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Abstract

The objective of this study was to characterize the normal microbiome of healthy canine

vagina and endometrium and to determine the effect of the stage of estrous, on the resident

microbiome. Cranial vaginal swabs and uterine biopsy samples were collected from twenty-

five bitches in five different stages of estrous at elective ovariohysterectomy (OVH). Over 4

million reads of the V4 region of 16S rDNA gene were obtained and used for further analy-

ses. A total of 317 genera belonging to 24 known phyla were identified. The endometrium

was higher in bacterial diversity while the vagina was higher in richness. Proteobacteria,

Bacteroidetes and Firmicutes were the most abundant phyla observed across all samples.

Hydrotalea, Ralstonia, and Fusobacterium accounted for nearly 60% of the OTUs identified

in the vagina while organisms identified in the endometrium were more evenly distributed.

Pseudomonas, Staphylococcus, and Corynebacterium were the prominent genera in the

endometrium. The microbiome of the endometrium was distinctly different from that of the

vagina. There was large animal-to-animal variation. Other than the vaginal microbiome of

bitches in estrus (i.e. in heat), there were no distinct clustering of the organisms based on

the stage of estrous. These findings establish the presence of a resident microbiome of the

endometrium throughout all stages of estrous cycle.

Introduction

While it is established that the cranial vagina of mammals harbor a thriving microbial ecosys-

tem, the uterus was long considered a sterile environment in order to sustain a successful preg-

nancy. This paradigm was recently challenged by the observation that the human placenta

harbors a diverse microbiome [1, 2]. There is little information available on canine reproduc-

tive tract microbiota and all available data has been obtained using culture-based techniques

[3–7]. It has been established that standard culture-based techniques fail to detect>90% of res-

ident microflora [8], underestimate diversity [9], and overestimate the role of culturable bacte-

ria [10].
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A recent study utilizing culture-independent 16S ribosomal RNA (rRNA) sequence analysis

of the bovine and ovine vaginal microbiota from ectocervicovaginal lavages revealed that cow

and ewe vaginal microbiota are unique from previously described vaginal microbial ecosys-

tems [11]. Similarly other studies specifically investigating the bovine uterine bacterial micro-

biota in healthy and metritic postpartum dairy cows found a significant diversity in the

type and succession of bacterial communities related to clinical signs and in time progression

[12–15].

Although the presence of commensal microorganisms in the uterine lumen is generally

accepted in human medicine [2, 16, 17], the general consensus in canine medicine still is that

the normal uterus is a sterile environment [18]. Many microbes are implicated in infertility

and pregnancy loss [19, 20]. Culture of uterine swabs are performed routinely in bitches that

fail to get pregnant with normal breed/cycle management and presence of any growth calls for

antibiotic intervention [21]. As far as we are aware, this is the first comprehensive study of

uterine and vaginal microbiota of normal, healthy bitches using a culture-independent tech-

nique. We provide essential and compelling evidence, that the canine uterus has a thriving

microbial ecosystem and that treating a breeding bitch with antibiotics in the absence of

abnormal diagnostic findings is counterproductive.

Here we describe a culture-independent approach to evaluate bacterial population structure

and diversity of the cranial vagina and the endometrium of 25 clinically healthy bitches at vari-

ous stages of estrous. We present a comparative analysis of the microbiomes of the vagina and

the endometrium, organisms identified in both environments at both phylum and genus lev-

els, and differences observed at different stages of estrous.

Material and methods

Animals

Fifty young, healthy bitches presented to Oklahoma State University, Boren Veterinary Medi-

cal Hospital for elective ovariohysterectomy (OVH) were utilized in sample collection. Dogs

with clinical signs of estrus (i.e. in heat) were noted. None of the animals had recent antibiotic

exposure. Bitches were induced and anesthetized using an accepted shelter protocol: Telazol-

Torbugesic-Dexdomitor (Pfizer Animal Health, Parsippany, NJ) [22]. Once a level surgical

plane of anesthesia was obtained, each patient had blood samples collected for hormonal

assays. Samples for vaginal culture and cytology were collected using a standard technique

[21]. Briefly, after placing a sterile otoscope cone beyond the vaginal vestibule, a sterile cultur-

ette swab (Becton Dickinson, Franklin Lakes, NJ) was passed through the speculum to contact

the anterior vagina. The swab was placed inside of a sterile Eppendorf tube or sterile cryovial

tube for transport to the lab. Vaginal epithelial cell samples were obtained by passing a vaginal

cytologic brush through a vaginal speculum. A vaginal smear was prepared immediately and

processed in Diff-Quick stain (Cole-Palmer, Vernon Hills, IL). The slides were evaluated to

assist in classification of stages of estrous. Patients were then moved to the surgical suite for

ovariohysterectomy. The reproductive tract was removed using sterile surgical technique. The

uterine body was clamped and ligated proximal to the cervix. Two sections of uterine endome-

trial samples (1cm X1cm) were obtained using sterile Metzenbaum scissors and stored in indi-

vidual sterile Eppendorf tubes or sterile cryovial tubes appropriate for liquid nitrogen

cryopreservation of the endometrium until DNA extraction. Blood samples were evaluated

using ELISA progesterone assay. Animal use and procedures were approved by the Oklahoma

State University Institutional Animal Care and Use Committee (IACUC VM-14-42). All ani-

mals used in this study belonged to the Humane Society of Stillwater and were undergoing

mandatory ovariohysterectomy prior to being offered for adoption. The director of the
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Humane Society approved of the collection of samples for the research described in this

manuscript.

Estrous cycle based group designation

Of the fifty animals that were utilized in sample collection, five animals whose samples clearly

demarcated the stage of cycle were assigned to one of five groups based on the stage of the

estrous cycle: pre-pubertal, anestrus, pro-estrus, estrus or diestrus (n = 5 per group) giving a

total of twenty-five animals. Staging of the cycle was accomplished retrospectively via serum

progesterone analysis and by interpretation of vaginal cytology (superficial cornification, or

lack thereof) obtained immediately prior to the time of surgery, after which the samples were

allocated to their respective groups. Pre-pubertal group was determined by age.

DNA Isolation

Paired vaginal swab and endometrial biopsy samples from each animal were obtained for

DNA extraction. 0.4g of tissue was ground up in liquid N2 and total DNA was extracted from

individual samples using QiAamp DNA mini kit (Qiagen, Germantown, MD) and following

manufacturer’s instructions. A 0.8% (wt/vol) low melting point agarose gel was used to mea-

sure DNA quality. DNA was purified by using the Agarose Gel DNA Purification Kit (TaKaRa

Bio USA Inc., Mountainview, CA, USA). Purified DNA was quantified using a NanoDrop

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). We obtained

161–605 ng/μl DNA from endometrial biopsies and 58–128 ng/μl DNA from vaginal swabs.

Each batch of DNA extractions and each new QiAamp DNA mini kit used were accompanied

by a negative control consisting of H2O roughly at the same volume as the samples analyzed.

Negative controls yielded 2–10 ng/μl DNA which was around the published minimal detection

level of the NanoDrop instrument that was used for quantifying DNA. All DNA extractions

were subjected to PCR amplification using 515F and 806R primer pair described below. All

biopsy and swabs samples showed robust amplification of microbial DNA while the negative

controls did not have a visible band after 35 cycles of amplification. Samples were stored at

-20˚C. Frozen DNA samples were sent to Molecular Research LLC for sequence analysis. Neg-

ative controls were not sequence analyzed as their concentration and quality was far below the

threshold acceptable to the sequence provider.

PCR amplification and DNA sequencing

A ~250 bp fragment from ribosomal v4 region was PCR-amplified from resulting DNA. PCR

amplification and amplicon sequencing was performed by Molecular Research LLC (Mr.

DNA), Shallowater, TX using their established protocols [23]. Briefly, an aliquot of 50 ng DNA

was used as template for PCR amplification. The V4 region of 16S rRNA gene was amplified

using the primer pair 515F (5’- GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGAC
TACHVGGGTWTCTAAT-3’) with added barcodes on the forward primer. DNA was amplified

in a 28-cycle PCR using HotStarTaqPlus Master Mix Kit (Qiagen, USA) under the following

conditions: 94˚C for 3 minutes, followed by 28 cycles of 94˚C for 30 seconds, 53˚C for 40 sec-

onds, and 72˚C for 1 minute. Afterward, a final elongation step of 72˚C for 5 minutes was

performed.

A 2% agarose gel was used to determine the success of PCR amplification. DNA was puri-

fied using Qiagen Gel Extraction Kit (Qiagen, USA). Multiple barcoded samples were pooled

in equal proportions based on their molecular weight and DNA concentrations. Pooled sam-

ples were purified with calibrated Ampure XP beads. The resulting pooled and purified PCR

product was used to prepare Illumina sequencing library. The library was constructed using
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TruSeq DNA PCR-free sample preparation kit (Illumina Inc., San Diego, CA) following

instructions and index codes were added. The library was quality tested on a Qubit 3.0 fluo-

rometer (ThermoScientific, Waltham, MA) and an Agilent Bioanalyzer 2100 system (Agilent

Technologies, Santa Clara, CA). The library was sequenced on Illumina HiSeq2500 platform

(Illumina) and 250bp paired-end raw reads were generated.

Bioinformatic analysis

Mothur 1.37 was used for data mining following the MiSeq standard operating procedure

(SOP) [24]. Briefly, paired-end reads were assembled and assigned to each sample based on

their unique barcode and then truncated by removing barcodes and primer sequences.

Sequence reads that were over 273 bp in length, those that contained homoploymeric tracts of

longer than 8 bp in length, those that had more than one mismatch against primer sequences,

contained undetermined bases, ambiguities, or did not align to V4 hypervariable region were

removed from the analysis. Qualified contigs were further processed with commands ‘trim.

seqs’ and ‘pre.cluster’. Uchime was used to remove chimeric sequences [25]. Alignment of V4

region against SILVA rRNA ref nr123 [26] was performed using mothur (Needleman-Wunsch

algorithm). Qualified sequences were classified into operational taxonomic units (OTUs)

based on at least 97% similarity (OTU0.03). All sequences of OTU0.03 were assigned into taxo-

nomic groups at the bootstrap threshold of 80%. Samples were randomly normalized to the

sample with the least amount of sequencing reads to avoid sequencing bias. Alpha diversity

was calculated using command ‘summary.single’ in mothur. Beta diversity was measured

using Unifrac-based metrics generated with command ‘unifrac.weighted’ [27]. Raw sequenc-

ing data was submitted to Sequence Read Archive (SRA) at NCBI (access number SRP

115220).

Statistical analyses

R 3.3.2 statistical analysis software [28] was used to perform one-way analyses of variance

(one-way ANOVA), t-test, and Tukey’s honest significant difference (HSD) test. Differences

were labeled as significant when the P value was<0.05. The unweighted pair group method

with arithmetic mean(UPGMA) algorithm was performed using phangorn package in R [29].

The UPGMA tree was used to reveal the similarity of bacterial community composition.

Linear discriminant analysis (LDA) Effect Size (LEfSe) was used to determine the change in

relative abundance of the bacterial community [30]. The non-parametric factorial Kruksal-

Wallis (KW) sum-rank test was first used to determine taxa with significant abundant differ-

ences (P<0.05). The unpaired Wilcoxon rank-sum test was used to compare the significant

abundant differences among taxa (P<0.05). Linear Discriminant Analysis was applied to cal-

culate effective size of abundant differences. Neighbor-joining trees were generated using

MEGAN Community Edition [31]. The Shannon diversity index was calculated using mothur

and principal coordinate analyses (PCoA) was calculated based on the distance matrix.

Results

16S rDNA sequencing resulted in 4,134,024 paired-end reads. After removal of ambiguous

and low-quality reads, 3,527,169 reads remained resulting in 70,543±51,247 reads per sample.

A taxonomy rarefaction curve (data not shown) indicated that the utilized sequencing depth

was sufficient to saturate the bacterial diversity in canine endometrium and vagina. Next-gen-

eration sequencing with barcoded and pooled amplicons generates large variations in reads

among samples. To eliminate sample size bias in downstream comparative analyses, we sub-

sampled every animal/tissue to normalize the reads to that with the lowest number of reads
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[24, 32, 33]. After this process, 572,100 reads were selected for OTU classification. Of these,

562,971 reads were assigned to 24 known phyla and 384,974 sequence reads were classified

into 317 known genera. Phylum Proteobacteria had the highest diversity with 120 OTUs, fol-

lowed by Firmicutes (74 OTUs), Actinobacteria (46 OTUs), Bacteroidetes (38 OTUs), and

Fusobacteria (5 OTUs). Proteobacteria was also the most abundant phylum at 24.23% followed

by Bacteroidetes (17.32%), Firmicutes (14.4%), Actinobacteria (8.06%) Tenericutes (6.22%)

and Fusobacteria (3.27%). Proteobacteria, Bacteroidetes, and Firmicutes, the three dominant

phyla, accounted for 55.99% of the total bacterial community. Only three phyla, Proteobac-

teria, Bacteroidetes and Fusobacteria, were found in all 50 samples while Actinobacteria, Fir-

micutes and Tenericutes were observed in at least 47 samples. Bacteroidetes (34.3%),

Proteobacteria (26.2%), Tenericutes (15%), and Firmicutes (12.9%) were the most prevalent

phyla in the vagina while Proteobacteria (38.8%), Firmicutes (26.2%), Actinobacteria (18.2%),

and Bacteroidetes (9.4%) were the most prevalent phyla in the uterus (Fig 1, Table 1). Of the

24 phyla identified in this study, Cyanobacteria, Elusimicrobia, Gemmatimonadetes, Lenti-

sphaerae, and Thermotogae were only found in the vagina while Armatimonadetes, Chlamyd-

iae, and Deferribacteres, were only identified in the uterus. Chloroflexi, Deinococcus-

Thermus, Planctomycetes, Spirochaetes, Synergistetes, and Verrucomicrobia were extremely

rare in the vagina (<5%). Firmicutes:Bacteroidetes ratio was lower in vagina compared to the

uterus (0.38 and 1.61 respectively).

At genus level (Fig 2 and S1 Table), 317 genera were identified in the endometrium and

vagina (248 in the endometrium and 254 in the vagina); Hydrotalea, Ralstonia, and Myco-
plasma accounted for 59.4% of the organisms identified in the vagina while the endometrium

had a more evenly distributed microbiome. Microbiome of the endometrium was also more

diverse than that of the vagina. Hydrotalea, Ralstonia, Mycoplasma, Fusobacterium and Strep-
tococcus were the predominant species in the vagina; whereas Pseudomonas, Staphylococcus,
and Corynebacterium were the predominant species in the uterus. Four genera, Hydrotalea,

Fig 1. Bacterial community composition in canine endometrium and vagina. Community composition at phylum level.

https://doi.org/10.1371/journal.pone.0210157.g001
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Ralstonia, Pseudomonas, and Fusobacterium existed ubiquitously across all samples accounting

for 33.24% of the community while 92 (28.93%) genera were present only in single samples.

Those represented 0.24% of the population. At genus level, we found the bacterial community

in the vagina to be higher in richness and the uterus was more diverse (Table 2). The difference

Table 1. Bacterial phyla identified in the endometrium and vagina. The numbers represent OTUs that could be

classified into a known genus after subsampling (384,974 reads). Phyla ordered alphabetically. E = endometrium,

V = vagina.

Phylum (n = 24) E (n = 19) V (n = 20)

Acidobacteria 54 102

Actinobacteria 32269 8685

Aquificae<phylum> 16 2

Armatimonadetes 50 0

Bacteroidetes 16706 71279

Chlamydiae 45 0

Chlorobi 1 5

Chloroflexi 319 14

Cyanobacteria 0 2

Deferribacteres <phylum> 5 0

Deinococcus-Thermus 7037 145

Elusimicrobia 0 1

Firmicutes 46560 26831

Fusobacteria 1806 14803

Gemmatimonadetes 0 4

Lentisphaerae 0 3

Nitrospirae 1 0

Planctomycetes 647 5

Proteobacteria 68861 54304

Spirochaetes 1725 32

Synergistetes 96 1

Tenericutes 357 31255

Thermotogae <phylum> 0 1

Verrucomicrobia 909 37

https://doi.org/10.1371/journal.pone.0210157.t001

Fig 2. Bacterial community composition in canine endometrium and vagina. Community composition at genus

level. Only the top 25 genera are depicted in the key for clarity.

https://doi.org/10.1371/journal.pone.0210157.g002
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was not statistically significant in diversity, although richness between endometrial and vaginal

microbiomes was significantly different (P = 0.0051).

We did not find significant differences in diversity (Shannon) and richness (Ace) among

endometrial and vaginal samples between different stages of estrous in one-way ANOVA.

However, Tukey’s HSD analysis shows a significant difference in diversity among vaginal

microbiomes of animals in estrus (i.e. in heat) and those pre-pubertal (P<0.05). There was a

significant difference in richness among endometrial samples at estrus and pro-estrus as well

as vaginal samples in animals in estrus and those in pre-pubertal stage (Fig 3). Endometrium

at estrus was the lowest in richness while the vagina at estrus and pro-estrus stages had the

highest richness (Table 3).

We evaluated the similarities between reproductive tract microbiota in bitches using the

neighbor-joining tree approach of MEGAN [31] at genus level (Fig 4). As expected, there was

a reasonably high inter-sample variability among samples. Vaginal samples clustered

Table 2. Diversity and Richness estimates of the endometrium and vagina at genus level.

DIVERSITY RICHNESS

ENDOMETRIUM 3.06 ± 0.65 7565.72 ± 2941.09

VAGINA 2.75 ± 0.512 10640.37 ± 2756.26

https://doi.org/10.1371/journal.pone.0210157.t002

Fig 3. Variation in diversity (Shannon index) and richness (Ace) in endometrium (E) and vagina (V) at different stages of estrous cycle. Anestrus (ae) is depicted

in red, diestrus (de) in green, estrus (e) in yellow, pro-estrus (pe) in purple, and pre-pubertal (pp) in dark beige.

https://doi.org/10.1371/journal.pone.0210157.g003
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Table 3. Diversity and richness estimations of endometrial and vaginal samples at different stages of estrous. (AE = anestrus, DE = diestrus, E = estrus, PE = pro-

estrus and PP = pre-pubertal).

DIVERISTY RICHNESS

Endometrium Vagina Endometrium Vagina

AE 2.81 ± 1.12 2.74 ± 0.61 7202.88 ± 5676.79 8598.18 ± 4667.98

DE 3.01 ± 0.76 2.65 ± 0.36 8210.13 ± 2819.41 9596.02 ± 878.71

E 2.97 ± 0.28 3.61 ± 0.42 4724.86 ± 1235.92 14495.97 ± 2126.36

PE 3.28 ± 0.59 2.46 ± 0.83 9618.37 ± 2299.23 12062.65 ± 3159.39

PP 3.22 ± 0.5 2.29 ± 0.34 8072.34 ± 2674.12 8449.01 ± 2948.87

https://doi.org/10.1371/journal.pone.0210157.t003

Fig 4. Neighbor-joining tree drawn at genus level. Circles represent endometrial samples while triangles are vaginal samples. Stages of estrous are color-coded.

Anestrus (ae)-yellow, estrus (e)-green, diestrus (de)-green, pro-estrus (pe)-red, and pre-pubertal (pp)-gray.

https://doi.org/10.1371/journal.pone.0210157.g004
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independent of the endometrial samples at all stages of estrous. The same was observed in

Principal Coordinates Analysis (PCoA) (Fig 5). Other than vaginal samples from animals in

estrus, there was little correlation between microbiomes and the stage of estrous. Vaginal sam-

ples at estrus were high in similarity and clustered strongly together. We did not observe simi-

lar clustering in any of the other stages of estrous in either tissue.

We further confirmed the differentially abundant taxa by LEfSe, an algorithm for bio-

marker discovery that uses LDA to estimate the effect size of different taxa differentially repre-

sented in different environments (Fig 6). We used a cutoff LDA score of�2.0 for further

analysis. Ralstonia was the most common differentially abundant species in the vagina scoring

LDA scores >5.0 in all stages of estrous. Vagina at estrus had the largest number of genera

(n = 24) that had LDA scores>2.0.

Discussion

Although the mammalian vagina was known to harbor a rich microbial ecosystem, other than

the well-described work done on the human reproductive tract [34–40], only a few non-

human vaginal microbiomes have been described to date [11, 41–43]. The endometrium on

the other hand, was considered a sterile environment [44, 45] until a few years ago when that

Fig 5. Principal Coordinates Analysis (PCoA). Distribution of bacterial communities based on the tissue and stage of estrous cycle. Community composition is

measured using a UniFrac-weighted matrix. Vaginal samples are in blue and endometrial samples are in red. Anestrus-(ae), estrus-(e), diestrus-(de), pro-estrus-(pe)

and pre-pubertal-(pp).

https://doi.org/10.1371/journal.pone.0210157.g005
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paradigm was challenged by the observation that the human placenta possesses a small but

diverse microbiome [1, 44]. Although the presence of a placental microbiome has been ques-

tioned recently due to the possibility of contamination [46, 47], the presence of a rich micro-

biome in the mammalian endometrium was established in several species [48–51]. A few

studies have been performed exploring the microbiome of the canine reproductive tract [3, 6,

52–56], however these were all performed based on culture-based techniques that fail to iden-

tify a majority of organisms that inhabit a given ecosystem.

In this study, we sought to establish the vaginal and endometrial microbiomes of healthy

bitches. Samples were collected from 50 bitches and the stage of estrous cycle was determined

by serum progesterone analysis and vaginal cytology. Five animals were picked from each of

the five stages of estrous for sequence analysis. All animals used in this study were stray or

abandoned animals presented to a local animal shelter and, as such, we had no information on

their exact age or breed. Most animals looked cross-bred. Although estimated age and the

most probable breed composition of the animal was recorded, we did not select animals based

on those two criteria. We were able to amplify 16S rDNA fragments from each sample. How-

ever, our methodology does not allow us to estimate the total amount of rDNA fragments

amplified from each sample and as such, we cannot infer the density of microorganisms in any

one of the samples. We found the vagina to be much higher in richness (number of different

species) but lower in diversity (number of species and abundance of each species) compared to

Fig 6. Linear discriminant analysis (LDA) effect size (LEfSe) analysis of endometrial (e) vs. vaginal (v) samples at different stages of estrous cycle. LefSe analysis

identifies genera that differ significantly between the endometrium (e) and vagina (v). Relative abundance was considered significant when P<0.05 and LDA Score

�2.0. Anestrus-(ae), estrus-(e), diestrus-(de), pro-estrus-(pe), and pre-pubertal-(pp).

https://doi.org/10.1371/journal.pone.0210157.g006
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the endometrium (Table 2). The lower diversity is because 59.4% of the OTUs identified in the

vagina belonged to three genera, Ralstonia, Hydrotalea, and Mycoplasma (S1 Table). The

vagina at estrus (i.e. in heat) was the most diverse as well as the highest in richness (Table 3).

The differences however were not statistically significant except between estrus and pre-puber-

tal stage (Fig 3). The lack of significant differences among vaginal microbiomes at main stages

of estrous cycle is consistent with that seen in Göttingen minipigs [57]. Organisms identified

as major occupants of the vaginal microbiome in this study are different from other published

studies on canine vaginal microbiome. The most commonly isolated organisms in studies that

are older than 10 years include; Escherichia coli, Streptococcus canis, Pasteurella multocida,

Staphylococcus aureus and Staphylococcus pseudintermedius [3, 4, 58]. Of more recent studies,

Maksimovic’ et al. [6] found Staphylococcus spp, Streptococcus spp, Escherichia coli, and Proteus
spp. to be the most prevalent species and Hutchins et al. [7] found Staphylococcus pseudinter-
medius, Streptococcus, Enterococcus, and Escherichia coli to be the most prevalent species.

Although we detected 9184 OTUs of Streptococcus spp they only represented 4.4% of the popu-

lation (S1 Table). Staphylococcus represented 1.5% of the population, Enterococcus represented
.006% of the population, and we only detected Proteus in the endometrium. Surprisingly, we

did not detect any members of the genus Escherichia in our study. As noted before, all previous

studies have been conducted using culture-based technologies making a direct comparison dif-

ficult. Culture-based technologies are biased towards organisms that grow well in culture

media, aerobic organisms, and those that have a faster growth time. Lactobacilli is the most

common organism identified in humans ranging from 70–100% of human vaginal microbiota

[59–61]. We observed 76 OTUs representing Lactobacillus spp in the vagina and 25 OTUs in

the endometrium. Lactobacilli in the canine vagina represented 0.03% of the population. The

low abundance of Lactobacilli is consistent with what is observed in the cow and ewe repro-

ductive tracts [11] and could be attributable to the near neutral to alkaline pH [62] of the

canine vagina. Hydrotalea was the most prevalent genus in the vagina and accounted for over

25% of the organisms identified in the canine vagina. Hydrotalea belong to the family Bacteroi-

detes and is generally known as an aquatic species [63]. To our knowledge, other than low-

level presence in a single study on antibiotic-induced changes in rat gut [64], Hydrotalea has

never been reported in microbiomes of land-dwelling animals. Ralstonia accounted for 20.8%

of organisms detected in the vagina. Ralstonia belongs to the phylum Proteobacteria and is not

commonly associated with animals and no members of the genus is known to be pathogenic.

It has never been reported in a healthy mammalian vagina although it has been reported in

low concentrations in women that had levonorgestrel containing intrauterine devices placed

in them (0.8% in vagina, 7.8% in uterus) [65] and in one study of women diagnosed with clini-

cal vaginosis (0.8%) [66]. Mycoplasma (13.2%) was the third most abundant species. Although

Mycoplasma was present in all 25 samples we tested, it is not considered a major organism in

normal, healthy, vaginal flora of humans or animals [67]. However, it has been reported in

bacterial vaginosis and other disease statuses in humans for decades [66, 68]. Watts et al., failed

to culture mycoplasma from the reproductive tract of bitches at different stages of reproductive

cycle [56], while it was isolated from bitches treated with ampicillin and trimethoprim-sulfa-

methoxazole [69]. We found high numbers of Mycoplasma ubiquitously present in all the sam-

ples we tested from the vagina and they were detected at much lower concentration (0.18%) in

the endometrium suggesting that it is a commensal organism in the healthy canine reproduc-

tive tract.

In contrast to the vagina, we found the microbiome of the endometrium more evenly dis-

tributed. Although the phyla Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes

accounted for 92.6% of the 19 phyla identified in the endometrium (Table 1, Fig 1), the distri-

bution of the organisms at genus level was more even (S1 Table, Fig 2). Pseudomonas (9.9%),
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Staphylococcus (6.5%) and Campylobacter (5.8%) were the most prevalent genera. Unlike in

the vagina, no organism represented more than 10% of the population. This distribution is in

stark contrast to endometrial microbiomes found in other species. In different human studies,

endometrial microbiomes ranged from Bacteroides predominance [51], Prevotella, Fusobacter-
ium, and Jonquetella Predominance [44, 70], to Flavobacterium and Lactobacillus predomi-

nance [49]. We found all these organisms with the exception of Jonquetella among our

samples. However, they were present in very low abundance (S1 Table). In dairy cattle, most

abundant genera were Fusobacterium, Bacteroides, Coxiella, Porphyromonas, and class Gam-

maproteobacteria [71, 72]. We did not observe any Coxiella in bitches. We observed similar

differences in vaginal microbiomes as well suggesting that core endometrial and vaginal

microbiomes tend to be species-specific. A few attempts have been made at isolating microbes

from the canine endometrium using culture-based techniques [3–6]. The success rate at isolat-

ing bacteria ranged from 3.8% [4] to 62.5% [6] proving that most endometrial microbes are

not amenable to culture using standard techniques. Most prevalent organisms isolated in these

studies were Staphylococcus, Mycoplasma and in one study Streptococcus [4]. Staphylococcus
was the second-most abundant organism in our study whereas Mycoplasma and Streptococcus
were much rarer. Staphylococcus and Streptococcus are also easily cultured under standard

technology explaining their abundance in culture-based studies.

Intriguingly, the most abundant organisms in the canine endometrium belonged to the

genus Pseudomonas and was identified in all endometrial samples. Pseudomonas spp is often

associated with pyometra in bitches [73] but has not been reported in a healthy endometrium.

The SILVA database [26] was used to classify OTUs and does not allow taxonomic classifica-

tion at species level. Although indirect evidence suggests that the genus Pseudomonas in the

canine endometrium consists of several species, the exact identity of the organisms remain

unknown. Staphylococcus, the genus with second highest abundance in the endometrium has

been isolated from the canine endometrium in previous studies [3, 5, 6]. Campylobacter repre-

sented 5.8% of organisms identified in the endometrium and seems to be a major representa-

tive of the canine endometrial microbiome. Although Campylobacter associated reproductive

tract pathology has not been reported in bitches, different species of Campylobacter has been

implicated in abortions in cattle and sheep [74, 75].

The prevalent explanation for the presence of microbes in the uterus was that they always

are introduced as an ascending infection from the vagina through an open cervix during pro-

estrus and estrus. To test this hypothesis, we compared the vaginal and uterine microbiomes of

the five bitches in estrus (Fig 6). Contrary to the prevailing notion, we did not find a correla-

tion between the vaginal and uterine microbiomes of any of the bitches suggesting that the

endometrium has its own resident microbiome and it was not established as an ascending

infection from the vagina [76, 77].

Since the focus of this study was to ascertain the presence of an endometrial microbiome of

healthy bitches and to compare the microbiome across different stages of estrous, we did not

analyze the effect of breed and age of the animal (other than pre-pubertal animals). The source

of our experimental animals (local humane society) would have made reliable age and breed

estimates difficult. Although it is possible for breed differences in reproductive tract micro-

biomes to exist, many studies have found no differences in resident microbiomes of animals of

different breeds housed in similar conditions [78–80]. We found the diversity and richness of

microbiomes of pre-pubertal animals to be significantly different from older animals (Fig 3).

Both breeds and ages were rough phenotypic estimates as all of these animals were obtained

from a local Humane Society and most looked crossbred. We were intrigued to find a rich,

diverse uterine microbiome even in the youngest pre-pubertal animals used in the study.
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Conclusions

From this study, we conclude that both the endometrium and the vagina have rich microbial

ecosystems. The endometrium is much more diverse than the vagina. The endometrial micro-

biome does not change with the stage of the estrous cycle. Whereas the vaginal environment in

estrus (i.e. in heat) is significantly different from other stages of estrous. There is no age or

breed effect, while significant animal-to-animal variation in endometrial and vaginal micro-

biome does exist. We conclude from our results as well as past studies that culture-based sys-

tems miss the great diversity present in both diseased and healthy reproductive tracts. Given

this diversity, there is much to be studied relative to the intra-microbiota interactions and spe-

cies-intrinsic factors that may be more relevant to maintaining a state of balance and health

and that an imbalance of these factors maybe more important in the development of uterine

disease than the abundance of any given bacterial species.
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S1 Table. Bacterial genera identified in canine endometrium and vagina. Column A is
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