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Abstract
1.	 Floral nectar is a reward offered by flowering plants to visiting pollinators. Nectar 

chemistry is important for understanding plant nutrient allocation and plant–polli-
nator interactions. However, many plant species are difficult to sample as their 
flowers are small and produce low amounts of nectar.

2.	 We compared the effects of different methods of nectar collection on the amino 
acid composition of flowers with low volumes of nectar. We used five methods to 
collect nectar from 60 (5 × 12) Calluna vulgaris flowers: microcapillary tubes, a low-
volume flower rinse (the micro-rinse method, using 2 μl water), filter paper, a high-
volume flower rinse (2 ml water) and a flower wash (2 ml water). We analysed the 
samples for free amino acids using quantitative UHPLC methods .

3.	 We found that the micro-rinse method (rinsing the nectary with enough water to only 
cover the nectary) recovered amino acid proportions similar to raw nectar extracted 
using microcapillary tubes. The filter paper, 2 ml rinse and 2 ml wash methods meas-
ured significantly higher values of free amino acids and also altered the profile of 
amino acids. We discuss our concerns about the increased contamination risk of the 
filter paper and high-volume rinse and wash samples from dried nectar across the 
floral tissue (nectar unavailable to floral visitors), pollen, vascular fluid and cellular fluid.

4.	 Our study will enable researchers to make informed decisions about nectar collec-
tion methods depending on their intended chemical analysis. These methods of 
sampling will enable researchers to examine a larger array of plant species’ flowers 
to include those with low volumes of nectar.
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1  | INTRODUCTION

Flowering plants produce floral nectar to attract pollinating ani-
mals. The caloric value of the food pollinators receive when visiting 

flowers affects pollinator visitation (Chittka & Schurkens, 2001) and 
hence plant–pollinator co-evolution and community structure (Price, 
1997). Nectar is the main source of carbohydrates for pollinators 
and is composed of water and simple sugars (sucrose, glucose and 
fructose) ranging from 7% to 70% w/w (Nicolson, Nepi, & Pacini, 
2007). Although 1,000–100,000 times less concentrated in nectar †Indicates these authors contributed equally.
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than sugars (Gottsberger, Schrauwen, & Linskens, 1984), free amino 
acids are the second-most abundant nectar solutes (Petanidou, Van 
Laere, Ellis, & Smets, 2006). For pollinators that cannot eat pollen 
such as adult Lepidopterans, nectar is an important source of di-
etary amino acids (Baker, 1977; Baker & Baker, 1973) that may have 
a profound effect on longevity and influence pollinator behaviour 
(Gardener & Gillman, 2002; Hendriksma, Oxman, & Shafir, 2014; 
Inouye & Waller, 1984; Petanidou et al., 2006; Simcock, Gray, & 
Wright, 2014).

Studies directly linking the amino acid composition of nectar 
to pollinator behaviour have been few, in part because measuring 
amino acids in nectar is difficult and quantification requires spe-
cialized equipment (Nepi, 2014). Early studies by Baker and Baker 
(1973) quantified total amino acid content using simple ninhydrin 
staining techniques: a colorimetric method that revealed the pres-
ence of amines. Their subsequent studies used thin-layer chroma-
tography (TLC) to separate some amino acids and quantify them 
according to an ordinal scale (Baker and Baker, 1976, 1977, 1979; 
Baker, Opler, & Baker, 1978). However, precise quantification and 
identification of amino acids require the use of advanced chroma-
tography methods such as high-performance liquid chromatog-
raphy (HPLC). Most published methods for amino acid analysis 
require a derivatization step prior to HPLC analysis, which may lead 
to sample loss and make it difficult to analyse flowers with very low 
volumes of nectar.

Most published studies of amino acids in nectar have used one of 
two techniques for collecting nectar: glass capillary tubes (Gardener 
and Gillman, 2001; Gottsberger, Arnold, & Linskens, 1990) or filter 

paper wicks (Petanidou et al., 2006). Glass capillary tubes are a good 
way to collect nectar, but they require sample volumes >0.5 μl and 
may not recover all nectar found within a flower. The nectar vol-
ume of many plant species, especially those pollinated by bees or 
other insects, is often <0.5 μl per floret. For this reason, ecologists 
studying nectar resort to other methods, such as filter paper wicks to 
collect nectar (Kearns & Inouye, 1993; McKenna & Thomson, 1988; 
Petanidou et al., 2006). One study compared the carbohydrates ren-
dered by four different techniques for collecting nectar (microcapil-
lary tubes, filter paper, washing and rinsing, see Table 1) (Morrant, 
Schumann, & Petit, 2009). These authors found that washing and 
rinsing returned higher estimations of the sugars available in nectar, 
and for this reason, they recommended washing and rinsing as meth-
ods for collecting from flowers with small nectar volumes (Morrant 
et al., 2009). While these methods work well for carbohydrates, no 
one has compared these techniques to identify how they could in-
fluence the amino acid profile of nectar studies. One foreseeable 
problem with nectar samples that have been collected by washing 
and rinsing is that these methods could overestimate the available 
amino acids if free amino acids from floral pollen were washed into 
the sample.

Here, we report the first use of advanced UHPLC (ultra-high-
performance liquid chromatography) with a specialized “in vial” deri-
vatization step to compare and identify how different methods of 
nectar collection from flowers with small volumes of nectar affect 
the amino acid profile of nectar. We also report a new method—the 
“micro-rinse” method—for collecting nectar samples for amino acid 
analysis from small-volume flowers.

TABLE  1 Methods used to extract nectar from flowers and their suitability in relation to nectar volume (low (<1 μl) or high)

Method Description
Nectar volume 
suitability Selected references

Microcapillary 
tubes

Suction of raw nectar by capillary action up a narrow tube of known 
volume. Nectar volume can be quantified based on how much it has 
displaced the air inside the tube. Nectar can be expelled from the 
tube for analysis

Low–high Corbet (2003), Morrant et al. 
(2009)

Filter paper Soakage of nectar onto filter paper wicks which are subsequently 
immersed in water. The filter paper material is removed leaving a 
nectar–water solution for analysis

Low–high Kearns and Inouye (1993), 
McKenna and Thomson 
(1988), Morrant et al. (2009)

Wash Washing flower in sealed tube of a known volume of distilled water, 
followed by removal of the flower, leaving behind a nectar–water 
solution for analysis

Low–high Grunfeld, Vincent, and Bagnara 
(1989), Morrant et al. (2009)

Rinse Pouring a known volume of distilled water over the nectaries of a 
flower. The collected nectar–water solution can be used for analysis

Low–high Nunez (1977), Mallick (2000), 
Morrant et al. (2009)

Micropipettes and 
microsyringes

Suction of raw nectar up a syringe or narrow tube, manually or with 
the aid of a pipette. Nectar volume can be quantified and analysed by 
expelling the nectar from the tube/syringe

High Corbet (2003), Lanza, Smith, 
Suellen, and Cash (1995), 
Mallick (2000), Wykes (1952)

Centrifuge The flower is secured in a centrifuge tube which is spun at high speed 
in a centrifuge to release nectar. Nectar is collected on the sides of 
the tube and can be removed using a microcapillary tube for 
quantification and analysis

High Armstrong and Paton (1990), 
Swanson and Shuel (1950)

Aspirator Nectar is drawn from the flower using a capillary tube (of known 
volume) attached to a power-driven aspirator. Nectar volume can be 
quantified and analysed by expelling the nectar from the tube

High Armstrong and Paton (1990)
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2  | MATERIALS AND METHODS

2.1 | Nectar collection

Five methods of nectar collection were compared for amino acid re-
covery using flowers collected from three plants of the same age of 
Calluna vulgaris L. (Ericaceae). To reduce variation based on flower 
age, plant and time of sampling (Nicolson et al., 2007), four flowers 
of similar maturity (open and showing no signs of senescence) were 
taken from each of three plants (n = 12 per method) at the same time 
for each collection method. Flowers were not bagged as they were 
not exposed to insect visitors in the laboratory (that may deplete re-
sources). All nectar collection methods represent the standing crop 
(Corbet, 2003). Nectar was sampled from these flowers using the 
following methods: (1) microcapillary tubes (Corbet, 2003; Kearns 
& Inouye, 1993; McKenna & Thomson, 1988; Morrant et al., 2009); 
(2) filter paper wicks (Kearns & Inouye, 1993; McKenna & Thomson, 
1988; Morrant et al., 2009); (3) washing in 2 ml of water (Morrant 
et al., 2009); (4) rinsing with 2 ml of water (Morrant et al., 2009); and 
(5) rinsing with 2 μl of water (micro-rinse approach). The first four 
methods have been compared by Morrant et al. (2009) in terms of 
suitability for sugar recovery in low-volume flowers, while we propose 
the fifth method as suitable for amino acid recovery. The details of 
each collection method are given below.

1.	 Microcapillary tubes (raw nectar): This method provides a means 
to estimate the volume of nectar obtained from individual 
flowers. In our experiments, we sampled nectar from 12 indi-
vidual flowers using 1-μl microcapillary tubes (Hirschmann 
Laborgeräte GmbH & Co. KG, Eberstadt, Germany). Nectar was 
drawn into the tubes by capillary action. This was performed 
with care to avoid damage to floral tissue and to prevent 
contamination with pollen grains. The volume of withdrawn 
nectar was quantified by measuring the length of the tube 
(mm) using a ruler and calculating the proportion of the tube 
that was filled with nectar. Each nectar sample was diluted 
with de-ionized UHPLC gradient grade water (Fisher Scientific 
UK Ltd., Loughborough, United Kingdom) to meet minimal sample 
volume requirements for UHPLC analysis (UHPLC amino acid 
dilution: 10 μl requiring 1:65 dilution—see Sample preparation 
and analysis section).

2.	 Filter paper: Nectar was sampled from 12 flowers using filter 
paper wicks, adapted from Morrant et al. (2009). Twelve strips of 
Fisherbrand QL100 filter paper (Fisher Scientific UK Ltd., 
Loughborough, United Kingdom) with dimensions (5 × 42 mm, ta-
pered to 1-mm-width tip at one end) were cut using sterile blades. 
Using sterile forceps, the edges of one filter paper tip were ap-
plied to the nectaries of one flower. Each strip was then placed in 
a sealed sterile vial (20 ml) containing 2 ml of de-ionized UHPLC 
gradient grade water, soaked for 15 min and then agitated for 
1 min.

3.	 Wash 2 ml: Nectar was sampled from 12 flowers using a washing 
method adapted from Morrant et al. (2009). Each flower was cut 
from the plant and placed in a sealed sterile vial (20 ml) containing 

2 ml of de-ionized UHPLC gradient grade water. The vial was agi-
tated for 1 min.

4.	 Rinse 2 ml: Nectar was sampled from 12 flowers using a rinsing 
method adapted from Morrant et al. (2009). A flower was inverted 
over a 2-ml sterile vial, and four successive rinses (0.5 ml) of de-
ionized UHPLC gradient grade water were expelled over the floral 
nectaries using a sterile pipette. It was not necessary to remove the 
flowers from the plant for this method.

5.	 Micro-rinse: Nectar was sampled from 12 flowers using a novel 
rinsing method. Using a sterile pipette, 2 μl of de-ionized UHPLC 
gradient grade water was expelled into a flower over the nectaries. 
The water was retained in the flower for 1 min, and then, the nec-
tar–water solution was drawn into a 10-μl microcapillary tube 
(Hirschmann Laborgeräte GmbH & Co. KG, Eberstadt, Germany) by 
capillary action. This was performed with care to avoid damage to 
floral tissue and prevent uptake of pollen grains into the sample. No 
floral tissue was removed prior to rinsing. The volume of withdrawn 
nectar–water solution was quantified by measuring the length of 
the tube (mm) using a ruler and calculating the proportion of the 
tube that was filled with solution. Each sample was diluted further 
with de-ionized UHPLC gradient grade water to meet minimal sam-
ple volume requirements for UHPLC analysis (see above). It was not 
necessary to remove the flowers from the plant for this method. 
The 2 μl volume of water added to the nectary was chosen because 
it was sufficient to cover the nectary but not the anthers.

6.	 Filter paper control: To determine whether filter paper leaches 
amino acid contaminants into the nectar sample, ten filter paper 
wicks of similar type and dimensions to the above method were 
dipped using sterile forceps in ten sterile 2-ml microcentrifuge 
tubes containing 1 μl of de-ionized UHPLC gradient grade water. 
This procedure was designed to emulate nectar extraction from 12 
flowers. Each strip was then placed in a sealed sterile vial (20 ml) 
containing 2 ml of de-ionized UHPLC gradient grade water, soaked 
for 15 min and then agitated for 1 min.

When using filter paper, washing and rinsing 2 ml methods and the 
micro-rinse method, it was necessary to obtain a separate estimate of 
the mean standing crop (nectar volume per flower) so that the mass 
of solutes in nectar per flower could be calculated. To obtain a stand-
ing crop value, the volume of nectar in 12 flowers was collected using 
1-μl capillary tubes. The mean volume recovered was 0.474 μl/flower 
(±0.06 SE); this value represents the mean amount of nectar present in 
the flower. For the washing and rinsing 2 ml and the filter paper methods, 
the amount of water used to rinse/wash (i.e. 2 ml) or to dilute (2 ml) was 
divided by the standing crop value.

For the micro-rinse method, the mean recovery volume was 
2.005 μl/flower (±0.110 SE) using a 10-μl capillary tube. As we 
estimated the standing crop to be 0.474 μl/flower, a value of 
2.005 μl/flower indicates that we did not recover all the nectar and 
all the rinse water from the flower. Given that the recovery volume 
was roughly equal to the volume we put into the flower, we reasoned 
that the amount of nectar possible to recover using this method was 
1.53 μl (i.e. recovery volume—standing crop value). We subtracted the 
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estimated recovery volume from the total volume collected using the 
micro-rinse method to identify an estimate of the volume from each 
flower sampled. This was necessary to control for error in the volume 
estimation of the original sample; errors in this step with small vol-
umes have dramatic effects on the calculation of the dilution factor 
(see Data S1).

Previous studies have used distilled water to dissolve nectar sol-
utes from filter paper or wash and rinse nectar from flowers (Mallick, 
2000; McKenna & Thomson, 1988; Morrant et al., 2009; Petanidou 
et al., 2006). We used de-ionized UHPLC grade water which is free 
from amino acids and other ionic contamination (advanced HPLC grade 
water for HPLC gradient analysis, Fisher Sci, product no. 10221712). 
Samples were stored at −20°C for 1 week before UHPLC analysis.

2.2 | Nectar sample preparation and analysis

2.2.1 | Filtration

For UHPLC amino acid analysis, 10 μl of sample was required. Some 
nectar collection methods produced enough sample volume for analy-
sis (e.g. filter paper, wash 2 ml, rinse 2 ml methods and filter paper 
control). These samples were filtered using a sterile 0.45-μm 4-mm 
nylon Whatman Puradisc syringe filter to remove paper and plant ma-
terial (note: filtering caused the loss of a significant amount of sam-
ple but enough remained for analysis). Low-volume (<100 μl) samples 
were not filtered. Instead, they were diluted and centrifuged (see 
Section 2.2.2).

2.2.2 | Centrifugation

Microcapillary and micro-rinse samples were diluted 65-fold for amino 
acid analysis using de-ionized UHPLC gradient grade water. These di-
lution factors were derived by diluting nectar so that amino acid con-
centrations matched those seen in the amino acid standards used to 
calibrate the chromatography instruments. Low-volume samples were 
centrifuged for 10 min at 13,249 g to separate soluble amino acids 
(supernatant) from any residual plant material.

2.2.3 | Amino acid analysis

UHPLC was used to measure concentrations of 21 amino acids: as-
partic acid (asp), glutamic acid (glu), asparagine (asn), serine (ser), glu-
tamine (gln), histidine (his), glycine (gly), threonine (thr), arginine (arg), 
alanine (ala), tyrosine (tyr) cysteine (cys), valine (val), methionine (met), 
gamma-aminobutyric acid (GABA), tryptophan (trp), phenylalanine 
(phe), isoleucine (ile), leucine (leu), lysine (lys) and proline (pro) (listed 
in order of elution).

Using an automated pre-column derivatization programme for 
the autosampler (Ultimate 3000 Autosampler, Dionex, Thermo Fisher 
Scientific Inc.), 10 μl of the diluted nectar was treated for 1 min with 
15 μl of 7.5 mmol/L o-phthaldialdehyde (OPA) and 225 mmol/L 
3-mercaptopropionic acid (MPA) in 0.1 M sodium tetraborate deca-
hydrate (Na2B4O7·10 H2O), pH 10.2 and for 1 min with 10 μl of 

96.6 mmol/L 9-fluorenylmethoxycarbonyl chloride (FMOC) in 1 M 
acetonitrile. This was followed by the addition of 6 μl of 1 M ace-
tic acid. After pre-treating, 30 μl of the amino acid derivatives was 
then injected onto a 150 × 2.1 mm Accucore RP-MS (Thermo Fisher 
Scientific Inc.) UHPLC-column. Elution of the column occurred at 
the constant flow rate of 500 μl/min using a linear gradient of 3 to 
57% (v/v) of solvent B over 14 min, followed by 100% solvent B for 
2 min and a reduction to 97% solvent B for the remaining 4 min. 
Elution solvents were as follows: A = 10 mmol/L disodium hydrogen 
orthophosphate (Na2HPO4), 10 mmol/L Na2B4O7·10H2O, 0.5 mmol/L 
sodium azide (NaN3), adjusted to pH 7.8 with concentrated HCl and 
B = acetonitrile/methanol/water (45/45/10 v/v/v). The derivatives 
were detected via fluorescence (Ultimate 3000 RS Fluorescence 
Detector, Dionex, Thermo Fisher Scientific, OPA: excitation at 330 nm 
and emission at 450 nm, FMOC: excitation at 266 nm and emission 
at 305 nm) and quantified by automatic integration after calibration 
of the system with known amino acid standards. The instrument was 
calibrated twice per day by injecting amino acid standards (see exam-
ple chromatogram, Figure S1) (which were comprised of a pre-made 
solution of 17 amino acid standards for fluorescence detection (Sigma-
Aldrich). An additional four amino acids (available in solid form from 
Sigma-Aldrich) were added to the solution for system calibration) with 
mean concentrations of 25 nmol/ml. The dual calibration every day 
was to ensure accuracy in peak identification given potential daily 
drift in amino acid elution times. Elution profiles were analysed using 
Chromeleon (Thermo Fisher Scientific Inc.), which automatically cal-
culates solute concentrations (nmol/ml) based on a range (different 
dilutions) of pre-programmed reference curves for each amino acid. 
The optimal dilution of nectar: water required for this HPLC method 
was 1:65, requiring at least 0.25 μl of raw nectar (to make 16.25 μl 
of solution). The optimal concentration range for our detector was 
around 10 nM, but we could reliably measure concentration across a 
range from 0.1 to 1,000 nM. Advanced HPLC grade water was used 
throughout the study.

2.2.4 | Derivation of values

After each compound was identified in each chromatogram, the val-
ues produced by the Chromeleon software were scaled up to their 
original concentrations in nectar based on how much the nectar was 
diluted (Chromeleon reported values in mol/L). This was carried out in 
different ways depending on the method used to extract the nectar 
(see Data S1).

2.2.5 | Statistical analysis

Statistical analysis was performed using spss (version 23, IBM 
Corporation, Armonk, NY, USA). The amino acids were grouped for 
analysis: essential amino acids (as defined for honeybees, De Groot, 
1953: arginine, threonine, phenylalanine, isoleucine, leucine, lysine, 
methionine, valine, histidine) and non-essential amino acids (proline, 
aspartic acid, alanine, cysteine, glutamic acid, glycine, serine, tyrosine 
and GABA). Tryptophan and glutamine were omitted because they 
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were not at detectable levels in the chromatogram. Glutamic acid 
and proline were analysed separately, because they were orders of 
magnitude greater than the rest. Total amino acid concentrations and 
proline were natural log-transformed prior to analysis. Total amino 
acids were analysed in a generalized linear model with method as 
a main effect. Post hoc analyses were performed using Sidak’s test 
for pairwise comparisons. To examine differences in the profile of 
amino acids, we performed a principal components method of factor 
analysis with a Varimax rotation on the data for all amino acids for 
all five nectar collection methods. The factor scores produced by the 
analysis were entered into a one-way generalized linear model (GLM) 
with nectar collection method as a main effect. Sidak’s pairwise post 
hoc comparisons were made for every method against the microcap-
illary method.

3  | RESULTS

We assume that the microcapillary tube method provides the best 
representation of what is in nectar; for this reason, we compared 
all other methods to the data obtained from microcapillary tubes. 
When microcapillary tubes were used to sample C. vulgaris nectar, 
we found that free amino acids were present at concentrations that 
were c. 880 ± 138 μM for total essential amino acids (EAAs) and 
c. 800 ± 177 μM for total non-EAAs (excluding proline, Figure 1, 
Table 2). Proline was present at an order of magnitude greater con-
centration of 5410 ± 162 μM.

The method of sampling exerted a strong effect on the relative 
proportions of the concentrations of total EAA, total non-EAA and 
proline in the samples (Figure 1, EAA: GLM, χ2

4
 = 726, p < .001; non-

EAA: GLM, χ2
4
 = 90.3, p < .001; proline: GLM, χ2

4
 = 35.1, p < .001). 

The total concentration of EAA, non-EAA and proline was lowest in 
the microcapillary samples (Figure 1, Table 2). The micro-rinse and 
filter paper samples exhibited significantly greater concentrations of 
EAA, non-EAA and proline than the microcapillary samples per unit 
volume. The micro-rinse method produced values that were c. 10-
fold greater than the microcapillary method for EAAs and non-EAAs 
and c. 30-fold greater for proline. The filter paper method produced 
values that were c. 100-fold greater for EAAs, 31-fold greater for 
non-EAAs and 150-fold greater for proline. The rinse 2 ml and wash 
2 ml methods had concentrations of EAAs that were over 100-fold 
greater and non-EAAs that were c. fourfold greater than the micro-
capillary method, but these methods did not significantly overesti-
mate proline (Table 2).

We also examined how nectar sampling method influenced the 
relative concentrations of each of the individual amino acids using 
factor analysis (Figures 2 and 3, Table 3). The amino acids were sig-
nificantly represented by one of six principal components (F1—6) 
which accounted for 83% of the variation within the data (Table 3). 
Most amino acids were significantly positively correlated with the 
first four factors with the exception of asparagine (F5) and leucine 
(F6). By analysing the factor scores generated from the factor anal-
ysis, we compared how the proportions of the amino acids in the 
samples were affected by the sampling method. Sampling method 
significantly influenced the amino acid profiles represented in the 
factor analysis for F1, F2 and F6 but not the amino acids repre-
sented in F3–5 (Table 3). Importantly, the microcapillary and the 
micro-rinse methods did not differ significantly in their amino acid 
profiles (Table 3, Figures 2 and 3). However, the filter paper, rinse 
2 ml and wash 2 ml treatments had significantly different amino acid 
profiles compared to the microcapillary method (Table 3, Figure S2). 
These differences in the amino acid profiles are especially apparent 
when the profiles are plotted as percentages of the total amino acids 
(Figure S2), total EAAs (Figure 2a), total non-EAAs (Figure 2b) and as 
the proportion of glutamic acid and proline (Figure 2c—note these 
were plotted separately because they are a large proportion of the 
total AAs).

Proline was the last amino acid off of the column and hence 
occurred at the end of the UHPLC run (Figure S1). For this reason, 
the potential for contamination of this peak (from non-amino acid 
solutes in nectar) was considerably greater than for other amino 
acids. In general, the concentration of proline was greater than any 

F IGURE  1 The natural log of the mean (±SE) of the total essential 
amino acid (EAA), non-essential amino acid (non-EAA) and proline 
concentration in nectar samples collected by five methods: MC, 
microcapillary; FP, filter paper; MR, micro-rinse; R, rinse 2 ml; 
and W, wash 2 ml. Letters indicate significant differences (Sidak 
post hoc tests, p < .05) from the microcapillary treatment only. 
Subscripts indicate specific sets of comparisons; that is, “1” indicates 
comparisons of EAA across sample collection types, “2” indicates 
comparisons of non-EAA, and “3” indicates comparisons of proline
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TABLE  2 Mean concentrations (±SE) of total essential amino 
acids (EAAs), total non-EAAs and proline rendered from each 
sampling method (MC, microcapillary; MR, micro-rinse; FP, filter 
paper; R, rinse 2 ml; and W, wash 2 ml). Units are in mM

Method Total EAA Total non-EAA Proline

MC 0.883 + 0.138 0.805 ± 0.177 5.41 ± 1.62

MR 7.22 + 2.37 10.8 ± 3.67 158 ± 68.2

FP 89.4 + 9.88 24.8 ± 7.00 812 ± 159

R 101 + 4.98 38.9 ± 5.60 7.17 ± 0.82

W 100 + 8.50 29.6 ± 6.76 8.88 ± 1.27



     |  739Methods in Ecology and Evolu
onPOWER et al.

other amino acid (Figure 1). The most proline was found in the fil-
ter paper method samples compared to any of the other methods. 
To identify whether the filter paper method introduced amino acid 
contamination, we also performed a simple rinse of the filter paper 
and analysed this on the UHPLC. We found that the filter paper 
added very low amounts (0.1% of nectar concentration) of 15 of 
the amino acids we measured (Table S1), but not a specific, larger 
spike in proline.

4  | DISCUSSION

The method used to collect nectar considerably influenced the mean 
amino acid concentrations in nectar from C. vulgaris. Samples obtained 
by the wash 2 ml, rinse 2 ml and filter paper methods contained much 
higher amino acid concentrations than the microcapillary and micro-
rinse methods. The amino acid profiles were also affected by the sam-
pling methods such that only the micro-rinse method yielded a profile 
matching that of the microcapillary method.

The main source of amino acid contamination found in the filter 
paper, rinse 2 ml and wash 2 ml methods is likely to be from floral 
pollen (Gottsberger et al., 1990). Contamination of the microcapillary 
samples with pollen amino acids happens less frequently because the 
microcapillary tubes are narrow and can be positioned directly around 
the nectary. However, the microcapillary method is not always effec-
tive in extracting nectar from flowers with low-nectar volumes because 
the nectar around the nectaries may be too viscous to be removed by 
capillary action or there may not be enough nectar to extract. Of all the 
methods in our study, the micro-rinse method returned the most similar 
results to the microcapillary method. The micro-rinse method samples 
exhibited a similar amino acid profile but a greater total amino acid con-
tent than the microcapillary samples. We believe that this difference 
in the measurement of total amino acids occurred because of the dilu-
tion factor used to back-calculate the concentration for the micro-rinse 
method. This dilution factor affects the magnitude of the total amount 
of each amino acid and inaccuracies can arise because of difficulties in 
recovering the nectar and all of the 2 μl injected into each flower. For 
this reason, when using the micro-rinse method, it is important to try to 
obtain a few samples using microcapillary tubes to estimate the volume 
of the standing crop of nectar in each flower. Despite the care that 
must be taken with the micro-rinse method, our results indicate that it 
is less likely to produce samples that are contaminated with amino acids 
from pollen than the other methods described here. For this reason, we 
conclude that the micro-rinse method is the best alternative method to 
microcapillary tubes for approximating concentrations of amino acids 
found in nectar of small-volume flowers.

Other studies previously used filter paper to extract nectar for 
amino acid analysis of nectar (McKenna & Thomson, 1988; Petanidou 
et al., 2006). The filter paper method in our study, however, produced 
samples with significantly higher concentrations of amino acids (par-
ticularly essential amino acids and proline) than the microcapillary 
method; the amino acid composition was also significantly different. 
We expect that filter paper works less well for amino acid measure-
ments because it is very difficult to prevent it being contaminated with 
pollen when inserted into small flowers. Therefore, we do not recom-
mend using the filter paper method to analyse amino acids because of 
the risk of contamination.

Like the filter paper method, the wash 2 ml and rinse 2 ml methods 
recovered significantly higher total amino acids and different amino 
acid profiles than the microcapillary method. This could have occurred 
for at least two reasons. First, using these methods, it is difficult or 
impossible to exclude free amino acids from pollen in these samples. 
Removing anthers with tweezers prior to sampling runs the risk of 

F IGURE  2 Sampling method affected the proportions of amino 
acids found in samples from Calluna vulgaris. (a) The mean percentage 
contribution of the essential amino acids (EAA) to nectar samples 
collected by five methods (excluding tryptophan). (b) The mean 
non-essential amino acids (non-EAAs). (c) The mean percentage of 
proline and glutamic acid. These amino acids were plotted separately 
because they were orders of magnitude greater in concentration than 
all the others. MC, microcapillary; FP, filter paper; MR, micro-rinse; 
R, rinse 2 ml and W, wash 2 ml
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F IGURE  3 Box-and-whisker plots of each amino acid found in the samples from each sampling method. (a–e) Non-essential amino acids, (f–j) 
essential amino acids. N = 12 samples/method

Ala Asn Asp Cys GABA Gln Glu Gly Pro Ser Tyr

Ala Asn Asp Cys GABA Gln Glu Gly Pro Ser Tyr

Ala Asn Asp Cys GABA Gln Glu Gly Pro Ser Tyr

Ala Asn Asp Cys GABA Gln Glu Gly Pro Ser Tyr

Ala Asn Asp Cys GABA Gln Glu Gly Pro Ser Tyr

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Arg His Ile Leu Lys Met Phe Thr Val

Arg His Ile Leu Lys Met Phe Thr Val

Arg His Ile Leu Lys Met Phe Thr Val

Arg His Ile Leu Lys Met Phe Thr Val

Arg His Ile Leu Lys Met Phe Thr Val

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

(a) Microcap

(b) Microrinse

(c) Filter paper

(d) Rinse

(e) Wash

(f) Microcap

(g) Microrinse

(h) Filter paper

(i) Rinse

(j) Wash

Non-EAA EAA

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)

ln
 (µ

M
 +

 1
)



     |  741Methods in Ecology and Evolu
onPOWER et al.

vascular fluid leaking into the sample. Nectar collected from flow-
ers damaged in this way were found to have altered amino acid pro-
files (Gottsberger et al., 1990). Amino acid concentrations in phloem 
were measured as 121–300 mM for plants like alfalfa and spinach, 
and cytosolic concentration was 121 mM (Girousse, Bournoville, & 
Bonnemain, 1996; Riens, Lohaus, Heineke, & Heldt, 1991). These val-
ues are c. 500–1,000 times more concentrated than the amino acids 
found in our nectar samples. Lohaus and Schwerdtfeger (2014) found 
the nectars of Maurandya barclayana, Lophospermum erubescens and 
Brassica napus to have much lower amino acid concentrations than 
their respective phloems. Sealing the cut surface with wax or surgical 
glue may prevent fluid leakage (Morrant et al., 2009) but would be ex-
tremely time-consuming and difficult to accomplish with tiny flowers.

Alternatively, washing or rinsing with large volumes of fluid could 
elute dried nectar solutes into the sample. Using this method, how-
ever, it would be necessary to dry down each sample and reconsti-
tute it in water. The actual concentration found in the nectar would 
remain unknown, but the total amount of each solute available could 
be calculated. However, this might not be what an animal foraging for 
nectar could acquire from a flower. For example, in a study of methods 
for carbohydrate analysis of nectar, Morrant et al. (2009) and Petit, 
Rubbo, and Schumann (2011) found that nectar collected using mi-
crocapillaries contained lower quantities of carbohydrates than nectar 
collected using rinse or wash methods. We suspect that this is because 
washing dissolves carbohydrates that have dried on the inner petal 
surfaces. These dried nectar constituents are unlikely to be available 

Factor

1 2 3 4 5 6

Eigenvalue 5.96 4.38 1.74 1.48 1.14 1.06

% variance 23.4 20.6 15.4 10.5 6.71 6.17

Amino acids

Alanine (Ala) −0.213 0.666 0.227 0.099 −0.229 −0.134

Arginine (Arg) 0.075 0.164 0.16 0.904 0.114 −0.095

Asparagine (Asn) −0.066 0.027 0.157 0.032 0.929 −0.071

Aspartic acid (Asp) 0.059 0.685 0.273 0.096 0.007 0.312

Cystine (Cys) 0.111 0.096 0.025 0.874 −0.099 0.311

GABA 0.871 0.394 −0.029 0.145 −0.03 −0.102

Glutamic acid (Glu) −0.001 0.513 0.39 0.45 0.02 −0.389

Glycine (Gly) −0.215 0.778 0.21 0.211 −0.001 0.337

Histidine (His) −0.156 0.261 0.755 0.003 0.384 0.083

Isoleucine (Ile) 0.891 −0.081 −0.057 −0.077 −0.037 0.074

Leucine (leu) −0.112 0.305 0.232 0.149 −0.066 0.737

Lysine (lys) 0.148 0.854 0.019 0.009 0.095 0.164

Methionine (Met) −0.255 0.872 0.193 0.094 0.141 −0.067

Phenylalanine (Phe) 0.28 0.428 0.596 0.106 −0.307 −0.182

Proline (Pro) 0.859 −0.17 −0.059 −0.09 −0.014 0.029

Serine (Ser) −0.076 0.188 0.879 0.203 −0.108 0.11

Threonine (Thr) −0.114 0.121 0.877 0.023 0.213 0.142

Tyrosine (Tyr) 0.953 −0.111 −0.035 0.147 −0.039 −0.107

Valine (Val) 0.956 −0.152 −0.052 0.153 −0.036 −0.079

1-way GLM

χ
2

4
597 186 6.97 3,23 5.07 19.6

p <.001 <.001 .137 .520 .281 <.001

Sidak’s pairwise post hoc tests against the microcapillary method

p-value

Filter paper .419 .931 .925 .985 .990 .969

Micro-rinse <.001 .003 .925 .733 .990 .969

Rinse 2 ml .047 <.001 .231 .925 .441 .548

Wash 2 ml .013 <.001 .679 .852 .990 .050

Note: Post hoc comparisons are restricted to each column.
GABA, gamma-aminobutyric acid.

TABLE  3 Factor analysis of amino acids. 
Top panel: eigenvalues and percentage 
variance for six factors (F1—6) extracted 
from all data and the rotated factor matrix. 
Bold values indicate the factor that best 
represents each amino acid (i.e. correlation 
coefficient). Middle panel: one-way 
generalized linear model (GLM) comparing 
methods. Bottom panel: Sidak post hoc 
pairwise comparisons of each method 
against the microcapillary method for each 
factor
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to most floral visitors (except for insects like flies that can use salivary 
secretions to take up substrates). Bees, however, do not use salivary 
secretions to recover food and spend very little time probing each 
flower for nectar. For example, bumblebees spent between 0.5 and 
3 s per flower on a variety of plant species (time spent foraging was 
correlated with corolla length) (Inouye, 1980). Two bumblebee species’ 
nectar removal rates were between 0.3 and 0.4 μl/s in two high-nectar 
producing plant species (Graham & Jones, 1996). For this reason, rapid 
licking or sucking near the nectary is unlikely to involve much ingestion 
of solutes present in crystallized form across the entire flower surface. 
Our data indicate that washing or rinsing the flowers with high vol-
umes of solvent also alters the profile of amino acids recovered during 
sampling and might not represent what a pollinator would obtain from 
the flower when collecting nectar. For these reasons, caution is re-
quired if using the wash 2 ml or rinse 2 ml methods for nectar sampling 
for amino acid analysis.

When analysing nectar for amino acids, it is important to reduce 
contamination of samples because free amino acids are widespread in 
the environment and are present in very low concentrations in nectar. 
In addition to contamination of sample from equipment/solvent con-
tact with other floral parts, contamination from unsterilized laboratory 
equipment, chemicals, solvents, hands/skin and paper is also a major 
concern. We used a specific brand of de-ionized water because we 
found that distilled water and some brands (including laboratory fil-
tration systems) of de-ionized water were contaminated with amino 
acids, particularly cystine and glutamine. We found that proline values 
for some samples were very high and erratic, particularly in the filter 
paper method, perhaps because of co-elution of other contaminants 
from the filter paper with proline, elevating the estimated level of pro-
line because these compounds co-elute at the end of the run and are 
detected by our fluorescence detector.

There are drawbacks associated with different nectar collection 
methods because their effectiveness is influenced by floral morphol-
ogy, nectar characteristics, sampling regime (Bolton, Feinsinger, Baker, 
& Baker, 1979; Kearns & Inouye, 1993; Lloyd, Ayre & Whelan, 2002; 
Morrant et al., 2009), nectar volume and the intended chemical anal-
ysis. It is clear from our study using C. vulgaris that nectar amino acid 
recovery from small-volume flowers depends on collection method. 
Our experiments show that the micro-rinse method delivers the clos-
est estimate to the microcapillary tube method of nectar extraction. 
In conclusion, we recommend that, if the intended chemical analysis 
involves only carbohydrates, then the use of microcapillaries, a micro-
rinse or filter paper will suffice, but if the intended analysis is to in-
clude other solutes such as amino acids then only the microcapillary 
or the micro-rinse methods are reliable ways of identifying the amino 
acid profile. Furthermore, testing samples for the presence of pollen 
(e.g. by microscopic verification) is also a means of ruling out whether 
or not pollen contamination affects the amino acid profile.
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