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Background:Auranofin, a Food andDrugAdministration–approved anti-rheumatic agentwith anticancer proper-
ties for lung and ovarian cancer, has never been studied for pancreatic cancer. We hypothesize that auranofin
may prevent pancreatic ductal adenocarcinoma progression by inhibition of Txnrd1 and HIF-1α.
Methods: In vitro sensitivity of humanpancreatic ductal adenocarcinoma cell lineswas determined based on IC50.
Western blot assays were used to interrogatemechanisms of apoptosis and resistance. Ex vivo live tissue slice as-
says of xenografts allowed for testing of a larger number of PDX samples with high efficiency. In vivo pancreatic
ductal adenocarcinoma orthotopic mouse models using MiaPaCa-2 Luc + cells were designed to determine op-
timal dose and antitumor effect.
Results: We found that 10 of 15 tested pancreatic ductal adenocarcinoma cell lines were sensitive to auranofin
based on IC50s below 5 μmol/L. Ex vivo tissue growth inhibition greater than 44%was observed for 13 PDX tissue
cases treatedwith 10 μmol/L auranofin. High Txnrd1 expressionwas observed for resistant cell lines. In vivo stud-
ies showed 15 mg/kg IP as the optimal dose with absence of gross solid organ metastasis up to 13 weeks post-
treatment (median survival 8 and 12 weeks, respectively; P = .0953).
Conclusions: We have demonstrated that auranofin prevents pancreatic ductal adenocarcinoma progression
using multiple models. Our study suggests inhibition of Txnrd1 and HIF-1α as possible mechanisms of action,
and Txnrd1 as a biomarker of resistance. Based on these data, an off-label Phase 0 clinical trial with this FDA-
approved drug should be considered for patients with pancreatic cancer.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most
deadly types of cancer with a worldwide incidence of 1–10 for every
100,000, and steadily low survival rates over the last 3 decades, in part
due to failure of tumor response to available treatment regimens
[1–3]. Auranofin, an organic gold compound FDA-approved for rheuma-
toid arthritis, has attracted interest due to anticancer properties discov-
ered in studies in leukemia, lymphoma, bone, lung, ovarian, gastric,
colorectal, melanoma and breast malignancies [4–13]. Throughout the
last 3 decades of research, multiple mechanisms of action have been
stinal Oncology, H Lee Moffitt
rive, Tampa, FL 33612. Tel.: +1

g).

. This is an open access article under
ascribed to auranofin for its anti-cancer effects, including: inhibition of
Txnrd1 (thioredoxin reductase 1, aka Trx1 and Trxr1), a major intracel-
lular glutathione-like reducing system, cytotoxic increase in reactive ox-
ygen species, disruption of mitochondrial membrane potential, trigger
of endoplasmic reticulum stress and activation of caspase, and inhibi-
tion of ubiquitin-proteasome system [5,11,14–17]. Inhibitors of the
thioredoxin redox system have been implicated in the inhibition of
pro-angiogenic effectors, hypoxia-inducible factor-1 α (HIF1α) and
vascular endothelial growth factor (VEGF), both of which are
overexpressed in many malignancies including pancreatic cancer
[18–20]. Despite the data available in other cancer models, the role of
auranofin as a therapeutic against pancreatic cancer has been
understudied, with one report many years prior [21]. In this study we
hypothesize that auranofin, when administered as a single agent, will
inhibit the Txnrd1pathway in vitro and in vivomodels of pancreatic can-
cer, and thereby prevent PDAC tumor growth and progression.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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MATERIALS AND METHODS

Reagents.MTT, auranofin, dimethylsulfoxide (DMSO), and Polyethylene
glycol (PEG) were obtained from Sigma-Aldrich, St. Louis, MO.
Gemcitabine was donated from the pharmacy of The University of
Texas, MD Anderson Cancer Center (UTMDACC). Ethyl Alcohol and
injectable-H2O were obtained from Pharmaco-AAPER (Brookfield, CT)
and Hospira (Lake Forest, IL), respectively. Plasmid pCDH-RFP-Luciferase
was obtained from Dr. Mien-Chie Hung, from The Department of Molec-
ular and Cellular Oncology, UTMDACC. Radioimmunoprecipitation pro-
tein assay (RIPA), PrestoBlue, and human Vascular Endothelial Growth
Factor (VEGF) ELISA kitwere purchased fromLife Technologies (Grand Is-
land, NY). Bio-Rad protein assay was obtained from Bio-Rad Laboratories
Inc. (Philadelphia, PA). Polyvinylidene difluoride (PVDF)membranes and
Cremophor EL were bought from Millipore (Billerica, MA). Antibodies to
Txnrd1, HIF1α, and PARP were purchased from Abcam (Cambridge,
Fig. 1. Live tissue slice assay for chemosensitivities of pancreatic adenocarcinomapatient-d
approved or clinical testing agents on patient-derived xenograft tissue slices of PDAC using a li
viability at a higher degree, when compared to other agents [Gemcitabine, Irinotecan, AZD62
inhibitor), Dual Antiplatelet Therapy (DAPT), Crizotinib (ALK/c-Met/HGFR inhibitor), AZD22
viability was calculated for 13 tested tissue samples, and growth inhibition (%Inhibition = 100
MA). Antibodies to β-actin were purchased from Santa Cruz Biotechnol-
ogy (Dallas, TX). Matrigel was obtained from Thermo Scientific, South
Logan, UT, and Life Science Technologies, Tewksbury, MA, respectively.
Gold analysis standard solutions of Au(III) (1000 mg L-1), hydrochloric
acid (HCl) suprapure (36%), and nitric acid suprapure (65%), were pur-
chased fromMerck, Germany.

Generation of Cell Lines and Xenografts. MD Anderson (MDA)
patient-derived cell lines (PATC; Suppl. Table 1) and patient-derived tis-
sue xenografts (PATX; Suppl. Table 2) were established from patients
diagnosed with PDAC who underwent either pancreatectomy or
metastasectomy (resected from liver, lung, or bone) over the period of
2010–2014, who consented for both surgery and tissue collection
under Institutional Review Board (IRB) protocols: LAB07–0854,
LAB00–396, and PA15–0176. Animal protocols were approved by the
MDAnderson following The Animal Care andUse Form (ACUF) protocol
erived xenografts. (A and B) Representative figures showing the testing of a panel of FDA-
ve tissue slice assay (LTSA). Auranofin was noticed to be more active by decreasing tissue
44 (MEK inhibitor), MK2206 (AKT inhibitor), Sunitinib (receptor protein-tyrosine kinase
81 (PARP inhibitor) and untreated tumor xenograft tissue slices. (C) Normalized tissue
– %Normalized Viability) induced by auranofin was found to be 44–95%.
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00001089-RN00. Eleven cell lines were derived from MDA xenografts
which were named as follows: MDA-PATC43, 50, 53, 69, 76, 102, 108,
113, 121, 124, and 135, the first 3 were characterized on a previous re-
port [22]. Seven out of the remaining 8 newly established cell lineswere
confirmed to be unique by DNA fingerprinting performed at the Charac-
terized Cell Line Core Facility (UTMDACC), 5 of which were matched
with patients (data not shown). Established commercial cell lines
293 T, BxPc-3, Panc-1, MiaPaCa-2, HPAF II, Hs-776-T, SW1990, AsPc-1,
and PanO2, were obtained from ATCC (Manassas, VA). Cell lines and tis-
sues were used from patients of both sexes.

Procedures for PDX establishment were followed as described on a
previous publication [23]. Briefly, different generations of PDX were
grown in bilateral subcutaneous areas of 6–8-week-old female NOD/
SCID (F1 – first generation) or nudemice (F2-F4) obtained from Jackson
Laboratory (Bar Harbor, ME). Tumors reaching 1–1.5 cm diameter were
harvested following euthanasia under aseptic technique. Patient-
derived tissue xenografts (PATX) were labeled according to the genera-
tion, F1-F4, and were used for drug sensitivity testing and histological
analysis.
Cell Viability Assay. TheMTT cell proliferation assaywas used as per the
manufacturer's protocol to determine cell line viability. Each experi-
ment consisted of 2–3 × 103 cells/well seeded on a 96-well plate,
followed by treatment 24 hours later with a series of six 1:10 dilutions
of auranofin in 0.1% DMSO, with 0.1% DMSO as control. Hypoxia
experiments (O2 b1%) were done using a hypoxia chamber incubator
(BioMedical Solutions Inc., Stafford, TX), and a nitrogen regulator
(NuAire, Inc., Plymouth, MN). Absorbance was read at 570 nm,
72 hours after treatment, using the FLUOstar Omega plate reader
(BMG Labtech, Offenburg, Germany) at the Core Facility, UTMDACC. Ex-
periments were done in triplicates.
Fig. 2. Mechanisms of action of auranofin inhuman pancreatic adenocarcinomamodels. (A
different concentrations. (B) IC50 determination for 15 human PDAC cell lines, 10 ofwhichwere
were defined as auranofin-resistant (in red) due to IC50 ≥5μmol/L. (C) Western blot for Txnrd1
vertical line divides cell lines in 2 subgroups based on IC50. (D) Txnrd1 protein expression a
correlation. (E) Western blot analysis was performed following low-dose (0.5–1 μmol/L)
(auranofin-sensitive), unlike auranofin-resistant cell lines SW1990 and AsPc-1. β-Actin was us
Luciferase Transfection. The plasmid pCDH-RFP-Luciferase was
transfected in MiaPaCa-2 and MDA-PATC53 cells as previously de-
scribed by our group [24]. Briefly, pCDH-RFP-Luciferase plasmid recom-
binant viruses were generated by transient transfection of the
packaging plasmids pMLg/pRRE, pRSV.rev, and pHCMV-G into 293 T
cells. Virus-containing supernatantwas collected after 72 hours to infect
MiaPaCa-2. Infected cells were purified by RFP fluorescence-activated
cell sorting at the Flow Cytometry and Cellular Imaging Facility,
UTMDACC.

Western Blot Assay. Western blot assay was performed following the
previously reported protocol [25]. In brief, whole cell lysates were ex-
tracted using RIPA with 1X-protease inhibitor cocktail from: MDA-
PATC53, MiaPaCa-2, SW199O, and AsPc-1, 24 hours following incuba-
tion with 0.1%D MSO and variable auranofin-doses ranging from 0 to
10 μmol/L. Protein concentration was determined using the Bio-Rad
protein assay followed by loading 20 μg in 8–15% SDS polyacrylamide
gels run at 96-Volts at room temperature. Gels were transferred over-
night to PVDF membranes. Primary antibodies were incubated at
1:1,000 (PARP and HIF1α), and 1:500 (Txnrd1) at 4 °C overnight
under rocking motion. Loading control (β-actin) was incubated at
1:5,000 for 2 hours at room temperature under rockingmotion. Second-
ary antibodies were incubated at 1:5,000 for 2 hours at room tempera-
ture, under rocking motion. Protein bands were visualized using Kodak
developer (Core Laboratories, UTMDACC) 1 minute after enhancer
chemoluminescence reagent was added. Exposure times varied from
5 seconds to 5 minutes.

Live Tissue Slice Assay. Live tissue slice assay (LTSA) was done follow-
ing previously reported protocol [26]. In brief, 2–4 punch biopsies of
3–4 mm diameter were performed on an explanted PDX in a sterile
10 cm petri dish, then immediately placed in University of Wisconsin
)MTT assay was performed to assess for cell viability 72 hours after auranofin treatment at
defined as auranofin-sensitive (in green) based on IC50 b5 μmol/L. The remaining cell lines
and baseline expression was performed for a panel of 13 human PDAC cell lines. Dotted
nd IC50 from human PDAC cell lines were found with a statistically significant positive
auranofin treatment showing higher PARP cleavage for MiaPaCa-2 and MDA-PATC53
ed as a loading control, and 0.1% DMSO used as the control treatment.
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solution with 2% Penicillin/Streptomycin on ice (Bridge to Life,
Columbia, SC). Coreswere then transferred to 1% lowmelting point aga-
rose gel and were cut into high-precision tissues slices of 200 μm thick-
ness with a live tissue microtome filled with cold sterile PBS containing
2% penicillin/streptomycin (Krumdieck, Alabama Research and Devel-
opment, Munford, AL). Tissue slices were transferred from the PBS to a
96-well plate with DMEM-10%FBS for ex vivo tissue culture and main-
tained at 37 °C and 5% CO2 on a plate shaker at 150 rpm. Slices were
treatedwithin 24 hourswith auranofin 10 μmol/L and control. Tissue vi-
ability was determined 48–72 hours post-treatment using the
PrestoBlue viability assay per the manufacturer's protocol. Absorbance
was read at 570 nm using FLUOstar Omega reader (Core Facility,
UTMDACC). Experiments were done in triplicates.

Human Vascular Endothelial Growth Factor (VEGF) ELISA of PDX
Tissue Slices. Fresh tissue slices of PDX79-F4 were cultured under
normoxia and hypoxia for 6 hours and 24 hours post-treatment with
auranofin 10 μmol/L and control (0.1% DMSO). Conditions were repli-
cated in 4 wells, each containing a tissue slice 4 mm in diameter and
200 μm in thickness. Tissue culture media were collected and diluted
in a 1:3 ratio for each condition. Diluted samples were used for the
human VEGF ELISA following manufacturer's instructions. Results
were normalized by tissue slide protein concentration and analyzed
using ANOVA from GraphPad Prism.

Generation of MiaPaCa-2-Luc+Orthotopic MouseModel. Twenty 6-
week old female nude mice were obtained from Jackson Laboratories.
MiaPaCa-2-Luc + cells were grown in culture to an 80–90% confluence
Fig. 3. Hypoxia enhances antiangiogenesismechanism of auranofin in human PDAC. Inhibit
b 1%), which was not present during normoxia. (B) Treatment of PDX79-F4 with auranofin 10
and hypoxia, and trended towards a bigger difference under hypoxia. (C)HumanVEGF ELISA of
auranofin-treated groups, but became statistically significant under hypoxia at 6 and 24 hours
with confirmed luminescence in vitro using Xenogen-IVIS200 from
Small Animal Imaging Facility (SAIF), UTMDACC. Cells were prepared
in a 1:1 mixture of PBS: Matrigel to a concentration of 5 × 106 cells/
mL. Using aseptic technique for rodent survival as per IACUC standards,
an incision was made in the left abdomen, the tail of the pancreas was
exteriorized, and 2.5 × 105 cells/50 μL of MiaPaCa-2-Luc +were slowly
injected to the tail of the pancreas following a previously published pro-
tocol [27]. The peritoneum was closed with two 5–0 Vicryl interrupted
stitches and skin was closed with metal clips. All mice survived surgery
and formed tumors, monitored twice-a-week by bioluminescence im-
aging (BLI) acquisition with IVIS200 (Xenogen, Alameda, CA). Mice
were randomly distributed among 4 groups (of n = 5): Vehicle,
auranofin 5 mg/kg, 10 mg/kg, and 15 mg/kg. Neither pre-treatment av-
erage BLI (radiance) nor mouse weight (grams (g)) were significantly
different among groups (data not shown). Vehicle solution was com-
posed of 5% DMSO, 10% Cremophor EL, 12.5% PEG, and 15% Ethyl Alco-
hol, and 57.5% H2O. Auranofin solutions were calculated based on a
25 g mouse (pre-treatment average mouse weight was 23 g). Mice
were weighed weekly. Treatment was started on post-injection day 21
on a Monday through Friday daily schedule, with intraperitoneal injec-
tions of 100–300 μL, corresponding to 5–15 mg/kg. Mice were anesthe-
tized prior to treatment due to solution viscosity and to avoid organ
injury or erroneous delivery route. Time of euthanasia was reached
when abdominal distension and/or large tumor burden were present
as per DVMS. Each mouse underwent a post-euthanasia necropsy for
documentation of presence of ascites and/or gross abdominal cavity
metastases, as well as for tissue collection. The experiment was ended
once all mice reached criteria for euthanasia. Kaplan–Meier curves
were constructed from the survival data.
ion of Hif1αwas observed at 6 hours post-treatment for MDA-PATC53 under hypoxia (O2

μmol/L induced a statistically significant inhibition of tissue viability under both normoxia
tissue culturemedia from tissue slices of PDX79 revealed inhibition of VEGF secretion in all
.
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Gold Content Analysis.Measurements of gold content were performed
in tissues from: MiaPaCa-2 (tumor, liver, and kidney), and MDA-
PATC53 (tumors only), carried out with a Varian SpectrAA 880Z atomic
absorption spectrometer equipped with a GTA 100 graphite furnace
with Zeeman background correction system (GFASS). The gold hollow
cathode lamp (Narva, Germany) was operated at 5 mA current. The ab-
sorbances were measured using the pyrolytically coated graphite tube
at 242.8 nm with 0.2 nm spectral band pass. The temperature program
applied in those determinations was: drying 110 °C (for 20 s), pyrolysis
900 °C (for 10s), and atomization 2,100 °C (for 5 s). Measurementswere
carried out by calibrationwith liquid standards. Samples of tissues were
accuratelyweighed (mass range: 42.8–285mg), and directly digested in
glass auto sampler cupswith 1.5mL of aqua regia by gentle heating on a
plate to almost dryness. The digestion processwas repeated 3 times. The
final residue was heated up to 800 °C with 1.0 mL of 1.0 M HCl. The
gravimetric method was used to control the final volume due to rela-
tively low tissue masses to be analyzed. Chemical blanks and tissue
samples with addition of known amount of gold standard were ana-
lyzed as controls of the digestion procedure and measurement by
GFAAS technique. The tissues samples chosen were spiked prior to the
digestion; known concentrations of the gold standard were also used
for the calibration. This approach was necessary because suitable bio-
logical reference material for gold certified is not commercially avail-
able. The gold recovery for such prepared samples was N95%.
Fig. 4. Auranofin delays progression and prolongs survival of nude mice with MiaPaCa
orthotopically implanted in twenty 6-week-old female nude mice with 100% take rate confi
group), and treated Monday to Friday once a day with: Vehicle, Auranofin 5, 10, or 15 mg/kg
tumor burden (N2 cm) occurred. Mice treated with 15 mg/kg auranofin trended towards lon
week over the first 20 days, until the first mortality occurred. Groups treated with 10 and 1
control group, implying lower tumor burdens (*). (C) Representative photos showing the
treatment group. Total metastatic event occurrence (lower left) and ascites (lower right) wer
increased.
Statistical Analysis. Experiments were performed in triplicates and
values are presented as mean ± SEM. GraphPad Prism 6 was used for
statistical analysis. T-tests were done to compare the difference be-
tween 2 groups and ANOVA to compare more than 2 groups. Survival
statistics were presented as Kaplan–Meier curves.

RESULTS

Single Agent Auranofin Effectively Decreases Pancreatic Cancer Cell and Xe-
nograft Tissue Slice Viability by Multiple Mechanisms. In a live tissue slice
assay (LTSA), auranofin showed the highest suppression of relative via-
bility of ex vivo PDAC tumor slices out of a panel of 9 approved
(e.g., Gemcitabine, Irinotecan), and on-trial anticancer agents
(e.g., AZD6244-MEK inhibitor, MK2206-AKT inhibitor, Sunitinib-
receptor protein-tyrosine kinase inhibitor, Dual Antiplatelet Therapy
(DAPT), Crizotinib-ALK/c-Met/HGFR inhibitor, AZD2281-PARP inhibi-
tor) on patient derived xenografts MDA-PATX-113 and MDA-PATX-
135 (Fig. 1A-B). Normalized tissue viability was calculated for thirteen
tested tissue samples, and growth inhibition (%Inhibition = 100 – %
Normalized Viability) induced by auranofin was found to be 44–95%
(Fig. 1C). Themajority (10/15; 67%) of the human PDAC cell lines tested
were found to be auranofin-sensitive based on IC50 ≤ 5 μmol/L (Fig. 2A-
B; Suppl. Table 3). These cell lines were derived from both primary and
metastatic (e.g., liver, lung, ascites (AsPc1, and HPAF II), and bone;
-2 tumors. MiaPaCa-2-Luc + cells (2.5 × 105 cells in 1:1 PBS to Matrigel ratio) were
rmed by BLI (not shown) 2-weeks post-implantation. Mice were randomized (5 mice/
as intraperitoneal injections. Mice were euthanized when: abdominal distension or large
ger survival (P = .095). (B) BLI (in radiance × 106 p/sec/cm2/sr) was recorded twice a
5 mg/kg at day 20 were found to have significantly less luminescence compared to the
lack of gross solid organ metastasis for mice in the 15 mg/kg group versus the control
e recorded during necropsy, with proportions showing less of either as treatment dosage
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Suppl. Table 1) sites. Txnrd1 expression was overexpressed in resistant
cell lines (Fig. 2C), resulting in a statistically significant positive correla-
tion between Txnrd1 and IC50 (Fig. 2D). Treatment with low-dose
auranofin (0.5–1 μmol/L) was found to induce apoptosis by showing
higher PARP-cleavage (Fig. 2E) among sensitive cell lines when com-
pared to resistant. MDA-PATC53 exhibited an inhibition of HIF1α ex-
pression at 6 hours (Fig. 3A) under hypoxia when compared to
normoxia. Treatment of PDX79-F4 with auranofin 10 μmol/L induced a
statistically significant inhibition of tissue viability (Fig. 3B) under
both normoxia and hypoxia, and trending towards a bigger difference
under hypoxia. VEGF secretion from xenograft tissue slices from
PDX79-F4 were significantly suppressed at 6 and 24 hours after
auranofin 10 μmol/L treatment under hypoxia (Fig. 3C), when com-
pared with normoxia controls.

Auranofin Presents a Survival Advantage in Nude Mice with MiaPaCa-2
Pancreatic Tumors and Inhibits Metastasis in a Dose-Dependent Fashion.
There was a 100% tumor take rate using this model. A survival study
using orthotopically implanted MiaPaCa-2-Luc + cells showed
15 mg/kg auranofin to be the optimal dose due to a trend towards sur-
vival benefit post-treatment initiation versus control (Median Survival
of 12 versus 8 weeks, respectively; P = .095; Fig. 4A, Suppl. Table 4).
The 15 mg/kg auranofin group had not only a statistically significant
lower tumor burden (as measured with bioluminescence; Fig. 4B) 20
days post-treatment when compared to control, but exhibited a com-
plete suppression of gross abdominalmetastasis and a lower occurrence
of ascites (Fig. 4C)when compared to other treatment groups. The over-
all frequency of liver metastasis found at the time of death was 30% (6/
20). Of those 50% were in the control group, 33% in the 5 mg/kg, 17% in
the 10 mg/kg, and none in the 15 mg/kg auranofin group. There was a
Fig. 5. Auranofin biodistribution, mouse weight change, and MiaPaCa-2 tumor Hif1α expr
retrieved at the time of death (8–9 weeks and 12–14 weeks) for one mouse (M) per group as
to levels below level of detection. (B) Intratumoral gold (μg of gold per g of tissue) was analy
and were statistically significant different than control over the first 4 weeks post-treatmen
tumors under different doses of auranofin treatment, indicating less expression of Hif1α with
dose dependent occurrence of gross abdominal distant organmetastasis
(Fig. 4C). The overall occurrence of ascites was 45% (9/20). Of these 33%
were found in the control group versus 44% in the 5 mg/kg, and 11% in
both 10 and 15mg/kg auranofin groups (Fig. 4C). The biodistribution of
auranofin was determined by measurements of gold content in one
mouse per group from: tumor, liver, and left kidney, at 2 different
periods post-necropsy (8–9 weeks and 12–14 weeks; Fig.5A).
Intratumoral gold (in μg of gold/g of tissue) was determined from tissue
retrieved post-necropsy at the time-of-death (Fig. 5B) from the timepe-
riod depicted in gray in Fig. 4A (weeks 8–9). Therewas a statistically sig-
nificant weight gain exhibited for all treatment groups versus control
during the first 4 weeks post-treatment (Fig. 5C). Immunohistochemis-
try of tumor tissue for HIF1α demonstrated an auranofin-induced de-
creased expression when compared to control (Fig. 5D).

DISCUSSION
Methods to inhibit progression of pancreatic adenocarcinoma are

urgently needed. Themost frequent site ofmetastases are the liver, peri-
toneum, lung, bones, and adrenal glands [28]. In this study, we demon-
strated the anti-cancer activity of auranofin in several models of
pancreatic adenocarcinoma. Importantly, the anti-cancer activity trans-
lated into decreasedmetastasis in a clinically relevant in vivomodel. Ad-
ditionally, this study supports apoptosis, inhibition of HIF1α and VEGF
secretion asmolecular consequences associated with antitumoral effect
and identifies Txnrd1 expression as a potential biomarker of auranofin-
resistance: a finding consistent with previously described reports [29].

In our models, auranofin prevented progression of human PDAC by
showing antitumor effect at the primary site and complete suppression
of distant organmetastasis at a dose of 15mg/kg IP. Previous studies re-
ported optimal doses of ≥2 μmol/L for Pa Tu II cell line and 12 mg/kg IP
ession. Gold content was quantified from different tissues (tumor, liver, and left kidney)
shown in the figure, to demonstrate gold biodistribution. Vehicle group was omitted due
zed from tissue harvested at the time of death. (C) Mice weights were recorded weekly
t versus control (*). (D) Representative figure of Hif1α tissue expression for MiaPaCa-2
higher doses of auranofin.
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for an immunocompetent leukemia mousemodel, which are consistent
with our observations [21,30]. While other investigators have demon-
strated a delay in lung metastasis in an osteosarcoma orthotopic
model, this is the first report testing auranofin against pancreatic cancer
animalmodel [10]. Using techniques developed for the determination of
tissue gold biodistribution at the time of death, we verified that organic
gold compounds were present in variable amounts in different tissues
(Fig. 5A), which could account for the anti-metastatic effects in our
nude mice model (Fig. 4C; Suppl. Fig. 4).

Hypoxia is commonly foundwithin pancreatic tumors, and larger re-
gions of intra-tumoral hypoxia within PDAC tumors correlates with di-
minished survival [31]. While the exact mechanism is unknown, it is
hypothesized that the tumor inhibitory effect of auranofin lies in its abil-
ity to inhibit the cancer cell response to hypoxia. Our experimental re-
sults demonstrated that auranofin decreased hypoxia-driven VEGF
secretion (Fig. 3C) as well as HIF1α expression in tumor cells (Fig. 3
and Fig. 5D), and hypoxic tumor samplesweremore sensitive to the ap-
optotic effects of auranofin during ex vivo experiments (Fig. 3B). It is not
clear why inhibition of HIF1α occurs at 6 hours and not at 2 hours
(Fig. 3A) however we can speculate that this may be because the inhib-
itory effect of auranofin onHIF1α occurs at a specific concentration level
of associated factors such as reactive oxygen species (ROS), which stabi-
lize HIF1α and protect it from degradation. It has been shown that
hypoxia-driven ROS production causes autocrine production of VEGF
which in turn stabilizes HIF-1 through an Akt-dependent mechanism
in melanoma cells [32]. Auranofin is an inhibitor of multiple points of
the PI3K/akt/mTOR pathway [6], and this may factor in the ability of
auranofin to stop this auto-feedback loop. Inhibition of HIF1α and
VEGF has been demonstrated in experiments with thioredoxin redox
inhibitors (1-methylpropyl 2-imidazolyl disulfide, and pleurotin) [19],
and we found that resistant PDAC cells, as demonstrated by IC50, uni-
formly expressed Txnrd1 at high levels. The Trx system protects normal
cells from injury and has been associated with cancer cell drug resis-
tance [14,33–39]. Inhibition of Txnrd1 to increase ROS is being explored
as a radiosensitizer in chemo-radiation regimens [9]. Combining these
agents with auranofin could represent a strategy to overcome the hyp-
oxic tumor microenvironment in PDAC.

The mechanism for the presence of gold compounds in the tissue
and inhibition of metastatic tumor formation at these sites is not ex-
plained in this report. Levels of auranofin in solid organs have not
been measured in humans to our knowledge. An early study of
auranofin showed that blood gold levels in patients reached past 1.1
μg/ml only by taking treatment of 3 mg twice a day for 3 weeks, then
3 times a day for 9 weeks, for a total of 12 weeks of treatment, which
is a much lower dosage than our 5–15 mg/kg mouse regimen [40].
The measurement of intra-tumoral gold concentration in pancreatic
cancer xenografts is also described for the first time in this study, and
further studies can be conducted to determine optimal intra-tumoral
gold concentrations to elicit the best response.

Additionalweaknesses of this study include small animal group sizes
and lack of testing an immunocompetent mouse model. Future direc-
tions include testing different dosages, different delivery routes such
as intravenous or oral administration, and treatment timing regimens
and investigating whether there would be treatment synergy with
auranofin and other chemotherapeutics or radiation in PDAC and
other solid tumors. Further testing of auranofin on an immunocompe-
tent animal model will be of particular interest in order to elucidate its
immunomodulatory roles with regard to tumor formation.

Over the last years there have been more efforts towards
repurposing FDA-approved drugs as anticancer agents along with clini-
cal trials that could lead to a significant survival benefit for this patient
population [15,41]. The study of gold-compounds anti-cancer proper-
ties could lead to the development of auranofin-like compounds as
new treatments, and these data support further investigation of
auranofin in this capacity. As this drug is already FDA-approved and
has been used for decades with a well-studied safety profile, we think
it is reasonable to advocate for a Phase 0 clinical trial of off-label use of
auranofin for pancreatic cancer patients. Other preclinical studies have
demonstrated the effectiveness of auranofin in preventing metastases,
so this drug may be useful as an adjuvant treatment after primary
tumor resection to prevent distant recurrences. Also the fact that it is
bioavailable through oral administration will make it an attractive che-
motherapeutic option for patients, similar to the advantage.
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