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Abstract: Depression is a debilitating mood disorder with highly heterogeneous pathogenesis. The
limbic system is well-linked to depression. As an important node in the limbic system, the lateral
septum (LS) can modulate multiple affective and motivational behaviors. However, the role of LS in
depression remains unclear. By using c-Fos expression mapping, we first screened and showed activa-
tion of the LS in various depression-related behavioral tests, including the forced swim test (FST), tail
suspension test (TST), and sucrose preference test. In the LS, more than 10% of the activated neurons
were somatostatin-expressing (SST) neurons. We next developed a microendoscopic calcium imaging
method in freely moving mice and revealed that LSSST neural activity increased during mobility in
the TST but not open field test. We hypothesize that LSSST neuronal activity is linked to stress and
depression. In two mouse models of depression, repeated lipopolysaccharide (LPS) injection and
chronic restraint stress (CRS), we showed that LS neuronal activation was suppressed. To examine
whether the re-activation of LSSST neurons can be therapeutically beneficial, we optogenetically
activated LSSST neurons and produced antidepressant-like effects in LPS-injected mice by increasing
TST motility. Moreover, chemogenetic activation of LSSST neurons increased FST struggling in the
CRS-exposed mice. Together, these results provide the first evidence of a role for LSSST neurons in
regulating depressive-like behaviors in mice and identify them as a potential therapeutic target for
neuromodulation-based intervention in depression.

Keywords: neural activity; GABAergic neurons; depression; calcium imaging; limbic system

1. Introduction

The pathophysiology of depression is associated with several brain systems. Identi-
fication of the brain regions and neural circuits for depression can provide mechanistic
insights that facilitate the development of therapeutics. Decades of research have made
substantial progress in uncovering the neural mechanisms of depression [1–3]. For instance,
both clinical and basic studies suggest a crucial role of the limbic system in the regulation
of depression [4,5]. Structural and functional alterations in multiple regions of the limbic
system have been found in patients with major depressive disorder (MDD) [6,7]. A series
of studies demonstrate that limbic dysfunction in depression can be normalized by an-
tidepressant treatment [8–10]. In addition, increasing evidence shows that target-specific
manipulation of the limbic circuit improves depressive-like behaviors in rodents [11], yet
we lack a complete understanding of how the limbic pathway contributes to depression.

The septal nucleus (or septum) is an important node of the limbic system linking the
hippocampus with the hypothalamus and midbrain regions such as the ventral tegmental
area (VTA) [12]. The LS is the main division of the septal nucleus. It is characterized
by densely populated GABAergic inhibitory neurons [13]. Depending on the distinct
anatomical location and functional connections, the LS can be further divided into three
subdivisions, including the dorsal (dLS), intermediate (iLS), and ventral (vLS) regions. As
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each subdivision receives complex intra- and extra-septal inputs and projects to a wide
range of brain regions, the function of LS remains poorly understood.

Previous studies showed that the LS is involved in multiple motivational processes
and emotional states [14]. Most of these studies focused on identifying key LS pathways
in regulating behaviors, such as locomotion [15,16], anxiety [17–23], fear [24–28], aggres-
sion [29–35], reward processing [36–41], feeding [42–49], and sociality [50–55]. However,
the role of LS in depression remains unclear.

Stress is one of the most common risk factors for depression [56]. The LS has been
implicated in stress responses [57]. Moreover, both clinical and animal studies suggest
that LS plays a role in depression. LS hypotrophy is involved in depression, and neuronal
density in the LS tends to decrease with MDD progression [58]. Animal studies have shown
that antidepressant drugs can increase LS neural activity [59–62]. A recent study shows
that LS GABAergic (LSGABA) neurons regulate depression-related behaviors through their
projections to the periaqueductal gray [63]. However, it is unclear how different neuronal
subpopulations of the LSGABA neurons contribute to depression regulation.

In the mammalian brain, inhibitory interneurons can be subdivided by their mor-
phology, physiological properties, and peptide/protein expression [64]. Somatostatin-
expressing (SST) GABAergic neurons can provide powerful inhibitions in both local and
long-range brain networks [65]. Evidence suggests that somatostatin deficits are involved
in depression pathophysiology [66,67]. MDD patients show reduced SST neurotransmis-
sion [68]. Loss of SST neurons has been found in the hippocampus of individuals with
bipolar disorder [69]. In the LS, SST neurons (LSSST) are a primary subtype of GABAergic
neurons [70]. However, whether LSSST neurons play a role in depression is not clear.

In this study, we investigated whether and how LSSST neurons regulate depressive-like
behaviors in mice. Using c-Fos expression mapping, we found that the LS was robustly
recruited by multiple stressful depression-related behavioral tests. Using in vivo calcium
imaging in freely behaving mice, we then identified that LSSST neuronal population ac-
tivity was strongly elevated during mobile states in the TST, a typical behavioral test for
measuring depressive-like behaviors in mice. We next found that optogenetic activation of
LSSST neurons exerts antidepressant-like effects in the LPS-induced depressive-like mice.
In the CRS model, chemogenetic activation of LSSST neurons also reduced depressive-like
behaviors in the forced swim test. Taken together, our study suggests that SST-expressing
neurons in LS are an important functional component in the limbic system that regulates
depressive-like behaviors in mice.

2. Materials and Methods
2.1. Animals

SST-Cre mice (013044, The Jackson Laboratory, Sacramento, CA, USA) and GCaMP6s
mice (Ai162, 031562, The Jackson Laboratory, Sacramento, CA, USA) were used in this
study. For the calcium imaging experiments, homozygous SST-Cre mice were crossed
with heterozygous GCaMP6s mice to generate G6;SST mice. Genotyping protocols for
identifying heterozygous G6;SST mice were based on the suggested protocol for GCaMP6s
genotyping from the Jackson Laboratory and a previously described procedure [71]. Mice
were bred and maintained at the Laboratory Animal Research Unit (LARU) under con-
trolled environmental conditions (12 h dark/light cycle, light on/off at 08:00/20:00, food
and water ad libitum). All animal experiments have been approved by the LARU and were
conducted in accordance with guidelines from the Animal Research Ethics Sub-Committees
of the City University of Hong Kong and the Department of Health of the Hong Kong SAR
government.

2.2. Drugs

The clozapine N-Oxide (CNO, 34233-69-7, Tocris, Bristol, England, UK) was dissolved
in vehicle (0.9% sterilized saline). Either vehicle or CNO (3 mg/kg) was administered
intraperitoneally (i.p.) one hour before each behavioral test.
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2.3. Chronic Stress-Induced Mouse Models of Depression

For the inflammation-based mouse model of depression [72], LPS (L2880, Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in 0.9% sterile saline (LPS working solution,
0.25 mg/mL). Adult mice were injected with LPS (0.75 mg/kg) or saline (i.p.) once daily
(0.06–0.09 mL of LPS working solution or saline for 20–30 g adult mice for each injection) be-
tween 10:00 to 12:00 daily for 1 week. For the CRS-based mouse model of depression [73],
mice were restrained in the ventilated 50 mL Falcon tubes (with 16 3.5 mm air vents at
the wall and one 2.0 mm air vent at the nasal end of the tube) for 6 h per day during the
light cycle. Mice were able to move their head and body but could not escape. During the
restraint, animals had no access to food and water or social interaction. Behavioral assays
were performed 24 h after the last LPS injection or restraint stress.

2.4. Open Field Test

The open field test (OFT) was based on a previously described procedure [74]. In brief,
mice were randomly placed in one corner of the behavioral box (50 cm × 50 cm × 40 cm
LWH) with light (400 lux) and allowed to explore freely for 10 min. A top camera above the
box was used to record the mouse’s movement. The total distance and time spent in the
center of the arena (25 cm × 25 cm) were analyzed using Toxtrac software v1.0 by tracking
the mouse centroid [75].

2.5. Tail Suspension Test

The TST was based on a previously described procedure [76]. Briefly, mice were
suspended by their tails secured with tape for 6 min in a behavior box with dim light
(100 lux). Each mouse was placed in its own three-walled area without visual contact. A 3D-
printed white hollow tube (4 cm length, 1.5 cm outer diameter, 1.3 cm inner diameter) was
used to cover the distal part of the tail to prevent climbing during the test. A side camera
was placed in the behavior box to record the mouse’s movement. Mouse speed was
measured by Toxtrac software v1.0 by tracking the mouse centroid [75]. Total immobility
time (speed ≤ 0.5 cm/s) or struggling time (speed > 5 cm/s) was counted during the last
4 min.

2.6. Forced Swim Test

The FST was based on a previously described procedure [77]. Mice were introduced to
a cylindrical container (22 cm inner diameter, 20 cm depth) filled with 10 cm-deep tap water
(22–24 ◦C) and allowed to swim for 6 min. A top camera above the behavior box was used
to record the mouse’s movement. Mouse speed was analyzed by Toxtrac software v1.0 [75].
Total immobility time (speed ≤ 1.25 cm/s) or struggling time (speed > 6.25 cm/s) was
counted during the last 4 min.

2.7. Sucrose Preference Test

For the sucrose preference test (SPT) [78], mice were habituated for 48 h to 1% sucrose
water, followed by 36 h of water deprivation. On the test day, mice were placed in the
behavior box with a pre-weighted bottle filled with 1% sucrose or plain water for one hour
to determine their preference for 1% sucrose or water. Bottles (and fluid consumption) were
weighed after the test. Sucrose preference was expressed as (sucrose intake)/(sucrose
intake + water intake) × 100.

2.8. Stereotaxic Surgery

Mice were anesthetized with a KX mixture (Ketamine, 100 mg/kg; Xylazine, 10 mg/kg),
and then head-fixed in a stereotaxic instrument (51730, Stoelting, Wood Dale, IL, USA). After
incision and skull exposure, the skull surface was cleaned with sterilized PBS. For viral infu-
sion, viruses were obtained from Addgene (AAV9-DIO-ChETA, 26968; AAV5-DIO-hM3Dq,
44361; AAV5-DIO-hM4Di, 44362, Watertown, MA, USA). Virus (AAV9-DIO-ChETA, 300 nL;
AAV5-DIO-hM3Dq, AAV5-DIO-hM4Di, 500 nL) was unilaterally or bilaterally delivered
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into the LS (AP +1.10 mm, ML ± 0.40 mm, DV −2.80 mm) at rates of 2 nL/s using a
glass pipette (1.5 µL, Drummond Wiretrol, Broomall, PA, USA) pulled by a PC-100 puller
(Narishige, Tokyo, Japan). The injection pipette was left for at least 15 min before removal.
An incision was sutured after surgery. Mice were monitored for at least three days after
stereotaxic surgery.

For calcium imaging experiments, a gradient-index (GRIN) lens (0.5 mm diameter,
7 mm length, Mightex, Toronto, ON, Canada) coupled with a ceramic cannula (2.5 mm
diameter, 1 cm length, RWD Life Science, Shenzhen, China) was slowly implanted into
the left LS (AP +1.10 mm, ML +0.40 mm, DV −2.80 mm, at rates of 0.5 mm/min) of the
G6;SST mice. After placement, the GRIN lens was secured with dental cement. Next, a
3D-printed lightweight head implant (2.5 g) was mounted onto the head to protect the
GRIN lens implant. After implantation, mice were returned to their home cage for recovery.
Care was given after the GRIN lens implant, such as daily checks and easy access to food
and water.

For optogenetic experiments, an optical fiber cannula (0.2 mm diameter, 7 mm length,
RWD Life Science, Shenzhen, China) was implanted approximately 200 nm above the
viral injection site in the left LS (AP +1.10 mm, ML +0.40 mm, DV −2.60 mm) at rates of
0.5 mm/min. After placement, the optical fiber cannula and protector were secured with
dental cement. Mice were measured with care after the implant.

2.9. In Vivo Ca2+ Imaging and Data Processing

The Ca2+ imaging experiments were performed 4 weeks after the GRIN lens implan-
tation. Mice were habituated to the imaging fiber (650 µm diameter, 30,000 microfibers,
1 m length, FBR-0650-30K-100-03, Mightex, Toronto, ON, Canada) for 3 days before the
behavioral test. On the test day, an additional ten-minute habitation was performed in
a dim open field box (100 lux, 50 cm × 50 cm × 50 cm LWH). The imaging blue LED
(470 nm excitation) power was set at 1% (0.20 mW) at the tips of the fibers. Fluorescent
images were acquired at 5 Hz using the IAA software (Mightex Oasis Implant, Toronto,
ON, Canada) and a cooled CCD camera (Qimaging Retiga R1, 1.4 MP, 75% peak QE, Surrey,
BC, Canada).

Mightex IAA software v1.0 (Mightex, Toronto, ON, Canada) was used to extract raw
GCaMP6s fluorescence of the region of interest (ROI). A background ROI fluorescence was
also analyzed for each recording used as noise or fiber movement control. The GCaMP6s
fluorescence acquired during the first two minutes of each recording was omitted from the
analysis to minimize photobleaching. To measure the population Ca2+ activity during each
test, dF (∆F/F0) was calculated, where F0 was the baseline GCaMP6s fluorescence signal
averaged over a one-minute window. To determine the population activity in response to
specific behaviors, ∆F/F0 was calculated, where F0 was the baseline GCaMP6s fluorescence
signal averaged over a 3-s window before the behavior onset. The Mightex OASIS system
allowed visualization of neuronal soma in single-cell resolution. However, the signals
among single neurons in LS tended to be correlated, and we averaged all activity in the
field of view as population activity (akin to fiber photometry). To determine the neural
activity of LS cells in response to the center visit in the OFT, dF was normalized to standard
score (z score) using the GCaMP6s fluorescence acquired 3 s before and after the entry into
the center zone. There was no behavior-related response in background ROI fluorescence
during each recording.

2.10. Optogenetic Stimulation

Optogenetic experiments were performed one week after the optical fiber cannula
implant. Mice were habituated to the optical fiber one day before the behavioral test battery.
Additional five-minute habituation to optical fiber was performed before each behavioral
test. For optogenetic photostimulation, an optical fiber was connected to a 473 nm laser
controller (IOS-465, RWD Life Science, Shenzhen, China). Light output was adjusted to
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~10 mW at the tip of the fibers. The stimulation protocol (5 Hz or 20 Hz or off) for each
behavioral test was shown in the figures.

2.11. Immunohistochemistry

For the c-Fos experiments, mice were sacrificed one hour after the behavioral test.
After behavioral tests, animals were deeply anesthetized with a KX mixture and were
then perfused with 4% paraformaldehyde (PFA) in 1× phosphate buffered saline (PBS) at
room temperature. The whole brain was post-fixed overnight in 4% PFA followed by
cryoprotection in 30% sucrose in PBS for 72 h at 4 ◦C. Brain sections (50 µm) were prepared
with a cryostat (HM525 NX, Thermo Fisher Scientific, Waltham, MA, USA). For immuno-
histochemistry, the sections were washed 3 times with 1X PBS for 10 min each, followed by
5% normal goat serum in 1X PBS with 0.1% Triton X-100 (X100, Sigma-Aldrich, St. Louis,
MO, USA). Primary antibodies (rabbit anti-c-Fos, 1:500, ab190289; mouse anti-NeuN, 1:500,
ab104224, Abcam, Cambridge, England, UK) were applied overnight at 4 ◦C. Next, sections
were incubated with the secondary antibody (Jackson ImmunoResearch, West Grove, PA,
USA) with 4′,6-diamidino-2-phenylindole (DAPI, 28718-90-3, Santa Cruz Biotechnology,
Dallas, TX, USA) at room temperature for 2 h in darkness. After washing with 1X PBS,
sections were mounted (Antifade mounting medium, H-1000, Vector Laboratories, Newark,
CA, USA). The stained sections were stored in the dark box at 4 ◦C before imaging. Images
were visualized by epifluorescence (Nikon Eclipse Ni-E upright fluorescence microscope,
Nikon, Tokyo, Japan). Fluorescence images were quantified in ImageJ v1.53f51 (National
Institutes of Health, Bethesda, MD, USA).

Viral expression, GRIN lens implant, and optical fiber positions were confirmed
with immunohistochemistry. Mice with viral leakage and implant outside of the LS were
removed from statistical analysis.

2.12. Statistical Analysis

Statistical analysis was performed using SPSS v25.0 (IBM, Armonk, NY, USA). For
comparisons between data with normal distributions and equal variances, one-way analy-
sis of variance (ANOVA) was used to check differences between multiple groups. Student’s
t-test or Paired t-test was performed to test differences between the two groups. A non-
parametric test was used when data did not pass tests for normality and equal variance. In
the experiments related to repeated measures, repeated measures ANOVA was used for
data with normal distributions and equal variances. Otherwise, Student’s t-test or Mann-
Whitney U test was used. Unless otherwise specified, data are shown as mean ± s.e.m.
Thresholds for significance were indicated as * p < 0.05, ** p < 0.01, and *** p < 0.001. The
details of statistical tests and results were shown in the figure legends. All figures were
prepared using Prism v8.0.2 (GraphPad, San Diego, CA, USA), Excel v2202 (Microsoft,
Redmond, WA, USA), MATLAB R2020b (MathWorks, Natick, MA, USA), and Illustrator
CC v23.0.1 (Adobe, San Jose, CA, USA).

3. Results
3.1. The LS Is Recruited by Stressful Behavioral Tests

Evidence suggests the role of the septum in regulating affective states in rodents [12].
To investigate whether the septum is involved in the regulation of depressive-like behaviors,
we first measured the expression of the neuronal activation marker c-Fos in different brain
regions using three depression tests, including the TST, FST, and SPT (Figure 1A,B). Behav-
ioral tests such as TST can be acute stressors [76]. Consistent with previous studies [79–81],
we found that these tests recruited multiple stress and reward circuitries, such as the
amygdala, hippocampus, hypothalamus, and nucleus accumbens, as shown by increases in
c-Fos immunoreactivity (Figure 1C,D). Furthermore, we found robust increases of c-Fos
expression in the septum following all depression-related behavioral tests relative to control
mice (FST, 2162 ± 358% of control; TST, 2713 ± 175%; SPT, 1337 ± 268%; Figure 1C,D),
confirming that the septum responds to depression-related behavioral tests.
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Figure 1. The septum responds to multiple depression-related behavioral tests. (A) Timeline of
behavioral tests and immunostaining for c-Fos. (B) Schematic of brain regions for c-Fos counting.
Amy: amygdala; DG: dentate gyrus; NAc: nucleus accumbens; TH: thalamus; hyTH: hypothalamus;
Sep: septum; LV: lateral ventricle. (C) Representative images show c-Fos expression (red) in the
depression-related brain regions after each behavioral test. The nuclei were stained with DAPI (blue).
Scale bar, 100 µm. Ctrl, no behavioral test; TST, tail suspension test; FST, forced swimming test; SPT,
sucrose preference test. (D) Quantification of c-Fos+ cells in each region. The open circle indicates the
value of each mouse. Amy, Hip-DG, and NAc, Kruskal-Wallis test with Bonferroni correction. TH,
LH, and Sep, One-way ANOVA followed by Dunnett T3 post hoc test. Ctrl, n = 4 mice for all tests
and regions; TST/FST/SPT, n = 6 mice for all regions, except for hyTH in the SPT (n = 3 mice) and
APC-L2 in the SPT (n = 5 mice). Data are mean ± s.e.m. * p < 0.05, ** p < 0.01, *** p < 0.001.

The neurons in LS are mainly GABAergic. SST neurons are a dominant GABAergic
neuronal subtype in the LS [70]. Next, we tested whether LSSST neurons responded to the
TST. To label LSSST neurons, we used SST neuron-targeting Cre driver line (SST-Cre) [82]
and Ai162 (GCaMP6s) mice, a newly developed Cre-dependent TIGRE2.0 reporter line ex-
pressing the GFP-based, genetically encoded calcium indicator GCaMP6s [71]. We crossed
the SST-Cre mice with GCaMP6s mice, resulting in the expression of green fluorescent
protein (GFP) in the somatostatin-expressing neurons (G6;SST; Figure 2E,G). The LS showed
a higher density of SST neurons than the MS (22.8 ± 4.0% of LS; Figure 2G,H). Consistent
with the above-mentioned results (Figure 2D), there was more c-Fos activation in the LS
neurons than in the MS (7.6 ± 1.8% of LS) after TST (Figure 2F,G,I). There were more acti-
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vated SST neurons in the LS compared to MS (2.8 ± 1.2% of LS; Figure 2J). In addition, the
LS showed the highest density of SST+ neurons and SST activation among all the counted
regions (Figure 2K–M). Taken together, these results demonstrate that the LSSST neurons
are activated by behavioral tests commonly used to assess depressive-like behaviors.
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Figure 2. LSSST neurons are strongly activated by the tail suspension test. (A) Timeline of behavioral
tests and c-Fos immunostaining. (B) Representative images show c-Fos expression (red) in neurons
(NeuN) of the LS and MS after each behavioral test. The nuclei were stained with DAPI (blue).
Scale bar, 50 µm. (C) Quantification of NeuN+ cells in the LS and MS. Paired t-test. n = 22 mice.
(D) Quantification of neuronal c-Fos expression in each region. The filled circle indicates the value of
each mouse. LS, One-way ANOVA followed by Fisher’s Least significant difference (LSD) post hoc
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test; MS, Kruskal-Wallis test with Bonferroni correction. Ctrl, n = 4 mice; FST, TST, SPT, n = 6 mice.
(E) Schematic of the generation of mice with GCaMP6s (G6) expression in the SST+ neurons. (F) Time-
line of c-Fos immunostaining after the TST. (G) Representative image shows the c-Fos (red) expression
in the GCaMP6s-expressing SST+ (green) neurons after TST in the septum. The nuclei were stained
with DAPI (blue). LS, lateral septum; MS, medial septum; LV, lateral ventricle. Scale bar, 200 µm.
(H–J) Quantification of SST+ neurons (H), c-Fos+ cells (I), and c-Fos expression (J) in the GCaMP6s-
expressing SST+ neurons in the septum. Paired t-test. n = 4 mice. (K) Schematic of brain regions
for c-Fos counting. LS: lateral septum; MS: medial septum; ACC: anterior cingulate cortex; MC:
motor cortex; APC: anterior piriform cortex; PPC: posterior piriform cortex; NAc: nucleus accumbens;
HPF: hippocampus; LHb: lateral habenular; TH: thalamus; hyTH: hypothalamus; Amy: amyg-
dala; VTA: ventral tegmental area, from left to right. (L,M) Heatmap for the quantification of SST+

neurons (L) and activated SST+ (SST+c-Fos+) neurons (M) in each brain region. The line indicates
mean ± s.e.m. n = 4 mice for each group. Data are mean ± s.e.m. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.2. LSSST Neurons Are Active during TST but Not OFT Mobility

To directly probe the role of LSSST neurons in regulating depressive-like behaviors,
we developed an imaging method using microendoscopic calcium imaging to measure
the activity of LSSST neurons in freely moving mice during behavioral tests. After the
generation of the G6;SST mice, we implanted a GRIN lens into the left LS, which projected
light collected from the brain to an optical fiber (0.59 NA) and captured by a CCD camera
(Figure 3A,B). In the TST, we found that LSSST neurons were robustly activated during
mobility (Video S1). To assess the role of LSSST neurons during mobility, we compared
the population activity of LSSST neurons in response to mobile states in either OFT or
TST (Figure 3A,C). LSSST population activity was significantly higher when the mice were
mobile in the TST than in the OFT (OFT, –0.79 ± 2.1%; TST, 7.0 ± 2.0%; Figure 3C,E,G).
Notably, there was no difference in speed observed during the motile state comparing the
OFT and TST (OFT, 3.2 ± 0.28 cm/s; TST, 3.3 ± 0.7 cm/s; Figure 3C,D,F). In addition, LSSST

population activity remained unchanged whether mice were in the center zone vs. along
the walls in the OFT (Figure S1). Together, these data strongly suggest that the increased
LSSST population activity depends on behavioral states rather than locomotion. These
findings show that the LSSST neurons are specifically involved in mobile behavior during
TST, which is related to stress.

3.3. Optogenetic Activation of LSSST Neurons Decreases Depressive-Like Behaviors Induced by
LPS in the TST

LPS has been widely used in modeling aspects of depressive-like symptoms in ro-
dents [72]. Next, we established a well-validated mouse model of depression by intraperi-
toneal injection of LPS (0.75 mg/kg) for one week (Figure 4A). LPS-injected mice showed in-
creased immobility time in the TST (LPS, 222.5± 38.1% of saline-injected control; Figure 4B).
Repeated LPS injection also significantly reduced the number of activated SST neurons in
the LS one hour after the TST (LPS, 45.4 ± 5.1% of saline-injected control; Figure 4C,D). The
results establish the repeated LPS injection as an inflammation-based model for studying
behavioral changes and neuropathology related to depression.

Since LSSST neuronal activity was reduced by LPS, we next asked whether activation
of LSSST neurons can affect depressive-like behaviors in the LPS model of depression. The
AAV9-DIO-ChETA virus was unilaterally injected into the LS of SST-Cre mice (Figure 4E).
Four weeks after viral expression, an optical fiber was implanted above the injection site of
the LS (Figure 4E,F). After one week of recovery from surgical procedures, mice were sub-
jected to repeated LPS injections (Figure 4E,F). Mice were subjected to a battery of behavior
tests, and performance was measured in the same mouse with or without optogenetic
activation (Figure 4E). In the OFT, 5 Hz (20-ms pulse width, for five minutes) photostimu-
lation (473 nm) markedly and significantly increased, while 20 Hz (5-ms pulse width, for
five minutes) stimulation modestly but insignificantly increased, the duration of center
time in LPS mice compared to no light stimulation control. No change in center time
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was found post-photostimulation (LPS no light vs. LPS light on: 5 Hz, 124.1 ± 36.6% to
465.6 ± 136.3%; 20 Hz, 98.1 ± 37.0% to 265.6 ± 102.4%; post, 111.3 ± 51.4% to 81.3 ± 49.0%;
Figure 4G,H). In addition, the total distance in the LPS-injected mice was significantly
increased by both 5 Hz and 20 Hz light activations of the LSSST neurons, suggesting some
anxiolytic-like effect (LPS no light vs. LPS light on: 5 Hz, 107.0 ± 13.9% to 180.1 ± 13.7%;
20 Hz, 78.1 ± 8.1% to 149.9 ± 16.4%; post, 73.1 ± 11.8% to 94.1 ± 6.9%; Figure 4G,H). In the
TST, 20 Hz light stimulation strongly and significantly, while 5 Hz stimulation moderately
but insignificantly, deceased the immobility time (LPS no light vs. LPS light on: 5 Hz,
104.1 ± 11.5% to 78.1 ± 9.4%; 20 Hz, 115.5 ± 9.9% to 88.5 ± 14.8%; post, 117.6 ± 6.6%
to 88.5 ± 14.8%; Figure 4G,I). Optogenetic activation of LSSST neurons did not influence
the SPT sucrose preference in the LPS-injected mice (LPS no light vs. LPS light on: 5 Hz,
131.0 ± 6.5% to 125.0 ± 11.5%; 20 Hz, 106.9 ± 21.7% to 119.9 ± 17.4%; post, 140.5 ± 5.1% to
144.2 ± 5.1%; Figure 4G,J).
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Figure 3. The LSSST neurons increase their activity during TST mobility but not OFT mobility.
(A) Schematic of GRIN lens implant in the LS of G6;SST mice and timeline of behavioral testing.
(B) Representative anatomical location of GRIN lens implant in the LS. GCaMP6s-expressing SST+

neurons, green; DAPI, blue. Scale bar, 100 µm. (C) Heatmap of mouse speed (top) and LSSST

activity (bottom) during the OFT (left) and TST (right). The dotted line indicates mobile onset.
(D,E) Normalized mouse speed (D) and LSSST activity (E) in the OFT and TST as shown in (C). The
error bars represent s.e.m. OFT, gray line; TST, blue line. (F,G) Average mouse speed (F) and LSSST

activity (G) during the OFT mobility and TST mobility. The filled circle indicates data from each
mouse. Student’s t-test. n = 4 mice for each group. Data are mean ± s.e.m. * p < 0.05.
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Figure 4. Optogenetic activation of LSSST neurons reduces LPS-induced depressive-like behaviors in
the tail suspension test. (A) Timeline of LPS injection, TST, and c-Fos immunostaining. (B) Quantifi-
cation of mouse immobility in the TST. Student’s t-test. n = 4 mice for each group. (C) Representative
image shows c-Fos expression (red) in the LSSST neurons (green). The nuclei were stained with DAPI
(blue). Scale bar, 50 µm. (D) Quantification of SST+c-Fos+ neurons in the LS. Mann-Whitney U test.
n = 4 mice for each group. (E) Timeline of viral injection, optical cannula implant, LPS injection,
and behavioral testing. (F) Representative image shows ChETA expression and anatomical location
of optical fiber implant in the LS. Scale bar, 500 µm. (G) Schematic of the optogenetic stimulation
protocol in the OFT, TST, and SPT. (H) Normalized center time (left) and total distance (right) in the
OFT after LPS injections. OFT center time: 5 Hz and 20Hz, Student’s t-test; post, Mann-Whitney
U test; OFT total distance, Two-way repeated measures ANOVA followed by LSD post hoc test.
(I) Normalized immobility time in the TST after LPS injections. Student’s t-test. (J) Normalized
sucrose preference in the SPT. 5 Hz, Student’s t-test; 20 Hz and post, Mann-Whitney U test. LPS,
n = 6 mice; LPS + 473 nm, n = 7 mice. Data are mean ± s.e.m. * p < 0.05, ** p < 0.01.

As a control, we next examined the behavioral effects of optogenetic activation of LSSST

neurons in the healthy control (unstressed) mice (Figure S2A,B). Optogenetic activation
of LSSST neurons was performed in two different patterns: 5 Hz, 20-ms pulse width, for
ten minutes; 20 Hz, 5-ms pulse width, for ten minutes (total light exposure is the same for
the two stimulation paradigms; Figure S2C). Activating LSSST neurons did not affect OFT
center time (No light vs. light on: 5 Hz, 89.5 ± 30.5% to 124.3 ± 44.5%; 20 Hz, 54.3 ± 52.3%
to 59.2 ± 19.4%) or total distance traveled (No light vs. light on: 5 Hz, 69.6 ± 10.0% to
78.2 ± 4.8%; 20 Hz, 43.6 ± 9.7% to 473 nm: 64.8 ± 6.3%; Figure S2D), suggesting that
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activation of the LSSST neurons has little effect on the anxious levels and general locomotive
functions in control mice.

We then performed photostimulation of the LSSST neurons during TST (Figure S2E).
Both 5 Hz and 20 Hz light stimulation modestly but significantly decreased the TST
immobility time compared to no-light control (No light vs. light on: 5 Hz, 144.9 ± 5.7% to
116.9 ± 11.3%; 20 Hz, 151.1 ± 6.0% to 114.0 ± 8.7%; post, 143.2 ± 3.0% to 174.6 ± 14.3%;
Figure S2F). In the SPT, 20 Hz but not 5 Hz photostimulation led to an increase in sucrose
preference (No light vs. light on: 5 Hz, 178.9 ± 45.7% to 137.5 ± 23.5%; 20 Hz, 76.0 ± 30.4%
to 182.8 ± 15.2%; post, 191.8 ± 26.0% to 181.2 ± 9.3%; Figure S2G). These data demonstrate
that activation of LSSST neurons had some mild effects on depressive-like behaviors in
control mice.

Taken together, these results suggest that activation of LSSST neurons can improve
depressive-like behaviors in LPS-injected mice.

3.4. Chemogenetic Activation of the LSSST Neurons Reduces Depressive-like Behaviors Induced by
CRS in the FST

Our previous results demonstrated that acute, optogenetic activation of LSSST neurons
can alleviate depressive-like behaviors in mice injected with LPS (Figure 4), but it is unclear
whether slower (minutes to hours) activation can also afford similar beneficial effects. In the
CRS-induced mouse model of depression, we first found that the density of TST-induced
c-Fos expression was significantly lower in the CRS mice (26.8 ± 4.7% of Ctrl) compared to
the control mice (Figure 5A–D). This led us to hypothesize that elevating LS neural activity
can be therapeutically beneficial to depressive-like behaviors.

To evaluate the effects of chemogenetic activation of LSSST neurons on mouse depressive-
like behaviors, we used designer receptors exclusively activated by a designer drug
(DREADD). We bilaterally delivered a Cre-dependent AAV5 encoding hM3Dq fused with
mCherry (AAV5-DIO-hM3Dq) into the LS of the SST-Cre mice (Figure 5E,F; Figure S3A,B).
Three weeks after injection, mouse depressive-like behaviors were measured (Figure 5E;
Figure S3B). To activate the LSSST neurons, the designer drug CNO was injected (3 mg/kg,
i.p.) one hour before each behavioral test (Figure 5E–G; Figure S3B). In healthy controls,
CNO injection did not significantly alter TST immobility and struggling (immobility, CNO:
65.4 ± 9.2% of vehicle; struggling, CNO: 190.3 ± 46.7% of vehicle; Figure S3C), FST im-
mobility and struggling (immobility, CNO: 109.8 ± 15.0% of vehicle; struggling, CNO:
104.7 ± 16.8% of vehicle; Figure S3D), or sucrose preference (vehicle, 68.7 ± 10.2%; CNO,
49.1 ± 8.1%; Figure S3E). These results suggest that CNO injection and hM3Dq activation
did not induce behavioral side effects in healthy, unstressed mice.

We next probed whether the chemogenetic activation of LSSST neurons can affect
behavioral changes induced by CRS. CNO injection had no effect on either the TST immo-
bility (103.7 ± 8.5% of vehicle) or struggling (102.6 ± 42.8% of vehicle) in the CRS mice
(Figure 5H). In the FST, injection of CNO moderately but insignificantly decreased the
immobility time (41.1± 14.5% of vehicle) while it significantly increased the struggling time
(241.6 ± 27.8% of vehicle) in the CRS mice (Figure 5I). In the SPT, CRS mice that received
CNO injection did not show changes in sucrose preference (vehicle, 67.8 ± 5.3%; CNO,
61.8 ± 7.7%; Figure 5J). These results indicate that activation of LSSST neurons reduces
depressive-like behaviors induced by chronic restraint stress.

3.5. Inhibiting LSSST Neurons Does Not Induce Depressive-like Behaviors in the Unstressed Mice

As chemogenetic activation of LSSST neurons afforded alleviation of depressive-like
behaviors (Figure 5), we wondered whether suppressing them can induce depressive-like
behaviors in healthy control (unstressed) mice. Mice were bilaterally injected with a Cre-
dependent AAV5 encoding hM4Di fused with mCherry (AAV5-DIO-hM4Di) into the LS
of the SST-Cre mice (Figure 6A–C). We then evaluated mouse depressive-like behaviors
in a battery of behavioral tests (Figure 6B). For the inhibition of LSSST neurons, CNO was
injected (3 mg/kg, i.p.) one hour before each behavioral test (Figure 6A–C). In the OFT,
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injection of CNO induced small and insignificant reductions in the center time (86.2 ± 8.6%
of vehicle) and total distance (91.5 ± 4.3% of vehicle) in the unstressed mice (Figure 6D).
TST immobility (107.5 ± 8.8% of vehicle) and struggling (94.7 ± 21.3% of vehicle) were not
influenced by the CNO-mediated inhibition of LSSST neurons (Figure 6E). Mice injected
with CNO exhibited increased FST immobility (123.7 ± 17.0% of vehicle) and decreased
FST struggling (60.9 ± 14.0% of vehicle), but they did not reach significance (Figure 6F). In
the SPT, no difference in sucrose preference was observed between the two groups (vehicle:
67.1 ± 5.8%, CNO: 73.8 ± 3.4%; Figure 6G). Thus, these results demonstrate that inhibition
of LSSST neurons was insufficient to induce depressive-like behaviors in healthy, unstressed
mice.
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Figure 5. Chemogenetic activation of LSSST neurons improves CRS-induced depressive-like be-
haviors in the forced swim test. (A) Timeline of CRS protocol, TST, and c-Fos immunostaining.
(B) Quantification of mouse immobility in the TST. Mann-Whitney U test. n = 4 mice for each group.
(C) Representative image shows c-Fos expression (red) in the LS. The nuclei were stained with
DAPI (blue). Ctrl: control; CRS: chronic restraint stress. Scale bar, 50 µm. (D) Quantification of
c-Fos+ neurons in the LS. Student’s t-test. n = 4 mice for each group. (E) Timeline of viral injection,
CNO administration, CRS protocol, and behavioral testing. (F) Representative images showed c-Fos
expression (green) in the hM3Dq-expressing neurons in the LS of SST-Cre mice. Scale bar, 100 µm.
(G) Quantification of hM3Dq+ c-Fos+ neurons in the LS. Mann-Whitney U test. Vehicle: n = 26 sections
from 9 mice; CNO: n = 27 sections from 9 mice. (H) Quantification of TST immobility (left) and
struggling (right) time after CRS. TST immobility, Student’s t-test; TST struggling, Mann-Whitney U
test. (I) Quantification of FST immobility (left) and struggling (right) time after CRS. Student’s t-test.
(J) Quantification of mouse sucrose preference in the SPT after CRS. Mann-Whitney U test. n = 9 mice
for each group. Data are mean ± s.e.m. The filled circle indicates the value of each mouse. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 6. Inhibiting LSSST neurons is insufficient to induce depressive-like behaviors in unstressed
mice. (A) Timeline of viral injection, CNO administration, and behavioral testing. (B) Representative
images showed c-Fos expression (green) in the hM4Di-expressing neurons in the LS of SST-Cre
mice. Scale bar, 100 µm. (C) Quantification of hM4Di+c-Fos+ neurons in the LS. Student’s t-test.
n = 12 sections from 4 mice for each group. (D) Quantification of mouse center time (left) and total
distance (right) in the OFT. Student’s t-test. (E) Quantification of mouse immobility and struggling in
the TST. Immobility, Mann-Whitney U test; struggling, Student’s t-test. (F) Quantification of mouse
immobility and struggling in the FST. Immobility, Student’s t-test; struggling, Mann-Whitney U test.
(G) Quantification of mouse sucrose preference in the SPT. Student’s t-test. Vehicle, n = 9 mice; CNO,
n = 11 mice. Data are mean ± s.e.m. The filled circle indicates the value of each mouse. * p < 0.05.

4. Discussion

The septum is an evolutionarily conserved part of the limbic system that has diverse
functions in regulating emotional states and behavioral responses, such as anxiety, locomo-
tion, feeding, and sociality [12,14,83]. Previous studies suggest that the lateral septum is
associated with depression [63,84,85], but the underlying neural substrates are less well-
understood. Our results presented here show that SST neurons in the LS contribute to the
regulation of depressive-like behaviors in mice. We found that classical depression-related
behavioral tests robustly recruit the LS rather than MS. Subsequent calcium imaging re-
vealed that LSSST neurons drive mobile states in the TST. Optogenetic and chemogenetic
experiments showed that activation of the LSSST neurons produces anti-depressive like
effects in stress-induced, depressive-like mice. However, inhibiting LSSST neurons does
not induce depressive-like behaviors in healthy mice. Together, these results establish a
previously unknown role for LSSST neurons in depression, providing further evidence for
the LS as an essential limbic component in this disorder.

SST neurons are important for many brain functions, including sensory perception,
movement, motivation, reward, and affective states [65]. Reduced SST in the brain has
been consistently reported in patients with depression [66,86,87]. Thus, understanding
the functions of SST neurons may provide mechanistic insight into the neurobiology of
depression. Early anatomical studies show that SST neurons are a conserved cell population
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in the septum across species, including human [88,89], rodents [90–92], birds [93], frogs [94],
and reptiles [95,96]. Here, we show that a subset of SST neurons in the LS is activated
during the mobility state in TST. In vivo calcium imaging demonstrates that LSSST calcium
activity is increased during TST mobility, suggesting that the LSSST neuronal activity may be
an important neural correlate of immobile behavior, which is exacerbated in depressive-like
mice. Importantly, LSSST neurons specifically respond to TST mobility, but they do not
respond to general locomotion during the OFT. These results show that the TST can be, at the
same time, both a stressor acting on the mouse and behavioral output. Since both are related
to depressive-like behaviors, future works are needed to interrogate how LSSST neurons
contribute to these behavioral states. In addition, we found different patterns of LSSST

neuronal population activity during the OFT and TST (Figure 3). Most notably, there were
differences in calcium dynamics among different recorded animals in our in vivo calcium
recording data. For instance, the LSSST neuronal population activity of one mouse was
increased after the TST mobile onset but decreased shortly afterward (mouse #2; Figure 3C).
There are a few possibilities that might explain these LSSST neuronal calcium fluctuations.
One potential explanation is the temporal activation of LSSST neurons may be different in
response to behavior such as motor activity. Although LSSST neuronal somata and neuropils
showed synchronized calcium transients during mobility in the TST (Video S1), we did not
address how LSSST neurons correlate with animal movements in the OFT and TST, such as
mobility onset, speed, acceleration, and movement termination. Future investigations are
needed to determine LSSST neuron activity at the single-cell resolution with better imaging
techniques, which will provide fundamental insights into the relationship between LSSST

neuron activity and animal behavior during depression-related behavioral tests.
Our chemogenetic and optogenetic experiments demonstrated that activation of LSSST

neurons reduces stress-induced depressive-like behaviors. These findings support the
hypothesis that SST neurons in the LS are involved in depression. Given that inhibition of
LSSST neurons did not induce depressive-like behaviors in the healthy control mice, it is
necessary to investigate further whether dysfunctions of LSSST neurons contribute to the
pathogenesis of depression. Currently, less is known about the changes of LSSST neurons in
animal models of depression and how antidepressant treatment affects their activity. Resolv-
ing these questions may provide further evidence for the LSSST neurons in depression. A
recent study shows that vesicular GABA transporter (VGAT)-positive GABAergic neurons
in the LS exhibit increased c-Fos activation after chronic unpredictable stress. Activation of
LSGABA neurons and their projections to the periaqueductal gray increase depressive-like
behaviors, while inhibiting this LSGABA circuit reduces depression phenotypes in mice [63].
Our results that activation of LSSST neurons alleviates depressive-like behaviors are not
contradictory to the findings of Wang et al. (2021) due to the heterogeneity and complexity
of neuronal subtypes. SST-expressing neurons only account for about 20% of the LSGABA

neurons, meaning that the LS contains many other GABAergic neuron subtypes. Moreover,
LS contains a fraction of glutamatergic excitatory neurons [12,97]. The architecture and
functions of LS local circuits are not clear. The SST neurons in the septum have reciprocal
connections with both pyramidal and inhibitory neurons in the hippocampus, and different
circuits produce different behavioral effects [90,98–102]. LSSST neurons are in part inner-
vated by the pyramidal neurons in the hippocampal CA3, and this CA3 to LSSST pathway
can directly regulate depressive-like behaviors [103]. In addition, SST neurons in the LS
send projections to the lateral hypothalamus, which can regulate gamma oscillation and
foraging behavior in mice [104]. A recent study demonstrates that SST neurons in the dorsal
LS and their subcortical targets can control fear responses [28]. In this study, we found that
optogenetic activation of the LSSST neurons increased OFT center time and decreased TST
immobility in the LPS-injected mice. Moreover, chemogenetic activation of the LSSST neu-
rons increased FST struggling time in the CRS-exposed mice. However, neither optogenetic
nor chemogenetic activation of LSSST neurons affected sucrose preference in mice exposed
to LPS injections and CRS, respectively. These results indicate that LSSST neurons may
be associated with the regulation of specific depressive-like behaviors in mice, especially
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behavioral despair. Clinically, patients with depression experience diverse symptoms, such
as despair, loss of pleasure, and anxiety [2]. One hypothesis is that these depressive symp-
toms are related to changes in different neural circuits regulating behaviors in response
to stress and reward [4]. For example, dysfunction of the hypothalamic-pituitary-adrenal
(HPA) axis is involved in maladaptive responses to stress such as behavioral despair, circuit
deficits in the reward system contribute to anhedonia, and changes in the amygdala may
result in anxiety-like symptoms [1,3,5]. Thus, it would be interesting to dissect the function
of LS in various behavioral phenomena such as stress handling, motivation, and motor
control. Therefore, future studies focused on the connectivity of LSSST neurons, either intra-
septal microcircuits or extra-septal long-range circuits, are indispensable for elucidating
mechanisms that underlie the role of LSSST neurons in depression regulation.

Substantial evidence shows that the LS is an essential node in the limbic system
controlling stress responses. Previous studies indicate that the LS is activated by acute
stress [80,105–107]. It has been shown that VGAT-expressing LSGABA neurons respond
to acute stressors, including loud sound, light, and water spray [47]. Another study
demonstrates that the calcium activity of neurotensin-expressing cells, another common
subtype of GABAergic neurons in the LS (more ventrally distributed), is increased in
response to several acute stressors, such as tail suspension, predatory cues, and aversive
electric shocks [108]. Consistent with these findings, our data show that ~15% of LSSST

neurons are recruited by the TST, a behavioral task that includes multiple acute stressors,
such as tail suspension and novel environment. Moreover, LS hypofunction has been
found in depressive-like mice subjected to chronic stress [54,85], consistent with our results.
Here, we used two chronic stressors (repeated low-dose LPS intraperitoneal injection and
restraint) to induce depressive-like behaviors in mice. Chronic, rather than acute, stress
is a major risk factor for the pathogenesis of depression [56]. Increased inflammation has
also been implicated in the etiology of depression [2]. Repeated immune activation by
LPS can induce depressive-like behaviors in mice [72]. In this study, we measured the
behavioral changes induced by LPS one day after the last injection to minimize the effect of
LPS-induced sickness behaviors. Indeed, LPS-injected mice exhibited increased immobility
in the TST (Figure 4B). Correlating with LPS-induced depressive-like behaviors, LSSST

neurons showed c-Fos activation in this inflammation-based mouse model of depression
(Figure 4C,D), suggesting chronic stress exposure could result in dampened LSSST neuronal
activity. In line with this finding, we found that CRS-induced depressive-like mice showed
increased TST immobility and reduced c-Fos expression in the LS. Unlike the induction of
depressive-like behaviors by LPS-mediated inflammation, chronic restraint stress promotes
the development of depressive-like behaviors by recapitulating the stressful experience
during daily life, which may induce a myriad of neurochemical changes in multiple brain
regions [56,73]. These results suggest that altered neuronal activity in the LS may be a
specific feature of behavioral despair in depressive-like mice. Consequently, using two
different methods, namely optogenetics and chemogenetics, we demonstrated that the
elevation of LSSST neurons enhances struggling behavior in depressive-like mice, suggesting
an alleviation of learned helplessness behavior in depression. In our current study, one
limitation is the lack of cellular and molecular mechanisms underlying the activation and
suppression of LS neuronal activity in response to acute and chronic stressors, respectively.
It would be important to decipher how chronic stress can lead to long-term changes
in circuit function and perhaps neuroinflammation that contributes to depressive-like
behaviors.

5. Conclusions

In summary, our results indicate that LSSST neurons are a subcortical neural substrate
in the limbic region that contributes to the regulation of depressive-like behaviors in mice.
The activity of LSSST neurons may serve as an important neural correlate of depression. An
interesting topic for further study is how LSSST neurons engage in intra- and extra-septal
circuit function. It would be of fundamental importance to identify whether these LSSST
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pathways contribute to regulating stress and depressive-like behaviors, which will extend
our understanding of the circuit mechanisms underlying depression regulation by the
limbic system. The lateral septum may be a promising limbic site for neuromodulation or
deep brain stimulation in developing intervention strategies for depression.
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effects of chemogenetic activation of LSSST neurons on the depressive-like behaviors of the unstressed
mice; Video S1: LSSST activity during the tail suspension test.
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