11) 8.0 ± 0.1 (7.8–8.2) Degradation 3.2 ± 1.3 (1.9–5.7)

MOR + GRK2a 2.0 ± 0.1** (1.9–2.2) 16 ± 2* (13–19) Degradation 2.8 ± 0.8NS (1.7–4.3)

MOR-V2 tail 1.8 ± 0.4** (1.3–2.5) 24 ± 2*** (22–27) Degradation 3.7 ± 0.5NS (3.0–4.8)

NOP 6.6 ± 2.6 (2.2–11) 1.8 ± 0.7 (0.5–3.0) Recruitment

NOP + GRK2a 3.5 ± 1.1NS (1.5–5.0) 2.1 ± 0.3NS (1.6–2.3) Recruitment

NOP-V2 tail 1.7 ± 0.3NS (1.2–2.0) 40 ± 2*** (35–42) Degradation 46 ± 33 (3–110)

β2 6.5 ± 0.7 (5.2–7.4) 19 ± 3 (16–26) Recycling 14 ± 2 (9–17) 16 ± 5 (7–26)

β2 + GRK2a 3.0 ± 0.2NS (2.6–3.3) 17 ± 1NS (16–20) Recycling 150 ± 100NS (10–330) 38 ± 7NS (26–51)

β2-V2 tail 6.9 ± 1.4NS (5.0–9.7) 36 ± 3* (29–39) Recruitment

GLP-1 2.7 ± 1.0 (1.8–4.6) 9.3 ± 0.6 (8.1–10) Recycling 31 ± 8 (19–46) 42 ± 5 (35–52)

GLP-1 + GRK2a 2.0 ± 0.3NS (1.6–2.5) 16 ± 2* (14–20) Recycling 33 ± 5NS (25–44) 110 ± 40NS (60–200)

GLP-1-V2 tail 3.5 ± 0.9NS (1.8–4.8) 14 ± 1NS (11–15) Degradationb 3.6 ± 0.1b (3.5–3.6)

The waveform data were analyzed using the three macroscopic mechanistic equations/models (recruitment only, degradation pathway, and recycling pathway, Figure 9) and the best

fit model determined statistically as described in Materials and Methods. Data values are the mean of values from three independent experiments. Maximal recruitment is the parameter

RecruitMax from the curve fitting, which is the plateau recruitment for the recruitment only model, and the extrapolated plateau for the other two models (see Supplementary Figure 5).

RecruitMax was expressed as a percentage change from baseline by multiplying the RecruitMax value from the fit by 100. Note the degradation t1/2 unit is hours whereas the other t1/2

values are in minutes. The effect of GRK2 expression and V2 tail grafting, relative to the wild type receptor expression alone, was tested statistically by single-factor ANOVA, followed

by Dunnett’s multiple comparisons test comparing GRK2 or V2 tail with wild type receptor alone. When only two of the three conditions were being compared a two-tailed t test was

used. NS, not significant (P > 0.05); *P < 0.05; **P < 0.01; ***P < 0.001.
aData for conditions used in Figure 8.
b In two of three experiments for the GLP-1-V2 tail the degradation model fit best whereas in one experiment the recruitment only model fit best. The degradation t1/2 data are from the

two experiments where the degradation model fit best.

the receptor-arrestin interaction. Finally, it was possible to
estimate the rates of the regulation process in the models
(kD, kI, and kC). The fitted parameter values are shown in
Table 3.

The recruitment half time and maximal recruitment were
reliably determined, with the inter-experimental variability of the
fitted parameter values (SEM / mean × 100) being <30% in
most cases (Table 3). The recruitment half time was similar for
all receptors under conditions optimized for GRK expression,
the t1/2 varying from 2.0 to 3.5min (Table 3, see rows marked
with superscript a). This timing of arrestin recruitment makes
sense biologically, being later than the timing of G-protein
activation, which proceeds within seconds of agonist binding [see
for e.g., Ferrandon et al. (2009)]. The half-time is also within
the timeframe of arrestin recruitment detected in numerous
previous studies (Charest et al., 2005; Violin et al., 2006b; Nuber
et al., 2016; Gillis et al., 2020a; Dijon et al., 2021). The maximal
recruitment level varied considerably between the receptors
optimized for GRK expression. Recruitment was highest for the
V2 vasopressin receptor (41% change from baseline) and lowest
for the NOP receptor (2.1 %) (Table 3, see rows marked with
superscript a). This finding suggests major differences of arrestin-
receptor affinity for the different receptors, a phenomenon that
is well-established [see for example (Oakley et al., 2000)]. The
quantitative analysis provided here enables these differences

to be enumerated. For example, the affinity of the arrestin-3
sensor for the V2 receptor is 20-fold higher than that for
the NOP receptor, in terms of the maximal recruitment value
(Table 3).

It was also possible in most cases to reliably quantify
the regulation parameters for the later steps of the model
mechanisms (Table 3). For the degradation model for the V2

vasopressin and MOR receptors, the degradation t1/2 was
estimated reasonably well with inter-experimental variability (%
CV) of ≤ 30%. Degradation for the V2 receptor was markedly
slow (27 h half-time) whereas that for the MORwas faster (2.8 h).
The value for the MOR receptor is within the range of receptor
degradation half-times reported for a broad panel of GPCRs
in HEK293 cells [0.7–2.8 h (Lee et al., 2021)]. The long half-
time for the V2 receptor might be a manifestation of the tight
arrestin binding impairing degradation. For the recycling model
for the β2 and GLP-1 receptors the regulation parameters are the
inactivation half-time and recycling half-time. Again, these were
estimated reasonably well (with the exception of the inactivation
half time for the β2 receptor where a wide range of values was
seen, Table 3). The half time for recycling was 38min for the β2
adrenoceptor (Table 3). This is in range of the reported half-time
for dephosphorylation of this receptor in HEK293 cells [∼23min
(Tran et al., 2007)]. For the GLP-1 receptor the recycling half-
time was slightly longer [110min, Table 3)].
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Effect of Modifiers of GPCR-Arrestin
Interaction on the Arrestin Recruitment
Waveform
Experimentally, the effect of modifying GPCR-arrestin
interaction on functional outcomes has been explored by
manipulating the recruitment interaction. This has been done by
replacing receptor sequences with higher-affinity determinants
of arrestin interaction, notably substituting the C-terminal tail
of the GPCR with that of a receptor that stably interacts with
arrestin, e.g., the V2 vasopressin receptor (Oakley et al., 1999,
2000; Zhang et al., 1999; Pal et al., 2013; Thomsen et al., 2016).
In addition, the strength of arrestin-receptor interaction and
functional consequences can be manipulated by modifying
the expression of GRK subtypes (Kim et al., 2005; Ren et al.,
2005; Violin et al., 2006b), which presumably modifies receptor
phosphorylation. Here the effect of these manipulations on the
arrestin recruitment waveform was evaluated, to determine
whether changes in the interaction could be manifest as changes
of the shape of the waveform and changes of the rates of
the processes.

We first evaluated the effect of substituting the C-terminal
tail of the GPCRs with that of the V2 vasopressin receptor, as
described (Oakley et al., 2000). The last 29 C-terminal amino
acids of the V2 receptor were substituted into the β2, GLP-1,
MOR and NOP receptors (see Materials section in Materials and
Methods). In this experiment, the waveform for the wild-type and
V2 tail receptors was measured in the absence of exogenous GRK
enzyme expression in the cells. This was done because GRK2
expression decreased the signal for the V2 receptor and for V2

tail receptors (data now shown). The results clearly show the V2

tail determined the waveform shape (Figure 10). For the β2 and
GLP-1 receptors, the V2 tail changed the shape from a rise and fall
to steady-state curve (wild type control) to a rise to steady-state
curve (V2 tail, Figures 10A,B, Table 3) (For the GLP-1 receptor,
there was a slow decline after reaching the plateau, Figure 10B).
This shape is similar to that of the V2 receptor (Figure 8). When
fit to themechanistic equations, the V2 tail changed the waveform
from the recycling model to the recruitment only model (β2
receptor) or the degradation pathway model (GLP-1 receptor).
The V2 tail also substantially increased maximal recruitment
for the β2 receptor (from 19 to 36%, Table 3), suggesting an
increased affinity of the arrestin-receptor interaction. There was
also a numerical increase of maximal recruitment for the GLP-
1 receptor, but the difference was not statistically significant
(Table 3).

For MOR and NOP receptors, the V2 tail did not change
the shape of the waveform, as expected since for all three
wild-type receptors the waveform shape was similar (V2 in
Figure 8, MOR and NOP in Figures 10C,D). However, the V2

tail did substantially increase maximal recruitment for MOR
and NOP receptors (Figures 10C,D, Table 3), suggesting an
increased affinity of the interaction. The rate of recruitment
(recruitment half-time) was not significantly affected by the V2

tail for β2, GLP-1, and NOP receptors (Table 3), suggesting
the increased maximal recruitment for these receptors was
a result of a slower rate of dissociation of the complex,

a mechanism invoked previously (Oakley et al., 2000). This
analysis of the waveforms provides supporting evidence that the
arrestin–receptor C-terminal tail interaction is a determinant
of the strength and regulatory mechanism of GPCR-arrestin
interaction, as proposed previously (Oakley et al., 1999, 2000;
Zhang et al., 1999; Pal et al., 2013; Thomsen et al., 2016). The
analysis also provides quantitative insight into the magnitude
of the effects. For example, the effect of the V2 C-tail on
maximal recruitment, presumed to reflect the affinity for arrestin,
varied from 1.5-fold for the GLP-1 receptor to 22-fold for the
NOP receptor.

We next evaluated the effect of phosphorylation on the
arrestin recruitment waveform by differential expression
of GRKs. Recruitment was compared with and without
transduction of GRK2, which was found in pilot experiments
to be the GRK subtype that most affected arrestin recruitment
for the receptors under test (data not shown). The effect of
GRK2 was different from that of the V2 tail in that GRK2
expression did not change the shape of the waveform but instead
changed either the rate of recruitment and/or the maximal
recruitment for most of the receptors (Figure 10, Table 3).
This was most evident for the MOR receptor (Figure 10C)
where GRK2 expression significantly increased both the
rate (manifest as a reduced half-time) and the maximal
recruitment (Table 3). For the GLP-1 receptor, GRK2 expression
significantly increased the maximal recruitment. For β2 and
NOP receptors the recruitment half-time was reduced by GRK2
expression but the difference was not statistically significant
(Table 3).

This increased rate and extent of recruitment upon GRK
expression and/or receptor phosphorylation has been observed
previously (Wilden et al., 1986; Gurevich et al., 1993; Sohlemann
et al., 1995; Violin et al., 2006b) and can be readily
explained by the mechanism of recruitment (Figure 7). In
the canonical mechanism, receptor phosphorylation precedes
arrestin binding and phosphorylation is the rate limiting step.
The effect on the rate of recruitment can then be explained
simply by mass action, by the presumably greater amount
of receptor kinase activity resulting from GRK2 expression
resulting in an increased rate of receptor phosphorylation
and subsequent arrestin recruitment. Receptor phosphorylation
also increases the affinity of receptor-arrestin interaction
and this was manifest in the case of MOR and GLP-
1 receptors as an increase of the maximal recruitment
(Table 3).

Summary
In this study we demonstrated that measuring and analyzing the
waveform for arrestin recruitment could indicate mechanisms
of arrestin function and enable the kinetics to be rigorously
quantified. This required two advances. First, an assay was
required that could be run for sufficient time for the whole
waveform to be captured (90min) and this was achieved using a
very bright direct fluorescent biosensor which did not require the
use of unstable light-generating substrates. Careful control of the
plate reader settings, particularly the stimulation/read frequency,
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FIGURE 10 | Effect of arrestin recruitment and function modifiers on the arrestin recruitment waveform. The strength and mechanism of arrestin recruitment can be

affected by the sequence of the receptor, particularly the C-terminal tail, and by expression of receptor kinase enzymes, assumed to modulate receptor

phosphorylation. This was explored by grafting the V2 vasopressin receptor C-tail onto the receptors, a determinant of high-affinity, stable arrestin interaction, and by

expression of GRK2, as described in Materials and Methods. (A) β2 adrenoceptor. (B) GLP-1 receptor. (C) µ opioid receptor. (D) NOP nociceptin receptor. Data

points are the mean ± SEM of three technical replicates from a representative experiment. The curves are fits to the arrestin recruitment equations and the specific

arrestin model/equation curve type is listed in Table 3.

minimized photobleaching, and the resulting waveform was of
exceptional quality. The second advance was the development
of equations for analyzing the data. These new equations enable
macroscopic evaluation of the different arrestin recruitment and
functional mechanisms and can be applied to the data in familiar
curve fitting software (e.g., GraphPad Prism). The waveform
analysis provided confirmatory evidence for the hypothesis of
varying strengths and mechanisms of arrestin interaction with
the different GPCRs, and how these properties are affected
by the C-terminal tail and by receptor kinase expression. The
waveform analysis enables these differences to be quantified
in terms of intuitive parameters, such as the recruitment
half-time, maximal recruitment, and degradation or recycling
half-times. This provides an advance over previous, largely
qualitative studies that relied on visual inspection of the data
in most cases [with some exceptions, e.g., Oakley et al. (2000)].
The assay and analysis described here will facilitate future

quantitative research on the dynamics of arrestin recruitment
and function.

SUMMARY AND CONCLUDING REMARKS

In this study we have developed systems to quantify the signaling
kinetics of GPCRs involved in important drug and receptor
responses in the nervous system, including the opioid and
CB1 receptor, and arrestin recruitment by numerous nervous
system GPCRs. These systems can be applied in future studies
to measure signaling kinetics. Notably, the present studies were
conducted using transfected cells (HEK293 and AtT20) and
the approach developed here has not been formally applied
to the receptors in their native environment, e.g., in neurons.
Experimental conditions necessary to apply the analysis are often
not employed in biosensor experiments performed on neuronal
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and other native cells. Frequently in experiments using these
cell types the agonist is applied for a short time and then
washed out before the waveform has been properly defined. The
analysis method presented in this study requires the continuous
application of the agonist and for the signal to be recorded
long enough for the curve shape to be defined rigorously. Other
technical aspects to be considered are the temperature; in the
biosensor experiments in this study room temperature (21–22◦C)
was used for technical convenience but the dynamics are likely
to be temperature dependent. Finally, the amount of sensor
needs to be titrated to ensure sufficient signal but without signal
saturation, as described previously (Hoare and Hughes, 2021).

New fluorescent biosensors are being discovered at a
remarkable rate. They provide us with exciting, real time views of
signaling that until now were studied with end point assays. They
also reveal entirely new cellular phenomena such as the recent
discovery of phase transitions in the cytosol (Hyman and Simons,
2012; Watanabe et al., 2017; Zhang et al., 2021a). These new
views come with new challenges. In the field of Ca2+ signaling,
for example, the combination of transgenic animals and the
biosensors drove the innovation behind new kinds of microscopy
and circuit analysis (Ahrens et al., 2013; Sofroniew et al., 2016).
Now that it is possible to measure and follow real time GPCR
signaling throughmultiple pathways, the next challenges are how
to collect the relevant kinetic data over the correct time and space
scales, and most importantly, how to extract meaning from these
new, very rich data sets.

MATERIALS AND METHODS

Materials
The cDNA for the β2 adrenergic, GLP-1, MOR, NOP, and V2

vasopressin receptors, and the cDNA for GRK2, was obtained
from the cDNA Resource Center (Bloomsburg University,
Bloomsburg, PA). In some experiments receptors modified to
include the C-terminal tail of the V2 vasopressin receptor were
used. This involved substituting the last C-terminal residues with
the last 29 C-terminal residues of the V2 receptor (Oakley et al.,
2000) (last 72 amino acids of the β2 adrenoceptor, and the last 29
amino acids of the MOR, NOP and GLP-1 receptors). DAMGO,
met-enkephalin, endomorphin-2, morphine, hydromorphone,
oxymorphone, fentanyl, buprenorphine, vasopressin, N/OFQ
and exendin-4 were all obtained from Cayman Chemical (Ann
Arbor, MI). Isoproterenol was from Millipore Sigma.

Biosensor Assays for Quantifying µ-Opioid
Receptor cAMP Signaling and Arrestin
Recruitment
Genetically-encoded biosensors in the BacMam expression
system were used to measure cAMP inhibition and arrestin
recruitment via the µ opioid receptor. The sensors have been
described previously (Green Downward cADDis for cAMP
(Tewson et al., 2016, 2018), and the arrestin-3 (β-arrestin 2)
sensor (Hoare et al., 2020a). The experiments were conducted
in HEK293T cells transduced with the receptor and each sensor
individually (i.e., one batch of cells with receptor and the cAMP

sensor and a separate batch with receptor and arrestin sensor).
HEK 293T cells were cultured in Eagle’s minimum essential
media (EMEM) supplemented with 10% fetal bovine serum and
penicillin-streptomycin at 37 ◦C in 5% CO2. One day before
the transduction, HEK293T cells were seeded at a density of
8,000 cells/well in a volume of 50 µL on a Greiner CELLCOAT
384-well-black, clear-bottomed plate (Greiner Cat # 781946,
Millipore Sigma).

The next day, cells were transduced with either the Green
Downward cADDis or β-arrestin sensor BacMam stocks. To
prepare the transduction mixture, the BacMam containing the
cADDis or arrestin-3 sensor and the indicated receptors, 2mM
sodium butyrate, and EMEM were combined in a final volume
of 50 µL. For each cADDis experiment, 1.8 × 108 viral genes
of cADDis virus and 5.9 × 107 viral genes of MOR virus were
added to each well. For each arrestin experiment, 6.7 × 107 viral
genes of arrestin virus, 2.0 × 107 viral genes of GRK2 virus and
7.0 x 107 viral genes of MOR virus were added to each well. The
transduction mixture was then added to the 384-well-plate (50
µL/well) and incubated for∼24 h at 37◦C in 5 % CO2.

The assays were performed at room temperature (21–22◦C).
Prior to fluorescence plate reader experiments, the media in
each well was replaced with 35 µL of Dulbecco’s phosphate
buffered saline (DPBS) supplemented with Ca2+ (0.9mM) and
Mg2+ (0.5mM). This was done 60min prior to the cAMP
experiment and 30min prior for the arresin experiment. For the
cAMP assay, cells were pre-incubated with 20µM forskolin for
∼50min before application of MOR agonists, a time interval
sufficient for a steady-state plateau level of cAMP to be reached
[see Figure 5 of Hoare and Hughes (2021)]. Test compounds
were prepared and serially diluted in the appropriate vehicle
(water for met-enkepahalin and endomorphin 2, and DMSO for
DAMGO, morphine, hydromorphone, oxymorphone, fentanyl
and buprenorphine). The serial dilution factor was 4.64 and
the final DMSO assay concentration was 0.1%. Fluorescence
plate reader experiments were performed on the Hamamatsu
FDSS/µCell Functional Drug Screening System (Hamamatsu
Photonics). The green fluorescence detection was recorded
using 470 nm excitation and 540 nm fluorescence emission.
Baseline fluorescence prior to application of the agonist was
recorded for 4min, then MOR agonists were applied to all
wells simultaneously in a volume of 10 µL using the on-
board automated dispensing system. All wells were scanned
simultaneously, with the exposure time for the cADDis sensor
being 0.36 to 0.4 s, while the exposure time for the arrestin sensor
was 0.64 to 0.71 s. Each scan was performed every 2 s. Every
fifth data point was used in the data analysis, corresponding to
a time point interval in the analysis of 10 s. This represented
a reasonable trade-off between precision and data file size.
Duplicate technical replicates were used.

Biosensor Assay for Measuring Arrestin
Recruitment Waveform for Various
Receptors
The fluorescent arrestin-3 (β-arrestin 2) sensor (Hoare et al.,
2020a) was used to investigate the shape of the waveform for
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a variety of receptors. The experiments were conducted in
HEK293T cells using the BacMam expression system. Cells were
transduced with the receptor of interest, the arrestin sensor,
and in some cases the kinase GRK2. HEK 293T cells were
cultured in EMEM supplemented with 10% fetal bovine serum
and penicillin-streptomycin at 37 ◦C in 5 % CO2 For BacMam
transduction, cells were resuspended in media at a density of
52,000 cells per 100 µL. 100 µL of this suspension was combined
with BacMam containing the arrestin-3 sensor, receptor, 2mM
sodium butyrate, and EMEM in a final volume of 150 µL per
well. In some cases, GRK2 was also added. The receptors tested
were the V2 vasopressin receptor, β2 adrenoceptor, µ opioid
receptor, NOP nociceptin receptor, and GLP-1 receptor. Each
well-received 3.0 × 108 viral genes of the arrestin sensor, 4.5
× 108 viral genes of the receptor, and 1.2 × 108 viral genes
of GRK2, if included. The cell/transduction mixture was then
seeded into Greiner CELLCOAT 96-well-black, clear-bottomed
plate (Greiner cat # 655946, Millipore Sigma) and incubated for
24 h at 37 ◦C in 5% CO2.

The assays were performed at room temperature (21–22◦C).
Prior to fluorescence plate reader experiments, the media in each
well was replaced with 150 µL of DPBS supplemented with Ca2+

(0.9mM) and Mg2+ (0.5mM). This was done 30min before the
experiment. Test compounds were prepared in the appropriate
vehicle - isoproterenol in 10mM HCl for the β2 adrenoceptor,
vasopressin in water for the V2 receptor, DAMGO in DMSO for
the MOR, N/OFQ in water for the NOP receptor, and exendin-
4 in DPBS for the GLP-1 receptor. Vehicle was diluted 1,000-fold
into the assay. Amaximally-effective concentration of the ligands
was employed (10µM in all cases). Three technical replicates
were employed for the agonist condition and two replicates used
for the vehicle condition. The appropriate vehicle was run in each
assay and was used to correct the fluorescent signal (see below).

Fluorescence was measured in the BioTek Synergy Mx reader
(Agilent). Green fluorescence detection was recorded every
20 s using 488/20 nm excitation and 525/20 nm fluorescence
emission. Following recording of baseline fluorescence for 6min,
agonist was added manually with a multichannel pipette in a
volume of 50 µL and the fluorescence recorded for an addition
90 min.

Membrane Potential Assay for the CB1

Receptor
Time course data for the reduction of membrane potential
stimulated by CB1 receptor ligands is from Sachdev et al. (2019).
This response was measured in AtT20 cells stably transfected
with the human CB1 receptor. The change in membrane
potential is mediated by endogenous GIRK channels in the
cells, likely activated by the G-protein βγ dimer released from
G-protein following activation by the agonist-bound receptor
[reviewed in Sachdev et al. (2019)]. The level of receptor
expression was reduced to maximize the window for detecting
differences of agonist efficacy for activation of this signaling
pathway. This was done by treating the cells with the irreversible
antagonist AM6544 as described (Sachdev et al., 2019). Changes
in membrane potential were measured using the fluorometric

imaging plate reader (FLIPR) membrane potential (blue) assay
kit (Molecular Devices) at 37 ◦C as previously described
(Knapman et al., 2013; Sachdev et al., 2019). A maximally-
effective concentration of the agonist was used (see Table 2 for
concentration values).

Data Handling
The raw fluorescence measurement recorded by the plate readers
was fluorescence intensity, in units of relative light units. These
raw data were normalized to the baseline response prior to
application of the agonist, as described (Hoare and Hughes,
2021). This approach is commonly used for fluorescent readouts
of signaling activity and provides an ideal intra-well-control,
minimizing well-to-well variability of the signal readout resulting
from slight differences in the amount of sensor or the number of
cells. All experiments were designed with a baseline run in period
where the baseline fluorescence in the well was measured prior
to activation of signaling by application of the GPCR agonist
(see for example Figure 1B). The mean fluorescence intensity
value of this baseline run-in period was used as the baseline
value and the fluorescence intensity value at each time point
was divided by this value. This yielded the baseline-normalized
fluorescence value. This value was used for the membrane
potential measurements for the CB1 receptor. A second step was
performed for the downward cADDis sensor for cAMP and for
the arrestin sensor. Binding of cAMP to the cADDis sensor and
binding of receptor to the arrestin sensor results in a decrease
in fluorescence intensity of the biosensor. For these data, the
baseline-normalized value was inverted by subtracting it from
2, as described (Hoare and Hughes, 2021). This results in the
directionality of the normalized fluorescence value being the
same as that of the signaling analyte or event being detected.

For the arrestin sensor recruitment measured using
the BioTek Synergy Mx reader the baseline fluorescence
measured using a vehicle control was subtracted from
the agonist-stimulated fluorescence, as illustrated in
Supplementary Figure 5. This was done using the “Remove
baseline and column math” functionality of GraphPad Prism
(Motulsky, 2021b). In this procedure, the vehicle time course was
assumed to be linear and the vehicle data were fit to a straight
line function. For each time point the vehicle value was then
calculated from the straight line fit parameters and this value
was then subtracted from the agonist value, to give the vehicle
and baseline-normalized fluorescence value (Y axis value in
Figures 8, 10).

Curve Fitting and Calculation of Initial Rate
General
Time course data were analyzed using user-defined
custom equations in GraphPad Prism. These have been
made freely available for other investigators to use at the
following location: https://drive.google.com/drive/folders/
1F5Qlyi30a3VNu9ZzCTKuTCDEmH6B4rdX?usp=sharing. A
user guide is provided in the file, “Custom time course equations
background info” at this location. We have also created a training
workshop, available here: https://youtu.be/_Pb7Sq6lZIY. The
equations can be easily loaded automatically from template files,
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avoiding the need to manually enter the equation, and these
template files also contain the default initial value calculations
and constraints. This process of equation loading is described in
the file, “Guide for loading equations into Prism from a file.” The
template files can be found at the location given above.

µ Opioid cAMP Inhibition and Arrestin Recruitment

Time Course Data Analysis
TheMOR cAMP inhibition data were analyzed with the equation
“Baseline then fall to steady state with drift” which is:

Y = IF

(

X < X0, Baseline+ Drift× X,

YS+ Drift× (X− X0) − SteadyState×
(

1− e−K×(X−X0)
)

)

where:

YS = Baseline+ Drift × X0

Y is the baseline-normalized fluorescence signal, X is time, X0 is
the signal start time after the application of agonist, Baseline is
the response level at the beginning of the fluorescence recording
in the reader, Drift is the gradient of the baseline drift (in units
of Y units per unit time), SteadyState is the final effect level at
infinite time produced by ligand below the baseline, and K is the
observed rate constant, which defines the timeframe over which
the cAMP inhibition occurs and is related to the half-time of the
response (t1/2 = 0.693 / K). The initial rate of the response was
calculated automatically as part of the fitting procedure in Prism,
using the formula: Initial rate= SteadyState× K.

The MOR arrestin recruitment data were analyzed with the
equation “Baseline then rise to steady state with drift” which is:

Y = IF

(

X < X0, Baseline+ Drift× X,

YS+ Drift× (X− X0) + SteadyState×
(

1− e−K×(X−X0)
)

)

where the parameters are defined as described above for the
cAMP inhibition analysis. The initial rate of the response was
calculated automatically as part of the fitting procedure in Prism,
using the calculation Initial rate= SteadyState× K.

CB1 Membrane Potential Time Course Data Analysis
The CB1 membrane potential time course data for all ligands
except THC were analyzed with the equation “Baseline then fall
to steady state time course” which is,

Y = IF

(

X < X0, Baseline,

Baseline− SteadyState×
(

1− e−K×(X−X0)
)

)

where the parameters are defined as described above for the
cAMP inhibition analysis. In the CB1 membrane potential
experiment, there was a significant injection artifact manifest as
a small, immediate drop in the normalized fluorescence signal
in the vehicle and THC-treated cells (Figure 5). For the vehicle,
this was analyzed using the following step-function equation to
quantify the magnitude of the drop:

Y = IF

(

X < X0, Baseline,
Baseline− Step+ Gradient × (X− X0)

)

where Step is the magnitude of the immediate normalized
fluorescence signal change on application of the vehicle, and
Gradient is the change of the vehicle response over time after X0.
The value of Step was highly reproducible between experiments
(ranging from 4.2 to 5.0 RFU, n= 6, see Supplementary Material

“CB1 hyperpolarization time course fit results”).
For THC the response was relatively small and slow compared

with the other ligands and as a result the injection artifact was
evident in the time curve shape (Figure 5). For this ligand an
equation was used that combined the injection artifact and the
pharmacological effect of the agonist on membrane potential:

Y = IF

(

X < X0, Baseline,

Baseline− Step− SteadyState×
(

1− e−K×(X−X0)
)

)

The initial rate of membrane potential reduction was calculated
as follows, for all ligands except THC. First, the SteadyState value
from the curve fit was corrected for the injection artifact. This
was done by subtracting the mean Step value of the vehicle (4.4
%) from the fitted SteadyState value. The corrected SteadyState
value was then combined with the K value from the curve fit
to determine the initial rate, using the formula: Initial rate =

SteadyState(Corrected) × K. For THC, the SteadyState value fitted
from the curve fit equation used was already corrected for the
injection artifact so the initial rate was calculated using the
standard equation, Initial rate= SteadyState× K.

Arrestin Recruitment Waveform Analysis
Thewaveform of arrestin recruitment was analyzed for numerous
GPCRs under a variety of conditions. The time course data were
fit to the arrestin recruitment time course equations described in
the Appendix. In order to assess which model/equation fit the
data best, a statistical procedure was used. The data were fit to the
equations and the equation that fit the data best was determined
using a partial F-test, using the “Compare” function in the “Non-
linear regression” module of GraphPad Prism (Motulsky, 2021a).

The arrestin recruitment equations were entered as user-
defined equations in GraphPad Prism. A Prism template file
containing the equations is available from the authors on request.
The “Arrestin recruitment” (Figure 9A) equation is,

Y = IF

(

X < X0, Baseline,

Baseline+ RecruitMax×
(

1− e−KRobs×(X−X0)
)

)

The “Arrestin recruitment and degradation” (Figure 9B)
equation is,

Y = IF

(

X < X0, Baseline,

Baseline+ InitialRate
KRobs−KD

×

(

e−KD×(X−X0) − e−KRobs×(X−X0)
)

)

The “Arrestin recruitment and recycling” (Figure 9C)
equation is,

Y = IF
(

X < X0, Baseline, Baseline

+
Initial rate × KC

KRobs (KC+ KI)

[

1−
KC+ KI

KC+ KI− KRobs
e−KRobs×(X−X0)

+
KRobs

KC+ KI− KRobs
e−(KC+KI)×(X−X0)

]

+
Initial rate

KC+ KI− KRobs

(

e−KRobs×(X−X0)
− e−(KC+KI)×(X−X0)

)

)
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Y is the baseline- and vehicle-normalized fluorescence signal,
X is time, X0 is the signal start time after the application
of agonist, Baseline is the response level before application of
agonist, RecruitMax is the change of fluorescence stimulated by
the agonist at infinite time, kRobs is the observed rate of arrestin
recruitment, Initial rate is the initial rate of recruitment, kD is the
degradation rate constant of the degradation model, and kI and
kC are the inactivation and recycling rate constants, respectively,
of the recycling model. For reporting purposes the rate constant
were converted to half times. This was done by dividing ln 2
(0.693) by the rate constant value.

From the degradation and recycling models the extrapolated
steady-state level of arrestin recruitment of the first, rising
phase of the time course (RecruitMax) was calculated
(Supplementary Figure 5). This was done using the
following equation:

RecruitMax =
InitialRate

KRobs

This equation is the limit of the degradation and recyling
equations when kD, kC and kI are set to zero and time is set
to infinity (illustrated in Supplementary Figure 5). RecruitMax
from the fit, where the Y axis is baseline and vehicle-normalized
fluorescence, was converted to % change from baseline by
multiplying the fit value by 100.

Statistical Analysis
Differences of fitted parameter values between different
conditions were tested statistically by single factor ANOVA,
followed by the Dunnett multiple comparison test comparing
the test conditions to the relevant control. When two conditions
were being compared a two-tailed t-test was used. Statistical
analysis was performed using GraphPad Prism.
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