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Abstract

Metabotropic glutamate receptors (mGluRs) are normally expressed in the central nervous system, where they mediate
neuronal excitability and neurotransmitter release. Certain cancers, including melanoma and gliomas, express various
mGluR subtypes that have been implicated as playing a role in disease progression. Recently, we detected metabotropic
glutamate receptor-1 (gene: GRM1; protein: mGluR1) in breast cancer and found that it plays a role in the regulation of cell
proliferation and tumor growth. In addition to cancer cells, brain endothelial cells express mGluR1. In light of these studies,
and because angiogenesis is both a prognostic indicator in cancer correlating with a poorer prognosis and a potential
therapeutic target, we explored a potential role for mGluR1 in mediating endothelial cell (EC) proliferation and tumor-
induced angiogenesis. GRM1 and mGluR1 were detected in various types of human ECs and, using mGluR1-specific
inhibitors or shRNA silencing, we demonstrated that EC growth and Matrigel tube formation are dependent on mGluR1
signaling. In addition, loss of mGluR1 activity leads to reduced angiogenesis in a murine Matrigel sponge implant model as
well as a murine tumor model. These results suggest a role for mGluR1 in breast cancer as a pro-angiogenic factor as well as
a mediator of tumor progression. They also suggest mGluR1 as a potential new molecular target for the anti-angiogenic
therapy of breast cancer.
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Introduction

Angiogenesis is critical for normal physiological processes,

including wound healing, embryonic development, and the

menstrual cycle. Tumors are also critically dependent upon their

ability to hijack the normal physiologic process of angiogenesis and

thereby induce the ingrowth of blood vessels from the host in order

to grow, invade, and metastasize [1,2]. The process of angiogen-

esis is normally tightly regulated through control of the relative

levels of pro- and antiangiogenic factors, a process that has been

described as the ‘‘angiogenic balance’’ [3,4]. However, malignant

cells can shift the angiogenic balance away from homeostasis

towards angiogenesis through the secretion of proangiogenic

factors, the most common of which is VEGF [5], a peptide growth

factor secreted by a wide variety of cancers, beginning early in

progression [6]. Numerous studies have reported a correlation

between increased angiogenesis and poor prognosis in various

cancers [7,8], and inhibiting tumor-induced angiogenesis has

emerged over the last decade as a promising strategy for cancer

therapy. Indeed, the combination of antiangiogenic therapy with

conventional therapies, in particular radiation therapy and

cytotoxic chemotherapy, has led to significant increases in overall

survival in certain cancers such as colorectal cancer metastasis to

the liver [9]. However, antiangiogenic therapy is not without its

drawbacks. For example, bevacizumab, a humanized mouse

monoclonal antibody to VEGF that is currently the most

commonly used antiangiogenic therapy for cancer, is expensive,

must be given intravenously, and produces side effects of

hypertension, hemorrhage and even intestinal perforation, among

others [10,11]. In addition, tumors can overcome bevacizumab by

producing more VEGF, leading to resistance. [11].

Of the downstream mediators of VEGF receptors, PKC is

known to be a crucial mediator [12,13]. In a previous study,

Riluzole, a known inhibitor of PKC activity [14], has been shown

to mediate endothelial cell (EC) proliferation and abnormal vessel

formation in a rat model of retinopathy [15]. In addition to its well

known inhibitory effect on PKC, Riluzole also mediates other

signaling pathways including mGluR1-mediated glutamate release

[16,17] suggesting a role for mGluR1 in mediating angiogenesis.

Glutamate signaling occurs through binding to ionotropic or
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metabotropic receptors (mGluRs). mGluRs (genes: GRM1-GRM8;

protein receptors: mGluR1-mGluR8) belong to the family of G-

protein-coupled seven transmembrane domain receptors (GPCRs)

[18], which mediate responses to a diverse array of signaling

molecules, including hormones, neurotransmitters and chemo-

kines which can act in an autocrine or paracrine manner [19–22].

In the mammalian CNS, mGluRs are categorized into either

group I, II, or III receptors based on sequence homology, agonist

selectivity, and effector coupling. They are essential for normal

neuronal function and have been implicated in a wide range of

neurological disorders including amyotrophic lateral sclerosis

(ALS) [23–25], Parkinson’s disease [26], and depression [27], in

addition to various cognitive disorders [26]. mGluR1 and

mGluR5 comprise Group I and are mainly involved in excitatory

responses induced by strong presynaptic stimulation [28–30].

They are coupled to a Gaq-like protein and activate signaling

cascades known to be involved in proliferation [27,31]. In

addition, group I mGluR activation modulates a variety of ion

channels including the L-type voltage dependent calcium channels

[32–34] and activates a wide range of protein kinase pathways

(PKA, CaMKs, MAKs, PI3K) which link mGluRs to transcrip-

tional changes within a cell [27,31,34,35]. Within the past decade,

mGluR expression, in particular that of mGluR1, has been

detected in brain endothelial cells where mGluRs appear to play a

protective role in response to various insults such as hypoxia,

glutamate, and NO-induced vascular injury [36,37]. Based on

these studies and our recent finding demonstrating inhibition of

tumor progression by Riluzole and the mGluR1 inhibitor, BAY36-

7620 [38], we hypothesize that mGluR1 activity may play a key

role in regulating EC phenotype during tumor-induced angiogen-

esis and therefore might represent a molecular target for the

antiangiogenic therapy of cancer. In this paper, we test this

hypothesis and demonstrate that a loss of mGluR1 expression and

activity is associated with an anti-angiogenic phenotype and tumor

suppression.

Materials and Methods

Reagents and cell culture
All EC culture reagents and human dermal microvascular

endothelial cells (HDEC) were purchased from Lonza (Walkers-

ville, MD). Primary human umbilical vein endothelial cells

(HUVEC) and human pulmonary microvascular endothelial cells

(HLEC) were purchased from ScienCell Research Laboratories

(San Diego, CA). The immortalized human dermal microvascular

endothelial cell line (HMEC-1) was obtained from the Centers for

Disease Control and cultured as described [39]. All ECs were

cultured in their respective EGM-2 medium (basal medium)

containing the appropriate supplements and 10% serum which

were all purchased from Lonza and primary ECs were only used

for experimental analyses up to ten passages. The mouse

mammary carcinoma cell line 4T1-12B was a kind gift from Fred

Miller (Karmanos Cancer Institute) and MDA-MB-231 cells were

purchased from ATCC. Both cell lines were maintained in RPMI

containing 10% serum and 1% penicillin/streptomycin purchased

from Invitrogen-Life Technologies (Carlsbad, CA).

Reagents for immunohistochemical analysis, including second-

ary antibodies, were purchased from either Vector Laboratories

(Burlingame, CA) for sponge sections or from Santa Cruz (Santa

Cruz, CA) for tumor sections. mGluR1 inhibitors BAY36-7620

and YM 298198 were purchased from Tocris (Norwich, UK), and

research grade Riluzole was purchased from Sigma-Aldrich (St.

Figure 1. mGluR1 and GRM1 expression in various human vascular endothelial cells. A. mGluR1protein was detected by Western analysis
in primary human dermal microendothelial cells (HDEC), human umbilical vein endothelial cells (HUVEC), human lung microendothelial cells (HLEC),
as well as in the human microendothelial cell line (HMEC-1). Human brain lysate or MDA-MB-231 (MDA231) cells overexpressing GRM1 by Lentiviral
transduction were used as a positive control for mGluR1 and GAPDH was used as a loading control. B. Combined density graph of (A), normalized to
their respective GAPDH controls. C. GRM1 message was detected in HDEC, HUVEC, HLEC, and HMEC-1 by qPCR and normalized using GAPDH as the
reference gene. GRM1 message is detected in all ECs tested, comparable to levels detected in the breast cancer cell line (SUM159). These results
represent the mean 6 SEM of two experiments, performed in triplicate where * is p,0.05 compared to HDEC, HLEC, or HMEC-1.
doi:10.1371/journal.pone.0088830.g001
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Louis, MO). Antibody against mGluR1 was purchased from

Millipore (Temecula, CA) and antibodies against human and

mouse CD31 were purchased from Abcam (Cambridge, MA) and

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA), respectively.

Western analysis reagents were purchased from Bio-Rad (Hercu-

les, CA) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT) was purchased from Invitrogen-Life Technolo-

gies.

mGluR1 Protein Expression
mGluR1 expression in ECs was measured by Western blot

analysis. Briefly, cells were collected by scraping in RIPA lysis

buffer (Santa Cruz) containing 10 mM Tris-HCl, 1% Nonidet P-

40, 0.5% sodium deoxycholate, 0.1% SDS, 0.004% sodium azide,

and supplemented with a protease inhibitor cocktail solution. 75–

100 ug of protein was separated by SDS-polyacrylamide gel

electrophoresis (4–20%) and transferred to polyvinylidene fluoride

membranes. Immunodetection of mGluR1 was performed using

either rabbit polyclonal anti-mGluR1 antibody (Millipore) or

mouse monoclonal anti-mGluR1 antibody (BD Biosciences,

Bedford, MA) with appropriate secondary antibodies and detected

by chemiluminescence. Primary blots were stripped and reprobed

with antibody against GAPDH (Novus Biologicals, Littleton, CO).

RT-QPCR analysis of GRM1 expression
Total RNA was extracted from ECs using RNeasy Plus Mini

Kit (Qiagen, Valencia, CA) according to manufacturer instruc-

tions. Reverse transcription was performed with 2 ug RNA using

High-capacity cDNA Reverse Transcription Kit (Applied Biosys-

tems-Life Technologies) according to the manufacturer’s instruc-

tions. QPCR was performed using ABsolute QPCR SYBR Green

Mix (Thermo Scientific) and oligonucleotide primers for GRM1

and GAPDH, as described previously [40]. Thermal cycling was

performed under the following conditions: 15 min enzyme

activation step at 95uC followed by 35 cycles of denaturation

(15 sec at 95uC), annealing (30 sec at 60uC), and extension (30 sec

at 72uC). No-RT controls were used to confirm lack of

contaminating genomic DNA.

GRM1 transduction assays
Lentiviral particles containing GRM1 shRNA vectors or non-

silencing control vector DNA (Thermo Scientific-Open Biosys-

tems), were generated by reverse transfection of these constructs,

together with Trans-Lentiviral package mix, into HEK293T cells

using Arrest-In/Express-In transfection reagent. Approximately

106 TU/ml was used to infect HUVEC in the presence of

polybrene (10 ug/ml) and a stable culture was generated by

growing these cells in the presence of 1 ug/ml puromycin, the

lowest concentration observed to kill 100% of non-transduced

HUVECs (data not shown). All reagents for these transduction

assays were purchased from Thermo Scientific.

Figure 2. Inhibition of cell proliferation by mGluR1 antagonists. Human dermal microendothelial cells (HDEC), human umbilical vein
endothelial cells (HUVEC), human lung microendothelial cells (HLEC) and the human microendothelial cell line (HMEC-1) were plated at 16105 cells/
well into 96-well plates in EBM-2 basal medium (no supplements) in reduced serum (5%) containing 100 ug/ml VEGF and exposed to various mGluR1
antagonists, or vehicle (0.05% DMSO). Cell proliferation was determined on day 3 by MTT assay where formazan product was detected by measuring
absorbance at 540 nm and results expressed as % control (no VEGF) where no growth was demonstrated. Both Riluzole (A) and BAY36-7620 (B)
significantly inhibited cell proliferation in a dose-response manner in all EC types whereas YM 298198 (C) had a significant effect on cell proliferation
in all the cell types except HUVEC. Results are the mean 6 SEM of three experiments, performed in triplicate, where * is p,0.05 compared to their
respective control cells containing VEGF.
doi:10.1371/journal.pone.0088830.g002
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Cell Proliferation
To determine a role for mGluR1 signaling on cell growth,

various ECs were plated at 16105 cells/well into 96-well plates in

EBM-2 basal medium (no supplements) in reduced serum (5%)

plus 100 ng/ml VEGF (R&D systems, Minneapolis, MN) and

exposed to various mGluR1 inhibitors, or vehicle (0.05% DMSO).

Proliferation was determined once a day for three days by

measuring the conversion of water soluble MTT into an insoluble

formazan product. Briefly, 12 mM MTT (Invitrogen-Life Tech-

nologies) was added to the wells and allowed to incubate for 2–

4 hours at which time DMSO was added to the wells to lyse the

cells and dissolve the formazan. The formazan product was

detected by measuring absorbance at 540 nm and results

expressed as % of control (no VEGF) where no growth was

demonstrated. In some experiments, cell numbers were also

determined in parallel with the MTT assay by counting manually

on a hemacytometer. The results of the inhibitor studies were

confirmed in a second set of experiments using shGRM1-infected

HUVECs.

Endothelial tube formation assays
ECs were plated on reduced serum Matrigel basement

membrane matrix (BD Biosciences) at either 16105 cells/ml

(HUVEC) or 2.56105 cells/ml (HMEC-1) in 24 well plates and

incubated overnight in basal EGM-2 media containing FBS (1%),

VEGF (100 ng/ml) and in the presence and absence of increasing

concentrations of either BAY36-7620 or Riluzole. After 18–

24 hours, brightfield images (using a 46 objective), were taken to

capture the entire well (4 image fields/well) using a Nikon Eclipse

TE2000-U inverted microscope and the endothelial tubes formed

were counted using the Java-based image processing program

(ImageJ64) developed by the National Institutes of Health. Results

were expressed as the average tubes formed/field and compared to

vehicle treated cells (0.05% DMSO). The results of the inhibitor

studies were confirmed in a second set of experiments using

shGRM1-infected HUVECs.

Matrigel sponge model
Angiogenesis was measured in vivo using the Matrigel sponge

model originally developed by Dr. Nor at the University of

Michigan [40]. Briefly, porous poly-l-lactic acid (PLLA) sponges

were prepared by dissolving PLLA in chloroform to yield a 5%

solution and then 1.6 ml of this solution was combined with 2.3 g

of sodium chloride in a beaker pre-treated with silicone. The

chloroform was evaporated and the sponges formed were washed

5 times over a two-day period to remove the salt and stored under

vacuum suction until use. The day before implantation, the

sponges were cut into 1061061 mm thick squares and then

sterilized by soaking in 100% ethanol for 2 hours followed by 2

washes of PBS and then left overnight in PBS. On the day of

implantation, HDECs were resuspended in Matrigel basement

membrane matrix and EBM-2 medium with supplements and

10% FBS at a ratio of 1:1 and 36 ul containing 16106 cells were

placed on top of each sponge and allowed to soak in for a few

minutes. The sponges were placed into the flanks of 15 female

athymic nude (nu/nu) mice, aged between 6 and 8 weeks (Harlan

Figure 3. shRNA-mediated knockdown of GRM1 inhibits cell proliferation of HUVECs. Knockdown of GRM1 was accomplished by infecting
with GIPZ shRNA Lentiviral vectors containing a puromycin resistance gene and either shRNA constructs #1-5 against GRM1 or a non-silencing shRNA
construct (NS). Cells were selected with puromycin (1 ug/ml) for 10 days and GRM1 message (A) or mGluR1 protein levels (B) were determined by
QPCR or Western analysis, respectively. C. Density graph of (B) repeated twice and normalized to their respective GAPDH controls. D. The effect of
GRM1 knockdown on the proliferation of HUVECs was determined 10 days post-infection by MTT assay. The shGRM1 infected cells were plated 10
days after infection in 96-well plates at 16105 cells/well into 96-well plates in EBM-2 basal medium (no supplements) in reduced serum (5%) plus
100 ng/ml VEGF and cell proliferation was determined on day three. These results are representative of two GRM1 silencing experiments performed
in triplicate where * is p,0.05 compared to NS-infected VEGF-treated cells.
doi:10.1371/journal.pone.0088830.g003
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Laboratories, Indianapolis, IN), divided into groups of 5 and

treated i.p. starting the next day with either BAY36-7620 (10 mg/

kg), Riluzole (18 mg/kg) or vehicle (DMSO). Treatment contin-

ued once a day for 14 days at which time the mice were

euthanized and the sponges removed and placed in 10% formalin

for vessel analysis. Animals were housed in a pathogen-free facility

and all animal studies were performed in accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the local IACUC at Wayne State

University School of Medicine, Detroit, MI (Protocol Number: 03-

03-11). Surgery was performed using carprofen analgesic and

under ketamine/xylazine anesthesia and all efforts were made to

minimize suffering.

Syngeneic breast tumor model
4T1 cells (36104) were injected into the #4 mammary fat pads

of female BALB/c mice, aged between 6 and 8 weeks old (Harlan

Laboratories), and allowed to grow for 10 days at which time small

tumors had begun to grow (average size of 62 mm3). Mice were

then divided into groups of 10 and treated with daily i.p. injections

of Riluzole (18 mg/kg), Sunitinib (20 mg/kg), or vehicle (DMSO)

for 14 days. Tumor size was measured two to three times a week

using a Vernier caliper and tumor volume was calculated using the

following formula: length 6 width 6 depth/2. Animals were

housed in a pathogen-free facility and all animal studies were

performed in accordance with the recommendations in the Guide

for the Care and Use of Laboratory Animals of the National

Institutes of Health. The protocol was approved by the local

IACUC at Wayne State University School of Medicine, Detroit,

MI (Protocol Number: 03-02-11).

Immunohistochemistry
Sponges and tumor samples were placed in 10% formalin,

paraffin-embedded and sectioned. To stain, sections were first

deparaffinized using two changes of xylene for 3 minutes and

rehydrated through a graded series of ethanol (100%, 95%, 70%,

50%) to water. Sodium citrate was used for antigen retrieval and

sections were blocked in 5% serum from the host of the secondary

antibody. Microvessel density was determined by incubating

sections in either rabbit polyclonal anti-CD31 (Abcam) for sponge

sections or goat polyclonal anti-CD31 (Santa Cruz) for tumor

sections followed by incubation in the appropriate FITC-

conjugated secondary antibodies. Slides were cover-slipped using

SlowFade Gold antifade reagent with DAPI (Invitrogen) and

examined on a Nikon Ti E-Series inverted microscope. Fluores-

cent images were captured under identical conditions where

fluorescent intensity was adjusted to exclude background signal

from the isotype-containing secondary antibody. Sponges were

evaluated for vessel formation by immunofluorescence where

CD31-expressing vessels were counted and averaged. In this

angiogenic model, vessels are not homogenously distributed

throughout the sponges. Instead, they occur in groupings or

‘‘hotspots’’ with at least 5 hotspots occurring per treatment slide.

Therefore, to interpret the effect of Riluzole and BAY36-7620 in

this model, vessels were counted in 5 hotspot fields per slide (2

slides per animal) using ImageJ64 and results expressed as the

average number of vessels per field (2006). Tumors were

Figure 4. Riluzole and BAY36-7620 inhibit endothelial tube formation on Matrigel. HUVEC and HMEC-1 were plated onto Matrigel coated
24 well plates at 26105 cells per well and incubated overnight in the presence of medium containing FBS (1%), VEGF (100 ng/ml) and either 0
(vehicle), 10, 25, or 50 uM Riluzole or BAY36-7620 (BAY) after which cells were photographed and the number of tubes per 46field were counted and
averaged. Both Riluzole (A) and BAY (B) inhibited tube formation in HUVECs in a dose-dependent manner compared to vehicle (DMSO) treated cells.
C and D represent the results of two experiments performed in triplicate in HUVECs and HMEC-1, respectively where * is p,0.05 compared to vehicle
(DMSO) treated cells.
doi:10.1371/journal.pone.0088830.g004
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evaluated for microvessel density by counting and averaging the

number of vessels per tissue area (mm2) using ImageJ64. CD31

stained cells were considered a vessel when a structure contained

more than 2 CD31 positive-stained cells and structures that

formed parts of the same vessel were counted as a single vessel.

Statistical analysis
Data were analyzed using GraphPad Prism version 4 for

Macintosh (GraphPad Software, San Diego, CA). All numerical

results are expressed as mean 6 SEM and statistical analysis was

performed by either one-way or two-way repeated-measures

analysis of variance (ANOVA) followed by a multiple comparison

procedure with the Student-Newman Keuls method. A value of #

0.05 was considered significant.

Results

mGluR1 is expressed in human endothelial cells and
regulates cell proliferation

To determine whether mGluR1 is expressed in human ECs, we

assessed several primary ECs (HDEC, HUVEC, HLEC) or cell

lines (HMEC-1) for mGluR1 by Western blot analysis. mGluR1

was detected in all four EC types with higher levels expressed in

HUVEC and HMEC-1 (Fig. 1A–B). However, these levels were

not significantly different from each other. These results were

similar to GRM1 QPCR results where GRM1 expression levels

were demonstrated in all ECs tested with significantly higher levels

demonstrated in HUVEC (Fig 1C). Using these ECs we assessed

cell proliferation in the presence of the mGluR1 non-competitive

antagonists BAY36-7620 and YM298198, as well as Riluzole, at

various concentrations for up to 3 days. BAY36-7620 and

YM298198 are specific antagonists of mGluR1 that exhibit their

effect through direct association with the receptor [41,42].

Riluzole, in addition to inhibiting mGluR1, has been shown to

affect other signaling pathways as well, including but not limited to

calcium release, PKC, and voltage-gated sodium channels [43].

We chose to test Riluzole despite its significant off-target effects

because, unlike BAY36-7620 and YM298198, Riluzole is FDA-

approved for another indication, amyotropic lateral sclerosis, and

could therefore be rapidly translated to clinical trials through off-

label use as an antiangiogenic agent. In addition, Riluzole shows

minimal toxicity with long-term oral administration [44]. Both

Riluzole and BAY36-7620 significantly inhibited cell proliferation

in all the ECs tested compared to vehicle treated control cells

containing VEGF (Fig. 2). Both HUVEC and HMEC-1 were the

most sensitive to inhibition by either Riluzole (85% and 70%,

respectively) or BAY36-7620 (90% and 91%, respectively) at the

highest concentration tested, which is not surprising given that

they express the highest level of mGluR1 protein (Fig. 1).

YM298198 was also able to inhibit cell proliferation of all ECs

tested, however, this effect was not as robust and was only

significant in three of the ECs, excluding HUVECs. Since

Figure 5. shRNA-mediated knockdown of GRM1 inhibits endothelial tube formation on Matrigel. HUVECs, in which the GRM1 gene was
silenced using GIPZ shGRM1 Lentiviral vectors 1–5 or a non-silencing vector (NS) as described previously (Fig. 3 and Methods section), were plated
onto Matrigel at 26105 cells per well and incubated overnight in the presence of medium containing FBS (1%) and VEGF (100 ng/ml). After overnight
treatment, cells were photographed (A) and the number of tubes formed per 46field were counted using ImageJ64 software and averaged (B). Tube
formation on the Matrigel was significantly inhibited in the HUVECs infected by all the shGRM1 vectors when compared to HUVECs infected with the
NS vector. Results are representative of two experiments performed in triplicate where * is p,0.01 and # is p,0.05 compared to NS-infected cells.
doi:10.1371/journal.pone.0088830.g005
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HUVEC express the highest level of mGluR1, these results suggest

YM298198 to be a weaker antagonist of mGluR1 compared to

Riluzole or BAY36-7620.

To confirm a role for mGluR1 in mediating cell proliferation,

HUVECs were transduced with Lentiviral vectors expressing one

of five GRM1 silencing shRNAs or a non-silencing control vector

(NS) and after which they were stably selected using puromycin

(1 ug/ml) and then cell proliferation was measured. According to

Western and QPCR analysis, ten days after infection, both

mGluR1 protein levels and GRM1 message were inhibited in all

shGRM1-infected cells compared to NS vector-treated cells

(Fig. 3A–C). GRM1 message was significantly inhibited by a

maximal 60–75% in the HUVECs infected with all the shGRM1

vectors except # 2 (Fig. 3A). Interestingly, there was a strong

association between the potency of vectors #3-5 at knocking down

GRM1 message with its ability to inhibit mGluR1 protein

expression (Fig. 3B–C). Cell proliferation, which was assessed 10

days post-infection, was significantly inhibited in all the shGRM1-

silenced cells with maximal inhibition averaging around 50%,

compared to the NS VEGF-treated cells (Fig. 3D).

mGluR1 regulates Matrigel tube formation in HUVEC and
HMEC-1

To assess whether mGluR1 mediates angiogenesis, we mea-

sured the effect of Riluzole and BAY36-7620 on tube formation by

HUVECs and HMEC-1 cells when plated on serum-reduced

Matrigel in the presence of VEGF. We chose these two inhibitors

because of their ability to inhibit cell proliferation in these cells.

The ability of HUVEC (Fig 4A–C) and HMEC-1 (Fig. 4D) to form

tubes on Matrigel was significantly inhibited in a dose-response

manner by Riluzole (48% and 60%, respectively) and BAY36-

7620 (98% and 96%, respectively) at the highest concentrations

tested. Interestingly, BAY36-7620, which is a more specific

inhibitor of mGluR1, demonstrated a greater inhibitory effect on

tube formation than Riluzole in both HUVECs and HMEC-1

cells. These results suggest that mGluR1 plays a role in mediating

the angiogenic process. To further confirm this role, we repeated

the Matrigel tube formation assay using the same shRNA-infected

HUVECs as described above (Fig. 5A). Tube formation was

significantly inhibited in all the shGRM1-infected cells when

compared to NS-infected control, with a maximal inhibitory effect

of approximately 35% in all the shGRM1-infected cells except #3

(Fig. 5B). All of the tube formation experiments were performed in

the presence of low serum (1%) and 100 ug/ml VEGF (required

for tube formation) and MTTs were performed in parallel to

confirm any possible effect of cell growth on tube formation.

mGluR1 inhibits the angiogenic process in vivo
To determine whether mGluR1 can mediate angiogenesis in

vivo, we utilized the Matrigel sponge model originally developed

by Nor and Polverini [40]. Matrigel-containing human dermal

microendothelial cells were seeded into porous matrices (sponges)

and implanted subcutaneously into the flanks of immunodeficient

(nude) mice, which were then treated with Riluzole, BAY36-7620,

or vehicle (DMSO). After two weeks of treatment, when maximum

vessel formation is known to occur [40], the sponges were

harvested and the vessels stained with CD31 to visualize for

counting. Even though vessel count was relatively low, we were

able to detect a significant reduction in the number and size of the

vessels formed in the sponges from the inhibitor-treated mice

compared to the vehicle-treated mice. In the sponges from both

the Riluzole and BAY36-7620 treated mice, vessel formation was

inhibited by approximately 50% when compared to the vehicle-

treated mice (Fig. 6).

Figure 6. Riluzole and BAY36-7620 (BAY) inhibit angiogenesis in a Matrigel sponge assay. Polylactic sponges containing 16106 human
dermal microendothelial cells were implanted subcutaneously into the flanks of athymic nude (nu/nu) mice. The next day, dosing i.p. with Riluzole
(18 mg?kg21?d21) or BAY (10 mg?kg21?d21) was begun and continued for 2 weeks before harvesting. A. Vessels were identified by immunostaining
using anti-CD31 antibody (green) and counterstained with DAPI (blue). Arrows indicate an average size vessel in each group. B. The number of CD31-
expressing vessels in 5 hotspot fields per slide (2 slides per animal) was determined using ImageJ64 and the results expressed as the average number
of vessels per field. Both Riluzole and BAY significantly inhibited vessel formation by approximately 50% compared to vehicle (DMSO) treated animals
where * is p,0.05 compared to vehicle treated mice and n = 5 mice per treatment group.
doi:10.1371/journal.pone.0088830.g006
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Recently, we have discovered that mGluR1 is expressed and

active in breast cancer cells and that Riluzole, at doses equivalent

to doses already being used clinically in humans to treat ALS, can

significantly inhibit the growth of breast tumor xenografts [38].

Since angiogenesis is known to play an important role in the

development and progression of breast cancer, we wanted to

estimate the extent to which Riluzole can inhibit the angiogenic

process in breast tumors. To test this, we used the 4T1 syngeneic

murine mammary tumor model because this model has been

demonstrated to have a strong vascular component [45,46]. We

injected 4T1 cancer cells into the mammary fat pads of mice and,

7 days after injection, started dosing the mice with Riluzole,

Sunitinib, a known inhibitor of angiogenesis, or vehicle (DMSO).

Similar to its effect on tumor progression in the MDA231

xenograft model, Riluzole was able to inhibit tumor progression in

the 4T1 model, significantly inhibiting growth by approximately

50% as early as day 9 compared to the vehicle-treated tumors

(Fig. 7A). As expected, Sunitinib had a similar effect on tumor

growth, significantly inhibiting tumor growth by approximately

50% that reached significance by day 14. By CD31 staining, we

were able to visualize the vessels in the tumors from these mice

(Fig. 7B–C). Even though vessel count was relatively low in the

tumors from the vehicle-treated mice (Fig. 7C), there was a

significant reduction in microvessel density demonstrated in both

Riluzole and Sunitinib-treated mice. Microvessel density in both

the Riluzole and Sunitinib-treated tumors was inhibited by

approximately 60% and 80%, respectively compared to vehicle-

treated tumors (Fig. 7C). This result suggests that Riluzole, in

addition to its direct effect on tumor cell growth [38], might

mediate tumor progression through its inhibitory effect on the

angiogenic process. Further experiments will be required to

determine the relative importance of the antiangiogenic effect of

Riluzole compared to its direct effect on ECs or an indirect effect

through its action on tumor cells (e.g., inhibiting the release of pro-

angiogenic factors).

Discussion

In this study, we detected expression of mGluR1 by ECs and,

using pharmacological inhibitors and gene silencing, demonstrate

a novel role for mGluR1 in mediating various steps of the

angiogenic process including EC proliferation, Matrigel tube

formation and vessel formation in vivo. To our knowledge, this is

the first study in which mGluR1 has been shown to play a role in

mediating the angiogenic process. In a previous study, Riluzole

was shown to inhibit VEGF-stimulated EC proliferation and vessel

formation in a rat model of ROP, mediating its effect through

PKC [15]. Although Riluzole is widely known to inhibit glutamate

release [16,17], it does not act directly on glutamate receptors.

Rather, it is thought to indirectly inhibit glutamatergic signaling,

either through inhibition of glutamate release through its action on

ion channels or through its ability to inhibit downstream mediators

and targets of mGluR1, such as PKC [14], voltage gated sodium

and calcium channels [43,47].

In the present study, mGluR1 gene silencing resulted in

endothelial growth inhibition and reduced vessel formation,

suggesting a role for mGluR1 as a mediator of angiogenesis.

Figure 7. Riluzole inhibits tumor growth and reduces microvessel density in the 4T1 syngeneic breast tumor model. 4T1 breast cancer
cells (36104) were injected into the mammary fat pad of BALB/c mice. Treatment with either Riluzole (18 mg?kg21?d21), Sunitinib (20 mg?kg21?d21),
or vehicle (DMSO) was initiated in established tumors (62 mm3) on day 10 post tumor cell injection and continued for 14 days. Tumor volumes were
measured two or three times weekly and mean tumor volume 6 SEM was determined (A). * is p,0.05 and n = 10 mice per treatment group. B.
Tumor sections analyzed for microvessel density by immunofluorescent staining using anti-CD31 antibody (green) and counterstained with DAPI
(blue) (10006). C. When compared to vehicle-treated mice, microvessel density was significantly inhibited in both the Riluzole and Sunitinib- treated
mice. Microvessel density was determined by counting and averaging the number of vessels per tissue area (mm2) per slide using ImageJ64 (1006
magnification) and as described previously (Methods section) where * is p,0.05 compared to vehicle-treated mice and n = 10 slides per treatment
group.
doi:10.1371/journal.pone.0088830.g007
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mGluR1 is a member of the Group I mGluR family which, being

GPCRs, are primarily coupled to the activation of Gaq/11

proteins which stimulate the PLCb pathway, resulting in the

cleavage of phosphatidylinositol-4,5-bisphosphate into inositol-

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) [27,31,34].

Both DAG and IP3 (by stimulating release of calcium from

intracellular stores) activate PKC which has also been shown to

activate phospholipase D, phospholipase A2 as well as to modulate

a variety of ion channels [32,33]. Since the angiogenic process is

highly dependent on VEGF and PKC is a downstream mediator

of VEGF activity, it is possible that PKC acts as a coincidence

detector, whereby both VEGF and mGluR1 activity are required

for its full activation. Indeed, in a previous study in melanoma

cells, stimulation of mGluR1 activated PKC epsilon and ERK1/2

[48] suggesting that this isoform may be involved in mediating

mGluR1 effects in endothelial cells as well. In addition to PKC,

stimulating group I mGluRs in various neuronal populations

activates other protein kinases as well, including cAMP dependent

protein kinase (PKA), calcium calmodulin-dependent protein

kinases (CaMKs), mitogen-activated protein kinases (MAPKs),

phosphoinositide 3-kinase (PI3K), mammalian target of rapamycin

(mTOR), p70 S6 kinase, casein kinase 1, and cyclin-dependent

protein kinase 5 [26,27,33,34,49–52]. In addition, the PKA,

CaMKs, MAPKs, and PI3K pathways have been shown to link

group I mGluRs to transcriptional changes as well [27,31,35].

Therefore, whether mGluR1 is capable of mediating the

angiogenic process by modulating VEGF activity, or indepen-

dently, through activation of other protein kinase pathways

including PKA, CaMKs, MAPKs, or PI3K, or both, is unknown

and is the current focus of our lab.

We have previously identified mGluR1 receptors in triple

negative breast cancer cells and have demonstrated that inhibiting

mGluR1 activity with BAY36-7620 or Riluzole, at doses

equivalent to doses already being used clinically in human beings

to treat ALS, significantly inhibits the growth of MDA-MB-231

xenografts in mice [38]. In the current study, we have also

observed that inhibiting mGluR1 activity with Riluzole signifi-

cantly inhibits the growth of 4T1 tumors and also results in

reduced vessel formation, suggesting that mGluR1 can inhibit

angiogenesis within the tumor microenvironment. Therefore, it is

plausible that mGluR1 plays a dual role in TNBC, both in the

tumor compartment, where it directly stimulates tumor cell

growth, and in the tumor microenvironment, where it stimulates

angiogenesis. The results of this study suggest that mGluR1

represents a promising molecular target in TNBC, an aggressive

type of breast cancer with a strong vascular component. Because

Riluzole is already an FDA-approved drug with low toxicity and

few side effects, the repurposing of Riluzole for the treatment of

TNBC may represent a promising therapeutic strategy. It is not

difficult to envision using Riluzole in combination with conven-

tional therapy such as chemotherapy and radiation therapy, which

we have already shown to work in synergy with VEGF therapy in

various cancers [53] or in a role similar to aromatase inhibitors

and Tamoxifen in hormone-responsive breast cancers.
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