
pmartR: Quality Control and Statistics for Mass Spectrometry-Based
Biological Data
Kelly G. Stratton,† Bobbie-Jo M. Webb-Robertson,† Lee Ann McCue,‡ Bryan Stanfill,†

Daniel Claborne,† Iobani Godinez,† Thomas Johansen,§ Allison M. Thompson,‡

Kristin E. Burnum-Johnson,‡ Katrina M. Waters,‡ and Lisa M. Bramer*,†

†National Security Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United
States
‡Earth & Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulavard, Richland, Washington
99354, United States
§Department of Statistics, Florida State University, 117 North Woodward Avenue, Tallahassee, Florida 32306, United States

*S Supporting Information

ABSTRACT: Prior to statistical analysis of mass spectrometry (MS) data, quality
control (QC) of the identified biomolecule peak intensities is imperative for reducing
process-based sources of variation and extreme biological outliers. Without this step,
statistical results can be biased. Additionally, liquid chromatography−MS proteomics
data present inherent challenges due to large amounts of missing data that require
special consideration during statistical analysis. While a number of R packages exist to
address these challenges individually, there is no single R package that addresses all of
them. We present pmartR, an open-source R package, for QC (filtering and
normalization), exploratory data analysis (EDA), visualization, and statistical analysis
robust to missing data. Example analysis using proteomics data from a mouse study
comparing smoke exposure to control demonstrates the core functionality of the
package and highlights the capabilities for handling missing data. In particular, using a
combined quantitative and qualitative statistical test, 19 proteins whose statistical
significance would have been missed by a quantitative test alone were identified. The
pmartR package provides a single software tool for QC, EDA, and statistical comparisons of MS data that is robust to missing
data and includes numerous visualization capabilities.
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■ INTRODUCTION

High-throughput mass spectrometry (MS)-based analyses
generate large and complex data sets measuring hundreds to
thousands of biomolecules (e.g., peptides, metabolites, and
lipids). The term quality control (QC) can hold different
meanings depending on the field. Here, QC refers to reducing
process-based sources of variation and extreme biological
outliers. The goal of this is to reduce bias in downstream
statistical results and biological inference. QC processing of the
MS-quantified biomolecule peak intensities is essential for
removing outliers and other random effects arising from the
mapping of raw mass spectra to identified biomolecules with
observed values. Only after QC processing, including normal-
ization, should statistical analysis be performed. Given the
missing data issues inherent to liquid chromatography (LC)−
MS-based proteomics data1,2 and the poor or inconsistent
results of imputation to fill in missing data,1,3,4 QC and
statistical methods that are robust to missing data are needed.
At the time of this writing, on Bioconductor5 there are a

large number of R6 packages for processing MS data under the
Proteomics, Metabolomics, and Lipidomics categories. The

most comprehensive QC processing packages for proteomics
in R focus on the raw data,7−10 which although necessary and
valuable are not sufficient for removing process-based errors
that will bias downstream statistical analysis. Several R
packages are available for statistical analysis of proteomics
data11,12 and have excellent functionality for statistics but
minimal QC.12,13 Other packages support individualized
analyses of single samples or biomolecules but rely on the
user to add the functionality to statistically evaluate the data14

or have limited functionality for filtering biomolecules and
performing statistical analysis.15 Additional packages16−22

cover extensive capabilities for QC and normalization, but
none are focused on robust QC and statistics of mass
spectrometry peak intensity data or specifically designed to be
robust to the complex missing data of global proteomics. These
missing data arise from a combination of left-censoring,
instrument error, and physicochemical properties of the
peptides, making imputation difficult.2,4 This is the overall
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gap that pmartR fills through end-to-end data processing
capabilities.
The pmartR R package provides QC, data pre-processing,

and statistical analysis functionality that is both robust to
missing values in analyses and uses the missing data structure
to identify qualitative biomarker candidates. This is the
primary capability that distinguishes pmartR from other mass
spectrometry R packages, which rely on imputation of data.
Many of the pmartR functions use attributes to capture
information about the data set and the analyses that have been
performed, allowing the user to query the data object and
obtain a record of the analysis steps. pmartR has the added
benefit of being applicable to multiple MS-quantified omics
data types, including proteomics, metabolomics, and lipido-
mics gas chromatography (GC-) or LC-MS data. Finally,
pmartR provides visualization and summary methods that
allow the user to understand the effect of their filtering,
normalization, and other analysis choices as they move through
the QC, EDA, and statistics pipeline.

■ SOFTWARE DESIGN AND FUNCTIONALITIES
The pmartR software package is implemented in R; the open
source package is available for download at http://github.com/
pmartR/pmartR. pmartR provides capabilities for preparing
MS data for, and for performing, statistical analysis using
simple function calls. Data objects are automatically updated
with information about the analysis as it is performed,
streamlining the data exploration, QC, and statistical analysis
process for the user. Below, we provide brief descriptions of
the capabilities of pmartR, and more details can be found on
the github page and in the R package vignettes.
Data Format and Pre-Processing

Functions in the pmartR package operate primarily on an S3
data object defined at the beginning of an analysis by the user.
There are separate S3 classes for peptide data (either unlabeled
or labeled with an isobaric tag), protein data, metabolite data,
and lipid data (Table 1), and the data object is created using

the R function corresponding to the object type [as.pepData(),
as.isobaricpepData(), as.proData(), as.metabData(), or
as.lipidData()]. In R, S3 data objects have predefined
structures and properties. Methods specific to a given data
type can then be written by the developer and called
generically by a user. For example, calling summary() on a
vector of numbers returns the minimum, maximum, etc., of the
vector’s values, while calling summary() on a pepData object
returns quantities such as the number of samples, the number
of biomolecules, and the amount of missing data.
The starting point for analysis using pmartR is the quantified

peak intensities of identified biomolecules. More specifically,

there are two required data tables and one optional data table
for the creation of the pmartR S3 data object. Each component
corresponds to a data.frame in R, which can be imported using
the base functionality of R. (1) e_data is required and contains
the expression data. This is a p × (n + 1) data.frame, where p is
the number of biomolecules and n is the number of samples.
Each row corresponds to a biomolecule, and each column
corresponds to a sample except for one column, which gives a
unique biomolecule identifier. (2) f_data is required and
contains feature data about the samples. This is a data.frame
with n rows, one for each sample, and one column for sample
names with additional columns for information about the
samples (e.g., treatment group or other experimental
information). (3) e_meta is optional and contains metadata
about the biomolecules. This is a data.frame with one column
for the biomolecule identifier and the remaining columns for
additional biomolecule information (e.g., for peptide data,
e_meta might include a peptide-to-protein mapping). Support-
ing Information file S1 contains the e_data, f_data, and e_meta
data tables corresponding to the data set discussed in
Experimental Methods. Plot and summary methods for these
data objects provide a visualization of the samples in the data
set (as boxplots) and a quick overview of the data set
properties (number of samples, number of biomolecules, and
amount of missing data), respectively.
Several publications have shown that more reliable statistical

results are obtained using methods that are robust to missing
data to analyze mass spectrometry data.1 Thus, pmartR allows
a user to analyze their data without imputation of missing
values. However, there are some instances where it may be
appropriate or desirable to impute missing values. Numerous R
packages exist to perform imputation; therefore, pmartR does
not attempt to recreate any of this functionality. A user should
impute their data before using pmartR, if desired, and take care
in choosing an imputation method as several studies have
compared, contrasted, and demonstrated the differences in
data generated by different imputation methodologies for mass
spectrometry data.1,4

Functions for data value replacement [e.g., replace 0s with
NA’s to represent missing values; edata_replace()] and
transformation [e.g., to a log scale; edata_transform()] are
provided to prepare data for statistical analyses. Statistical
analysis with pmartR allows the user to make comparisons
between two or more groups; we therefore provide a function
for associating group membership with each sample, and this
information is saved as part of the data object and used by
some of the downstream filtering methods and functions-
[group_designation()].
For compatibility with the widely used MSnbase package,7

which contains an array of functionality for processing raw
proteomics data, the pmartR package includes a function to
transform data objects back and forth between the MsnSet
class from MSnbase and the pepData class from pmartR. This
allows users to take advantage of the raw data processing from
MSnbase as well as the robust QC and statistical processing
from pmartR without having to manually configure the data
objects.

Data QC: Data Summary and Filtering

QC is crucial for accurate and unbiased downstream statistical
analyses; therefore, pmartR offers a number of different
functions to aid in this process, including multiple filter types
and visualizations. Summary and plot methods are available for

Table 1. Types of Data Supported by pmartR and Their
Corresponding S3 Object Classesa

type of data S3 object class

peptide (unlabeled) pepData
peptide (labeled) isobaricpepData, pepData
protein proData
metabolite metabData
lipid lipidData

aNote that an isobaricpepData object is also a pepData object, but the
converse is not true.
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the data set S3 objects, to describe basic characteristics of the
data and creating a boxplot for each sample; for the filter S3
objects, to summarize the effects of applying the filter and aid
the selection of a threshold for the filter; for the normalization
S3 object, to see boxplots before and after normalization; and
for the summary S3 objects, to display information about the
summary and graph the output. See Supporting Information
file S2 for example code.
Data Summary and Visualizations. pmartR provides

functions for generating numeric summaries (in the form of
data.frames), graphical summaries to learn about the presence
and patterns of missing values, a correlation heatmap, and
probabilistic principal component analysis (PPCA).23 The
correlation matrix is computed using Pearson correlation on
pairwise complete observations in base R,24 via cor_result(),
which creates an object of class corRes. This object can be
displayed in a heatmap using the plot() command. PPCA is a
PCA algorithm that can be used in the presence of missing
data. The principal components are calculated using projection
pursuit estimation, which implements an expectation−max-
imization algorithm when data are missing. We implement
PPCA from the pcaMethods package in R23 using a wrapper
function for dimension reduction, dim_reduction(), which
creates an object of class dimRes. This object can be used to
create a PCA scores plot via the plot() command.
Filters. pmartR allows the user to filter both biomolecules

and samples based on objective or subjective characteristics of
the data. Biomolecules can be filtered according to the number
of observed values [molecule_filter()] or the variability
according to the coefficient of variation [cv_filter()] across
samples. They can also be filtered in anticipation of specific
statistical tests that will be run subsequently [imdanova_filter-
()] via the removal of biomolecules for which no statistical test
can be performed.25 A robust Mahalanobis distance (rMd)
filter is used to identify potential outlying samples where each
sample is assigned a p-value as described previously.26 The
rMD filter [rmd_filter()] is based on any user-defined subset
of the following five metrics: correlation, proportion of missing
values, median absolute deviation, skew, and kurtosis. The
rmd_filter() function uses a default p-value threshold of
0.0001; however, we recommend using the additional
visualization capability for this method in combination with
expert knowledge prior to removing outlying samples. User-
specified biomolecules (e.g., contaminants and biomolecules of
particular interest) or samples can be either removed from or
retained in the data set using the custom_filter(). Each filter
has an associated summary and plot method (except for the
custom_filter(), which does not have a plot method) that can
assist in making decisions about filtering thresholds and
provide additional insight into the data set.

Normalization

A variety of data normalization options are available in pmartR.
For labeled data, normalization to a reference sample is
supported [normalize_isobaric()]. This can be followed by any
of the other normalization approaches available in pmartR,
which include quantile normalization [normalize_quantile()]
and loess normalization27,28 [normalize_loess()] that operate
on a biomolecule by biomolecule basis and a host of global
normalization types [normalize_global()] that operate on a
sample by sample basis.
For global normalization, one may choose a normalization

strategy from the available options, or for proteomics data, the

statistical procedure for the analyses of peptide abundance
normalization strategies29 (SPANS) can be used to aid in the
selection of a normalization strategy. The global normalization
strategies consist of two parts, a subset function and a
normalization function. The subset specifies the biomolecules
(presented below in the context of peptide-level data) with
which to generate the normalization factors using the
normalization function. The normalization factors are then
applied to the full data set. Currently available subset functions
include the following. (1) All: Use all peptides to compute
normalization factor(s). (2) Percentage of peptides present
(PPP): Subset the data to peptides present in at least p percent
of samples. (3) Rank invariant peptides (RIP): First, subset
peptides to those present in every sample (e.g., complete
peptides). Next, subject each peptide to a Kruskal−Wallis test
on group, and those peptides not significant at a given p-value
threshold are retained as invariant. (4) PPP-RIP: Rank
invariant peptides among peptides present in a given
percentage of samples. (5) Top “l” order statistics (LOS):
The peptides with intensities in the top “l” order statistics are
retained.
The currently available normalization functions (presented

below in the context of log2-transformed peptide-level
data) include the following, where missing values are ignored
when computing means, medians, or standard deviations and
data are on a log scale. (1) Median centering: The sample-wise
median (median of all peptides in a given sample) is subtracted
from each peptide in the corresponding sample. (2) Mean
centering: The sample-wise mean (mean of all peptides in a
given sample) is subtracted from each peptide in the
corresponding sample. (3) Z-score transformation: The
sample-wise mean (mean of all peptides in a given sample)
is subtracted from each peptide, and the result is divided by the
sample-wise standard deviation (standard deviation of all
peptides in a given sample) in the corresponding sample. (4)
Median absolute deviation (MAD) transformation: The
sample-wise median (median of all peptides in a given sample)
is subtracted from each peptide, and the result is divided by the
sample-wise MAD (e.g., the MAD of all peptides in a given
sample) in the corresponding sample.

Protein Quantification

For proteomics data, a number of algorithms for protein rollup
are available in pmartR via the protein_quant() function, some
of which account for different isoforms of the proteins. For any
type of rollup, the user must specify a method for estimating
protein abundances from observed peptides (“rollup”,
“Rrollup”, “Qrollup”, or “Zrollup”)30 and a function to use
for combining the peptide-level data (either “mean” or
“median”). More information about the rollup methods can
be found in the pmartR vignette. To account for protein
isoforms, Bayesian Proteoform Quantification31 (BP-Quant)
can be used.

Statistics

The pmartR package includes functions to analyze omics data
for both quantitative and qualitative differences in abundance
data between two or more groups [imd_anova()] using the
IMD-ANOVA method.25 This functionality can handle up to
two grouping factors (or “main effects”) with or without
additional covariate information. Differences between the
groups of main effects can be tested, adjusting for the
covariates. The data can be paired or not.
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A quantitative test for differential abundance in the data is
accomplished via an analysis of variance (ANOVA) for each

biomolecule. The Rcpp package is used to accelerate
computation,32 and different ANOVA implementations are

Figure 1. (A) Boxplots for each log2 sample prior to QC. (B) The PPCA plot of the log2 peptide data without imputation of missing values shows
minimal clustering of the treatment groups. (C) A bar graph of the number of missing values per sample does not reveal anything systematically
different between the two groups or the individual samples. (D) The Pearson correlation heatmap among the log2-transformed samples shows some
variation in correlation across the samples but nothing to indicate a potential outlying sample. (E) The rMd plot does not identify any potential
sample outliers. (F) The values for each of the metrics included in the rMd calculation are indicated on boxplots for sample U54_SMOKEmp_119,
which is the control sample having the highest log2 rMd score.
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applied depending on the complexity of the supplied data. For
example, if only two groups are supplied, then ANOVA
reduces to a two-sample t-test that assumes equal variance for
the two groups. Alternatively, if two groups are present and a
covariate correction is required, then the effect of the
covariates is removed using a reduced maximum likelihood
approach. After the covariate correction is applied, a two-factor
ANOVA is used to detect the difference between all
combinations of groups or between main effects as appropriate.
In the event that there are not enough data to test for a

quantitative difference in abundance between groups, one can
still test for a qualitative difference in groups using the
independence of missing data (IMD) test.25 This is often the
case for proteomics data where a number of peptides or
proteins could have missing data for one of several reasons.
The idea is to assess if there are more missing values than
expected by random chance in one group compared to
another. If there are an adequate number of nonmissing data
available, then the χ2 test of independence can be used.33 This
assumption often fails, however, so a modified version of the χ2

test, called the g-test,25 should be used. The availability of both
quantitative and qualitative statistical models and tests is one
of the features that distinguish this package from other
frequently used packages in R for mass spectrometry data.

Reporting and Results

The objects returned by imd_anova() are of the class statRes.
Special functions are available for objects of this class,
including print(), summary(), and plot(). The summary()
function prints the type of test that was run, any adjustments
that were made, the p-value threshold used to define
significance, and a table that summarizes the number of
significant biomolecules (up or down relative to the reference
group) for each comparison.
The plot() function can be used to produce any of the

following four plots. 1) A bar plot shows the number of
significant biomolecules grouped by comparisons and indicates
the direction of change. 2) A volcano plot is a plot of the

ANOVA p-value by the fold-change estimate for each
biomolecule, differentiated by test and faceted by comparison;
3) for the g-test, the resulting plot represents each biomolecule
by the number of observations in each group as (x, y)
coordinates. 4) A heatmap illustrates the fold changes for the
statistically significant biomolecules (available only if compar-
isons among more than two groups are made).

■ EXPERIMENTAL METHODS
We use a subset of samples from a larger study examining the
effect of inhalation endotoxin exposure and obesity on lung
inflammation in mice.34 The full experimental design and
description of proteomics data generation have been presented
previously.34 This identified and quantified example data set is
available as Supporting Information file S1, and the R code
used to analyze it is available as Supporting Information file S2.
The data set contains 16 samples, eight belonging to the
cigarette smoke exposure group and eight controls, with 5244
peptides corresponding to 3646 unique proteins.
Data processing begins with replacing values of 0 with NA

and log2 transforming the data. We then apply the molecule
filter to remove any peptides observed in fewer than two
samples, which removes 679 peptides and results in 4565
peptides mapping to 3150 proteins. A proteomics filter to
remove peptides mapping to more than one protein results in
1738 peptides mapping to 508 proteins. Finally, the IMD-
ANOVA filter is applied to remove any peptides for which we
will be unable to perform either the quantitative or qualitative
statistical comparisons between the smoking and control
samples. After this filtering, we are left with 1513 peptides
mapping to 436 proteins. EDA functionality is demonstrated
by boxplots for each sample (Figure 1A), PPCA plots of the
peptide data (Figure 1B), a bar graph showing the number of
missing values per sample (Figure 1C), and a Pearson
correlation heatmap (Figure 1D).
Potential sample outliers are identified using a combination

of the EDA results and the rMd filter based on correlation, the
proportion of missing values, MAD, and skewness. To focus on

Figure 2. (A) Heatmap of the SPANS scores for each combination of data subset and normalization method that shows the use of the MAD of the
LOS 0.05 peptides to be the top choice for the normalization approach, followed by the MAD of the LOS 0.2 peptides. (B) Boxplots for each
sample that show the distributions of normalized log2 peptide abundance, where normalization was performed using the MAD of the LOS 0.2
peptides.

Journal of Proteome Research Technical Note

DOI: 10.1021/acs.jproteome.8b00760
J. Proteome Res. 2019, 18, 1418−1425

1422

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00760/suppl_file/pr8b00760_si_001.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.8b00760/suppl_file/pr8b00760_si_002.pdf
http://dx.doi.org/10.1021/acs.jproteome.8b00760


extreme outliers, a p-value threshold of 0.0001 is used, but this
can be easily modified to fit the needs of the analysis. For this
data set, no potential outliers are identified as having a log2
rMd score exceeding the log2 rMd threshold associated with a
p-value of 0.001 (Figure 1E). From Figure 1F, we can see
where the metrics of correlation, proportion of missing data,
MAD, and skewness for the sample with the highest rMd score
fall relative to those of the other samples. These bar plots are
particularly helpful in determining which samples, if any, to
remove when there are samples that are identified as potential
outliers. In this analysis, no samples were removed.
SPANS29 is used to select a normalization approach, where a

heatmap of the SPANS scores for each combination of subset
and normalization method (Figure 2A) indicates the more
recommended approaches in lighter colors (yellows). For this
data set, the SPANS algorithm identifies the MAD based on
the top 5% of order statistics (LOS 0.05) as the ideal
normalization approach, which is based on 121 peptides. The
second choice for the normalization approach is the MAD
based on the top 20% of order statistics (LOS 0.2), which is
based on 508 peptides. Because the second choice is based on
a larger number of peptides and has a SPANS score only
0.0035 below the top choice, we proceed using the second
choice (Figure 2B).
Protein quantification is performed using Rrollup,30 which

first scales all peptides that map to a given protein by a
reference peptide (the peptide, out of all peptides mapping to
the given protein, with the most observations) and then takes
the median of the scaled peptides to obtain the relative protein
abundance. This results in 436 proteins. Statistical analysis at
the protein level is performed using both quantitative and
qualitative tests25 (IMD-ANOVA) on a protein by protein
basis to compare the samples from the smoking group to the
samples from the control group. A Holm p-value adjustment is
used for the p values from both tests.

■ RESULTS AND DISCUSSION

Of the 436 proteins tested, 29 showed significant differences
between the smoking and control groups (based on Holm
adjusted p-values of <0.05). Both the t-test and the g-test
identified similar numbers of significant proteins that had a
lower level of expression in the smoking group than in the
control group. However, more proteins with a higher level of
expression in the smoking group compared to the control
group were identified as statistically significant by the g-test
than by the t-test. There were 19 proteins that were found to
be significant by the g-test and for which the t-test was not able
to be run due to either the smoking or the control group
having too few observed values. A graphical representation of
the statistical results (Figure 3) was generated using the plot()
command on the statRes object and includes a bar plot for the
number of significant proteins, a volcano plot for the results of
the t-test, and a plot showing the number of observations per
group for the g-test results.

■ CONCLUSIONS

The pmartR package is a collection of R functions that enable
QC, EDA, and statistical processing of mass spectrometry data,
without the necessity of imputing missing values. pmartR takes
two to three data.frames, converts these to an S3 data object,
and offers data cleaning, processing, summarizing, and
statistical analysis capabilities. The pmartR package functions
include automated tracking of the characteristics of the data
[e.g., data scale (log2, log10, natural log, and abundance),
whether and how the data were normalized, what biomolecules
or samples were filtered, group membership for each sample,
etc.], which streamlines analysis and reporting for the user. We
provide sample data sets and R code as Supporting
Information as well as additional example data sets in the
pmartRdata package available on github that can be used for
demonstration purposes. Therein, we demonstrate pmartR’s
capabilities on a proteomics data set and present the results.

Figure 3. Graphical summary of the statistical results that includes (A) a bar graph of the number of significant proteins, both in total and broken
out by statistical test, and (B) a volcano plot for the t-test (ANOVA) results (top) and a plot of the number of observations per group for the g-test
results (bottom).
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