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Abstract

Scientific articles often contain relevant geographic information such as where field work

was performed or where patients were treated. Most often, this information appears in the

full-text article contents as a description in natural language including place names, with no

accompanying machine-readable geographic metadata. Automatically extracting this geo-

graphic information could help conduct meta-analyses, find geographical research gaps,

and retrieve articles using spatial search criteria. Research on this problem is still in its

infancy, with many works manually processing corpora for locations and few cross-domain

studies. In this paper, we develop a fully automatic pipeline to extract and represent relevant

locations from scientific articles, applying it to two varied corpora. We obtain good perfor-

mance, with full pipeline precision of 0.84 for an environmental corpus, and 0.78 for a bio-

medical corpus. Our results can be visualized as simple global maps, allowing human

annotators to both explore corpus patterns in space and triage results for downstream anal-

ysis. Future work should not only focus on improving individual pipeline components, but

also be informed by user needs derived from the potential spatial analysis and exploration of

such corpora.

Introduction

Geographical information permeates the written world, appearing as place names or place

descriptions in texts including news articles, blog posts, social media content, historical docu-

ments, and scientific articles. Research on extracting geographical information from text has

often focused on news articles [1–3] and social media content [4–6], with surprisingly limited

attention being directed towards the increasing number of published scientific articles. Indeed,

with each passing year, scientists face an ever-growing stack of scientific articles to sort

through, read, understand, and build upon. Many of these articles contain important geograph-

ical information: perhaps soil samples were taken from a certain region, patients were treated

in a particular hospital, or interviews were conducted in a village or neighborhood. Currently,

researchers must manually sift through article contents to identify any relevant locations, a

time-consuming process. Furthermore, linking these textual place descriptions to spatial repre-

sentations (such as point coordinates, a bounding box, or a polygonal region) requires signifi-

cant additional work and should ideally respect the scale and precision of locations described

in the text. Despite discussions about the need to develop and adopt metadata reporting stan-

dards for geographic information [7–9], the vast majority of scientific articles continue to be
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published without any accompanying machine-readable spatial data, though geographic infor-

mation often appears in the article contents in textual form. The ability to automatically extract

and spatially represent this geographic information would enable researchers to organize and

find information using not just keywords but also spatial criteria, as is done for other types of

text using Geographic Information Retrieval (GIR) techniques [10]. Organizing and visualizing

scientific corpora by space would facilitate geographically-aware meta-analyses [11], enable

studies to be cross-referenced by location [12, 13], and allow for the discovery of geographical

research gaps such as understudied regions in a particular scientific discipline [14, 15].

Though scientific articles have become a frequent object of study for researchers, common

research objectives are to analyze and visualize (often large) article collections [16–18], and to

extract or summarize specific information from publications through text mining, usually in a

particular domain such as biomedical research [19, 20]. On the one hand, many scientific cor-

pus analyses consider geography, but focus on author locations which are easier to extract

from articles [17, 21], and on the other hand, many specialized text mining tools go beyond

article metadata and into full-text processing, but don’t give special treatment to geographical

information. Meanwhile, extracting and representing meaningful geographical locations such

as study sites from scientific articles remains a challenging and understudied problem. Most

published works on this problem identify relevant locations from text manually [12, 15, 22,

23], and few tackle the problem using a scalable, automatic approach [9, 24, 25]. When auto-

matic approaches are used, they are constrained in their applicability, either by only extracting

geographic coordinates [26, 27], by not utilizing the full-text of articles [14], or by performing

overly poorly on full-text [9]. Furthermore, the corpora used remain limited both in size and

disciplinary focus, potentially limiting the wider applicability of the techniques and findings.

A long-standing related and relevant stream of work that has recently been applied to scien-

tific articles is the detection and disambiguation of place names (toponyms), a task known as

toponym recognition and resolution. One recent strand of work has concentrated around an

annotated corpus related to phylogeography [28]. This work includes a series of publications

[28–31] and a SemEval-2019 task called ‘Toponym Resolution in Scientific Papers’ [32]. How-

ever, these research efforts focus on identifying all toponym mentions within the main text of

an article, rather than a subset of relevant locations representing, for example, where a study

was conducted. This means that annotated toponyms in this phylogeography corpus include

toponyms listed alongside company locations (for chemicals or products used in a study) as

well as toponyms mentioned in the context of scientific background. The present work focuses

on a different, albeit related, task: automatically extracting and geographically representing

meaningful or relevant locations from scientific articles such as study sites, patient treatment

locations, and sample locations. These are almost always a (relatively small) relevant subset of

the textual locations or toponyms that appear in the article contents, and thus our task relates

more closely to finding the geographic scope of text documents [33–35] than to performing

comprehensive toponym resolution on each document [36]. Our goal in this paper is rather to

replicate what a human annotator would extract from a scientific article for the purposes of a

meta-analysis, or what an author would potentially include as geographical metadata for a sub-

mitted article.

Indeed, an important part of processing scientific articles is not only to detect locations, but

also to ignore irrelevant locations such as locations in references, locations indicating where a

company providing commercial products is based, or locations appearing in expressions such

as ‘the Declaration of Helsinki’. The presence of irrelevant place names throughout scientific

articles is cited as a major obstacle to automatically extracting study sites using place names in

[27] and affected performance and processing decisions in [14, 25]. In our task, each individual

place name or toponym mention (which we refer to as location mentions since named
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locations like hospitals and universities are of interest to us but not necessarily considered to

be ‘toponyms’) appearing in text is not equally important, including repeated locations, as long

as the correct study locations are captured, as measured through precision and recall.

In this paper, we develop a fully automatic pipeline which starts from a collection of scien-

tific articles and their PDFs and outputs a set of location strings and their sentence context, as

well as structured information and a geometric representation for each string (Fig 1). We use

two contrasting corpora from two different research domains: 1. a highly spatial ecological

research corpus of articles relating to orchards, with most including study site descriptions,

and some including maps and coordinates, and 2. a less spatial biomedical corpus of articles

on cancer genetics, where many articles fail to report geographical locations at all. Our pipeline

combines freely available tools with rule-based processing to extract and represent relevant

locations, and aims to minimize domain-customization across our two corpora. We focus on

extracting locations from targeted portions of the article, including the title and any methods

or study site sections deemed likely to contain relevant locations. We aim to ignore irrelevant

locations, such as locations representing where certain scientific products were obtained or

manufactured, not only by targeting certain text portions but also through rule-based post-

processing of candidate locations. We obtain good performance, with full pipeline precision of

0.84 for the ecological and 0.78 for the biomedical corpus, allowing us to map and discuss the

spatial properties of the collections.

Background

Extracting geographical information from scientific articles

Automatically identifying place names and their associated spatial language in text is a well-

studied problem known most commonly as toponym recognition [37], and is typically the first

of several steps required to map or spatially index a corpus [10]. Approaches to toponym rec-

ognition (or more broadly, location identification) in scientific articles have thus far mainly

consisted of rule-based and gazetteer-based approaches [37]. A gazetteer-based approach con-

sists of looking up words or sequences of words in a place name database (a gazetteer), where a

match indicates a (likely) location. The main downside of this approach is that many common

words appear in gazetteers as locations, such as ‘bath’, ‘nice’, and ‘of’, and hence false positives

must be limited via post-processing or careful targeting of words to look up. In one example of

this approach [24], sentences are first tagged with part-of-speech (POS) labels (such as ‘noun’,

Fig 1. Overview of the processing pipeline. The pipeline starts from scientific article PDFs and outputs extracted locations, with textual and spatial

representations.

https://doi.org/10.1371/journal.pone.0244918.g001
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‘adjective’, or ‘noun phrase’), and any noun phrases containing capitalized words are looked

up in the GeoNames gazetteer and in Google Maps. A rule-based approach is used in [25]

which detects patterns of relevant words, including words found in a gazetteer (likely to be a

location), location modifiers (e.g ‘north’), and entity type words (e.g. ‘river’ or ‘mountain’).

Good performance is obtained after adding custom pre- and post-processing steps, such as

enhancing word lists with geology-specific terms and detecting citations in order to skip them

as location candidates.

A commonly used method to identify toponyms in text is to run a Named Entity Recogni-

tion (NER) tool over the text and retain the subset of entities which are tagged as locations.

However, out-of-the-box NER tools have often been trained mostly on news articles and their

performance tends to decrease when texts diverge in form and content from these [38]. An

NER tool is considered in [25] for the task of extracting geographical/geological locations in

geology articles, but rejected in favor of a rule-based approach due to poor performance. In a

series of papers on the aforementioned phylogeography corpus, custom NER tools are devel-

oped to identify toponyms, including first using a rule-based approach [28], followed by

higher-performing machine learning models using first Conditional Random Fields (CRFs)

[30], then bi-directional recurrent neural networks (RNNs) [31]. However, the custom NER

tools require re-training on an annotated corpus, as opposed to out-of-the-box tools which

can be more readily applied to varied corpora, and no filtering is done to identify only a rele-

vant subset of toponyms/locations.

In this work, we use a pre-trained, freely available NER tool and combine it with rules to

deliver as output a subset of relevant locations for each scientific article, such as study sites or

patient treatment locations. We focus on extracting these relevant locations by targeted specific

portions of the article (pre-NER processing) and by filtering candidate locations to exclude

company locations and other irrelevant locations (post-NER processing).

Geographically representing scientific articles

Once locations have been identified and extracted from an article, a subsequent step is

required to convert these textual locations to an explicitly spatial representation. This step is

referred to as toponym resolution [39], grounding, or geocoding, and involves both resolving

ambiguity (such as, determining whether the string ‘Zürich’ refers to the city of Zürich, the

canton of Zürich, or perhaps even Zürich airport) and assigning a geometry to represent the

location (such as a latitude, longitude point for the city of Zürich, Switzerland). Geometries

are usually obtained by linking the extracted location to a particular gazetteer record which

also contains a geometry. In practice, this step can simply consist of querying a geocoding
service with the location string to get back a ranked list of results, including structured infor-

mation and a geometry for each, typically a point representation. To aid disambiguation,

additional geographical context can be given to most geocoding services, such as a bounding

box or country of interest to limit the results, or an augmented string with a containing region

such as a state or country. Examples of geocoding services include the Google Geocoding API,

OpenStreetMap (OSM) Nominatim, and the GeoNames search webservice.

In previous work dealing with geographic locations in scientific articles, the toponym reso-

lution or geocoding step is sometimes absent, with the focus still largely on developing better

methods to identify the locations of interest in text [25, 30]. Furthermore, many of the works

which map study sites annotated article collections manually and hence do not perform auto-

matic geocoding [12, 15, 22, 23]. Of the works which perform geocoding automatically, [24]

use the relevance-sorted results from both GeoNames and Google Maps and look for a con-

taining country in the same sentence as the location string, while [14] also use the Google
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Maps API and rely on semi-automatic post-geocoding filtering to limit the number of false

matches. In [28], GeoNames search results are disambiguated using a population heuristic

(choosing the result with the highest population), a distance heuristic (choosing the result

which minimizes the total geographical distance to all other toponyms in the document), and

a ‘metadata’ heuristic tailored to their phylogeographic data. In [9], location strings are linked

to gazetteer records but no disambiguation is performed, which leads to many false positive

matches.

In this work, we use the Google Geocoding API, a high-performing tool, to get structured

information and a spatial representation for our extracted location strings. The returned infor-

mation includes a fully qualified location string, a return type with granularity indications, as

well as a latitude and longitude which can be mapped. We programmatically generate maps

from these results for each corpus, which gives a visual overview of the overall spatial coverage

of the articles.

Materials and methods

Corpora

We benefited from the use of two article corpora to work with, which had already been identi-

fied as of interest for domain-specific meta-studies:

• Orchards: This corpus consists of articles relating to fruit orchards, collected to conduct a

meta-analysis on the impact of agricultural practices on biodiversity [40], with an intended

focus on orchards in a Mediterranean climate. We obtained an early, minimally-triaged

collection of articles to develop our methods. The articles are from a varied list of ecology-

related journals, with the top 4 most frequent journals being ‘Environmental Toxicology and

Chemistry’, ‘Agroforestry Systems’, ‘Archives of Environmental Contamination and Toxi-

cology’, and ‘Apidologie’.

• Cancer: This corpus consists of articles used in the curated cancer genomics database Pro-

genetix (https://progenetix.org), specifically focused on Comparative Genomic Hybridiza-

tion experiments, alongside Whole Genome/Exome Sequencing studies [41]. As part of data

curation, locations are manually extracted for each article, which is currently done by taking

the location of the first author, rather than by manually looking through the article contents

for locations such as where patient material was obtained. The top 4 most frequent journals

for articles in this cancer-genetics-focused collection are: ‘Genes, Chromosomes & Cancer’,

‘Cancer Genetics and Cytogenetics’, ‘Journal of Pathology’, and ‘Oncogene’.

We manually annotated 150 articles in total for the Orchards corpus and 200 for the Cancer

corpus (Table 1). The articles were randomly chosen for annotation from a wider set of articles

which, for the Cancer corpus, were in the Progenetix database and had a full PDF available,

and for the Orchards corpus, had been obtained from targeted keyword searches (as described

in [40]) but were not extensively triaged. For each corpora, we set aside 50 randomly sampled

articles to use as a test set; our training set consisted of the remaining annotated articles, which

Table 1. Summary information about the two corpora used.

Corpus Articles (annotated)

name domain total train test

Orchards ecology 150 100 50

Cancer biomedical 200 150 50

https://doi.org/10.1371/journal.pone.0244918.t001
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we used to develop our processing pipeline, including methods section detection, location

extraction, and location geocoding.

In addition to annotating the ground truth locations which we found in the article contents,

we also systematically annotated the quality of the textual location information and, to help

develop our methods, where this information was present in the article. Our annotations show

that the location reporting quality is varied in the Cancer corpus, but nearly always of high

quality in the Orchards corpus (Fig 2(a)); we report further on the location reporting quality

over time in S1 Fig. In terms of the year of publication of the articles in our two corpora, it is

the Orchards corpus that shows greater variation, with articles spanning the range 1975-2016

(Fig 2(b)); the oldest article in the Cancer corpus by comparison is from 1995, which makes

sense considering the corpus’ focus on particular scientific techniques which were only devel-

oped in the 1990s.

Processing pipeline

We now describe the steps of the processing pipeline we applied to the two corpora, followed

by any corpus-specific customizations we made to our code. Our code alongside article infor-

mation is available at https://github.com/eacheson/pyscine. In general, we tried to limit

extracted locations to relevant locations in two ways: 1. by only looking for locations in tar-

geted portions of the article (pre-NER Extract text step) and 2. by filtering identified locations

(post-NER Filter locations step).

• Convert PDFs: The pipeline starts from a set of PDF documents, and converts each docu-

ment to 1. a plain text file, using pdfminer (https://github.com/pdfminer/pdfminer.six), and

to 2. an XML file using CERMINE [42], a Java-based library to extract metadata and contents

from scientific article PDFs. Performing two independent file conversions means the pipe-

line has the possibility to recover from a failed XML conversion or from insufficient head-

ings in the XML file.

Fig 2. Comparison of the Orchards and Cancer corpora. (a) location reporting quality in the article contents, (b) publication year of the articles.

Categories for location reporting quality (a): none: no mention of study/sample location; bad: implicit location info or reference to another paper; medium:

study/sample location info like name of institute only and perhaps some locations not mentioned; good: explicit study/sample location info that could

probably be extracted and geocoded.

https://doi.org/10.1371/journal.pone.0244918.g002
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• Extract text: The next step targets portions of the article contents in which to look for loca-

tion information; this is done by identifying relevant headings (such as methods or study site

sections) using regular expression matching. Matches are found by testing each paragraph

beginning in the text files and each heading in the XML files. When a match is found, para-

graphs under the matched heading are stored for the next step. At the end of this step, the

pipeline continues using only the XML files, unless relevant headings/text were identified in

the text files and not in the XML file. The article title identified in the XML file is also sepa-

rately retained for the further step.

• Identify locations: The text portions extracted in the previous step are now processed for

locations. First the text is split into paragraphs, normalized (replacing e.g. accented charac-

ters with a canonical form), split into sentences and words, and a part-of-speech (POS) tag-

ger is run over each sentence. The text is now ready for NER, which is performed using

Stanford NER [43], accessed from the NLTK python library [44] (Stanford NER v3.8.0,

NLTK v3.2.5). Stanford NER outperformed the competition on recent NER multi-dataset

comparisons [45] and also performed well on location identification more specifically [46].

A 3-class classifier is used which tags each word as one of ‘location’, ‘person’, ‘organization’,

or ‘other’ meaning not a named entity. These token (word, tag) combinations from the NER

output are processed using custom code which retains sequences of tokens as location candi-

dates for triaging. The goal of this step is high recall, that is, to miss as few true location

descriptions as possible. Accordingly, we keep any sequence of words with at least one

named entity and include within these sequences words that often appear within a location

string, such as ‘in’ or ‘upon’ and two-letter state abbreviations.

• Filter locations: The location candidates identified in the previous step are now filtered

using rules to remove any candidate that is not deemed a relevant location, including non-

locations, suspected company locations, and citations. The rules in this step were developed

iteratively on the training set and are based on: tag sequences (e.g. reject candidates with no

‘location’ tags), presence of keep words (e.g. keep candidates with ‘University’ or ‘Institute’),

presence of discard words (e.g. reject candidates with ‘Inc’ or ‘GmbH’), and token (tag,

word) combinations. The goal of this step is to increase precision, while maintaining good

recall. This step produces our final list of identified content locations.

• Clean locations: Each content location string retained in the previous step is cleaned of any

trailing prepositions or punctuation before the geocoding step.

• Geocode locations: Each clean location string is sent to the Google Geocoding API, and the

top result is retained (if any results are returned). Each geocode result provides structured

location information, including a qualified string representation of the location (such as ‘San

Francisco, CA, USA’ for the query ‘San Francisco’), a latitude, and a longitude.

The processing pipeline is illustrated in Fig 3. Note that whenever a location candidate is

retained, the sentence it was found in is also retained, so that the final output consists not only

of identified content location strings and their geocode result information, but also of their

sentence context. This not only facilitates our own evaluation, but allows for complex compo-

sitional location descriptions (such as ‘30 km from Florence, Italy’) and coordinates appearing

in text (such as ‘Florence, Italy (43.77˚ N, 11.26˚E)’) to be retained in our structured output for

a human annotator to easily access, as these are typically in the same sentence as a location that

our pipeline does retain (such as ‘Florence, Italy’ in both previous examples). We also adapted

and ran the coordinate parsing code from [27], but it performed poorly on our data because
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coordinate strings were often transformed erroneously during conversion from PDFs to plain

text and XML files.

We minimally customized our pipeline for either the Orchards or the Cancer corpus. The

first and most important customization was in the regular expressions used to detect relevant

section headings (Extract text step). Relevant headings in the Orchards corpus featured words

like ‘region’, ‘area’, and ‘site’, whereas in the Cancer corpus, words indicative of a relevant sec-

tion heading included ‘patient’, ‘sample’, ‘specimen’, and ‘subject’. The second customization

was in the rules used to retain certain sequences of tokens as location candidates (Identify loca-
tions step). In the Orchards corpus, location strings often contained cardinal direction words

(such as ‘east’, ‘southern’, or ‘northeastern’) as well as geographic entity type words (like

‘region’, ‘county’, and ‘park’). We found that including these words in our final location strings

had an overall positive effect on the geocoding step, mainly because it tended to keep location

words describing the same location together as one string as opposed to two distinct strings

(such as ‘Nancy (East of France)’ instead of ‘Nancy’ and ‘France’), giving better context for the

geocoding step.

Results

Our pipeline produced two main outputs: extracted location strings and geocoded results. In

addition, evaluation could be performed against two slightly different units: location units or

article units. In order to evaluate our two main outputs separately as well as in sequence, we

Fig 3. Detailed view of the article processing pipeline. Pipeline illustrated using an example from the Orchards corpus.

https://doi.org/10.1371/journal.pone.0244918.g003

PLOS ONE Extracting and modeling geographic information from scientific articles

PLOS ONE | https://doi.org/10.1371/journal.pone.0244918 January 6, 2021 8 / 19

https://doi.org/10.1371/journal.pone.0244918.g003
https://doi.org/10.1371/journal.pone.0244918


first evaluated our pipeline in 3 stages, using the location unit (Table 2): 1. first, we calculated

whether each extracted string was correct (a true positive) or not, giving a value for extraction

precision; 2. we then separately evaluated the geocoding using the subset of true positive

extracted location strings by calculating how often the geocode result for these strings was cor-

rect or incorrect, giving a value for geocoding accuracy; 3. we finally looked at the full set of

extracted location strings (true and false positives) and evaluated the final geocode result for

each, giving a value for full pipeline precision. This full pipeline evaluation includes several

cases where the final result is worse than the individual steps (a correct location string was

extracted, but geocoded to the wrong location, a false positive overall), but also a few cases

where the full pipeline is better than the individual steps (a wrongly extracted location had no

geocode result, resulting in a true negative overall). This is reflected in Table 2, where the full

pipeline precision is slightly lower than the extraction precision for both corpora. For the

Orchards corpus, we present the results on a subset of articles consisting of studies, rather

than review articles, editorials, or articles in popular science magazines. These studies formed

between 73-74% of articles in the full minimally-triaged collection, training set, and test set.

For results on the complete Orchards corpus, see the S1 Table.

In a second evaluation, we evaluated extraction precision, recall, and F1 using the article

unit, in order to not give a disproportionate amount of weight to articles with multiple study

sites or sample locations. Specifically, we calculated both precision and recall out of a maxi-

mum value of 1 for each article, where a precision of 1 meant all extracted location strings

were correct, and a recall of 1 meant all ground truth locations (e.g. study sites) were repre-

sented in the extracted strings. We then summed these values for an overall precision and

overall recall, respectively (Table 2). Precision and recall were combined into one value, F1,

through their harmonic mean. Any locations extracted from the title were included in this

overall pipeline evaluation for the Orchards corpus, as it was determined at the training stage

that the titles in this corpus, but not in the Cancer corpus, contained useful locations.

Indeed, in the Orchards test corpus, 19 titles contained a location in the title, whereas in

the Cancer test corpus, just one title arguably contained a location, but in adjectival form (i.e.

‘Korean tumours’). We achieved very good performance on title extraction in the Orchards

test corpus, with 0.95 for both precision (18/19) and recall (18/19), and hence also F1. These

locations were often a good overall summary of the study region, but were also fairly often

vague regions: in this test set, 6 out of 19 ground truth locations had some inherent vagueness

(examples include ‘Southern Russia’, ‘eastern Spain’, ‘European Alps’).

Our results in Table 2 show that generally performance was superior on the Orchards cor-

pus, which is consistent with the superior location reporting quality in that corpus (Fig 2(a)).

However, the geocoding accuracy was higher for the Cancer corpus. Though both corpora

often had location strings which weren’t fully qualified with a city or country, the Google Geo-

coding API still mostly gave correct answers for unqualified strings in the Cancer corpus (e.g.

‘Massachusetts General Hospital’, ‘Royal Free Hospital and Medical School’) but not in the

Orchards corpus (e.g. ‘Via Emilia’, ‘Dry Creek Vineyard’). Indeed, generally the Orchards cor-

pus featured study sites in lesser known locations outside of cities, whereas the Cancer corpus

Table 2. Results for both corpora, organized according to whether the location unit or article unit was used in evaluation.

location unit article unit

extraction geocoding full pipeline extraction (weighted)

corpus precision accuracy precision precision recall F1

Orchards 0.869 0.906 0.842 0.827 0.809 0.818

Cancer 0.810 0.980 0.778 0.740 0.769 0.754

https://doi.org/10.1371/journal.pone.0244918.t002
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featured more well-known location names such as cities in Europe and North America, and

large hospitals or research Universities.

We systematically classified the errors in our pipeline based on the 3-stage evaluation

results (Tables 3 and 4). Only the main source of error for each location unit was recorded and

only when the full pipeline result was incorrect did we record an error. NER errors were the

most frequent kind of error, followed by not having extracted the paragraph or sentence con-

taining the location string (hence not making it to the NER step). ‘Comma group’ errors

occurred when there were multiple, separate locations separated by commas, which our code

chunked together as a single qualified location (e.g. ‘Burlington, Cambridge’ where Burlington

and Cambridge were separate towns in Canada, instead of Burlington being contained by

Cambridge). These comma group errors were all in the Orchards corpus and 3 of them were

in one article which listed several countries one after another, something which could be

adjusted in code by detecting comma-separated countries.

Fig 4 illustrates the spatial distribution of geocoded locations extracted from our two cor-

pora at a global scale. Any extracted string which gave a geocode result is mapped, and hence

the color-coding represents the full pipeline precision (c.f. full pipeline precision column

found in Table 2). Note that, especially in the Cancer corpus, the majority of full pipeline false

positives are due to wrongly extracted locations (extraction false positive), rather than geocod-

ing errors. Hence the same map without color-coding would represent what one would see

when mapping a new, unevaluated corpus. Both maps are dominated by locations in Europe

and North America, demonstrating the underlying geographic properties of these corpora. For

the Orchards corpus, locations around the Mediterranean reflect the underlying intent of the

Table 3. Errors in both corpora classified into categories.

Orchards Cancer

error description count percent count percent

NER error 12 27.3 8 32.0

text portion not extracted 8 18.2 7 28.0

wrong/no geocode result 9 20.5 1 4.0

comma group 7 15.9 0 0.0

candidate filtering error 3 6.8 4 16.0

non-standard headings 3 6.8 0 0.0

other 2 4.5 5 20.0

total 44 100 25 100

Errors shown as raw counts and as the percentage of the total errors for that corpus.

https://doi.org/10.1371/journal.pone.0244918.t003

Table 4. Examples for each error category.

error description example

NER error Rome tagged as location in ‘MacIntosh or Rome varieties’

text portion not extracted location only appears in Acknowledgements

wrong/no geocode result ‘Moldova Region’ in Romania geocoded to Moldova country

comma group ‘Burlington, Cambridge’ taken as one location

candidate filtering error company location not filtered out

non-standard headings ‘Almonds’ sub-heading contained study site info

other wrongly extracted publisher location in footer

https://doi.org/10.1371/journal.pone.0244918.t004
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corpus. In the Cancer corpus, the locations identified suggest facilities capable of carrying out

sophisticated genetic analysis of cancers. In both maps, false positives are predominately found

in North America, likely reflecting both biases in the underlying spatial data used in geocoding

and an underlying tendency of the geocoder to default to locations in North America.

Fig 4. Global maps of geocoded locations. (a) Orchards corpus and (b) Cancer corpus. In both maps, full pipeline precision is represented, with true

positives (TP) in blue and false positives (FP) in red. Note that any extracted string which gave a geocode result is mapped, whereas geocoding evaluation

was done on true positive extracted strings only.

https://doi.org/10.1371/journal.pone.0244918.g004
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Discussion

In building our pipeline we made a number of assumptions and choices. Each of these has

implications for the results, and we briefly discuss these here. Our first assumption was that the

relevant locations were a subset of all location mentions in an article, and thus by filtering loca-

tions we would be able to improve performance. To quantify this assumption, we annotated all

locations found in our test corpora to see how many would be evaluated as correct if extracted

(strictly relevant locations, based on sentence context, are a small subset of these, as correct

locations include for example author locations which happen to coincide with study sites). This

is equivalent to using a perfectly performing off-the-shelf system to identify and geocode loca-

tions, and gives us a nominal baseline for our system. In this scenario, article unit precision for

the Orchards subset is 0.628 and for the Cancer subset is 0.408, showing that relevant locations

are a subset of all location mentions in both corpora, and less than half of all location mentions

in the Cancer corpus. Assuming a recall of 1 for both corpora, this would mean F1 scores of

0.771 for Orchards and 0.579 for Cancer with a perfectly performing pipeline, were we to not

target relevant locations. Our results are superior to these numbers, despite imperfections at

each step of the pipeline, showing that targeting relevant locations is important.

An important question in building a pipeline such as ours is the overall influence of each

step on our results. We carried out three experiments to explore the sensitivity of our results to

individual steps. Our Extract text step uses knowledge about scientific domains to target por-

tions of articles in which location mentions are more likely to be relevant. Turning off this step

means that the whole article is processed in the pipeline (excluding references). The Identify
locations step considers not only tokens classified as ‘locations’, but also those identified as

‘person’ and ‘organization’ to deal with noisy NER output and potentially improve recall. We

simplified this step to consider only tokens tagged as locations (‘Locations only’). Finally, Filter
locations uses a set of heuristics to increase overall precision, by discarding likely false positives

from the retrieved location mentions. Turning off this step leaves all location mentions found

in targeted article portions to be processed.

Table 5 shows the variation in F1 scores for each of these combinations. Precision, recall,

and F1 are reported comprehensively in the S3 Table. in supplementary materials. For both

corpora, turning off either the extraction step (‘No extract’) or the filtering step (‘No filter’)

degraded performance. For the Cancer corpus, the performance is very clearly best when all

pipeline steps are used. For the Orchards corpus, the difference is less marked, and indeed we

note that with our ‘Locations only’ version of the pipeline, the location extraction performance

is slightly better. These results demonstrate three key points. First, the text extraction and loca-

tion filtering steps improve performance in all cases, reinforcing the importance and value of

searching for locations in targeted article portions and retaining only relevant locations. Sec-

ond, the sensitivity of the pipeline to the definition and processing of location tags is depen-

dent on domain. The Orchards corpus refers to location in a straightforward way, and thus

dealing with location in a more sophisticated manner (e.g. resolving locations related to orga-

nisations) does not improve performance. Third, these results demonstrate that our complete

pipeline is necessary to handle documents from two very different scientific domains, with

Table 5. F1 scores leaving out pipeline steps.

Corpus No extract Locations only No filter Full pipeline

Cancer 0.513 0.419 0.386 0.754

Orchards 0.606 0.812 0.719 0.802

Article unit location extraction F1 values for the 50 test articles per corpus. Best values are in bold.

https://doi.org/10.1371/journal.pone.0244918.t005
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minimal customization. We suggest that this approach provides a good starting point to iden-

tify which steps should be further customized in new domains of scientific articles.

Our pipeline also used, wherever possible, existing components, and through its modular

design allows us to swap these relatively easily. To explore sensitivity of the pipeline to the geo-

coding API, we compared our geocoding results for true positive extracted locations with two

commonly used and free alternatives (OSM Nominatim and the GeoNames API) on our test

documents (Table 6).

Since all three of these tools are treated as black boxes, we can only speculate as to the

reasons for differences in performance. However, we believe the likely causes are ranking

algorithms well suited to our use case, more sophisticated and effective string matching—

especially for more complex location mentions—and more complete underlying gazetteers,

in particular with respect to organisations (note that Google’s increased performance is

markedly greater for the Cancer corpus where such matches are common).

In this work, our overall aim was to automatically extract and represent meaningful loca-

tions from scientific articles from both the ecology and biomedical domains. Relatively few

works have been published on this specific problem and, of the works that share such an aim,

the majority have focused on the ecological domain [12, 14, 15, 22, 24, 27], with two works

examining a slightly broader set of journals still focused on environmental research [23, 27],

one studying geology articles [25], and one in the hydrology/ hydrogeology domain [47]. In

many of these works, location identification/extraction from text is performed manually [12,

15, 22, 23] or semi-automatically [14]. Our work shows that it is possible to build a fully auto-

mated pipeline, with limited customization across research domains within the broader text

type of scientific articles, and obtain results of a high enough quality to be useful in the context

of a meta-analysis or of a geographical search/filter for articles.

Comparing more broadly to state of the art work on evaluating location extraction from

texts [48], our results are very encouraging. For two corpora, comparing five tools, Gritta

reports precisions ranging from 0.21–0.81 for geotagging (equivalent to our extraction preci-

sion of 0.81 and 0.869 for the Cancer and Orchards corpora respectively). It is important to

note that our pipeline is specifically designed for scientific articles, and thus not ‘out of the

box’ as in Gritta’s experiments, but these results demonstrate that our approach is competitive

with more specialized location identification systems.

Gritta [48] also notes that an important limitation of some current work is a tendency to

develop customized tools for particular tasks and corpora [30, 31, 49]. We deliberately set out

to build a more generic pipeline, whose focus lay on a task and a domain: identifying relevant

locations from scientific articles using existing tools. Our approach therefore does not aim to

optimize individual components of the pipeline (e.g. NER for toponym recognition or geocod-

ing for toponym resolution), but rather aims to provide a useful set of filtered locations which

Table 6. Comparison of geocoders.

geocoder corpus correct incorrect accuracy

Google Cancer 50 1 0.980

OSM Cancer 22 29 0.431

GeoNames Cancer 19 32 0.373

Google Orchards 99 10 0.908

OSM Orchards 66 43 0.606

GeoNames Orchards 62 47 0.569

Results for geocoding were evaluated using the subset of true positive extracted location strings, calculating how often the geocode result for these strings was correct or

incorrect, giving a value for geocoding accuracy.

https://doi.org/10.1371/journal.pone.0244918.t006
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can then be subject to human analysis. To facilitate this, we deliver locations in multiple for-

mats (location strings, point coordinates, and location sentences), ready for review and correc-

tion by a human annotator to further increase overall precision, particularly using the location

sentences. Confidence or uncertainty scores could also be assigned to each article, as is done in

[50] where a baseline score is increased or decreased based on the intermediate outputs of a

rule-based pipeline. Finally, our task and pipeline leads to output that is more manageable for

a human annotator (e.g. in the context of a geographical corpus analysis), because we focus

precisely on those locations that would be the main content locations for an article.

Although we aimed to develop a generic pipeline, we did include some elements of customiza-

tion. In particular for the Orchards corpus, we attempt to extract more than location names by,

for example, including cardinal direction terms. However, we make no attempt to extract truly

compositional place descriptions such as ‘30km from Florence’ or interpreting these descriptions,

though our code could be adapted to recognize these types of expressions and could be given to a

system similar to the one in [50] used to georeference location descriptions for animal specimens.

However, even if such expressions were extracted with high precision, current geocoding tools

typically do not handle such expressions, despite long-standing calls to do so [37].

One important limitation of our work is the representation of all extracted locations as

points. Although this is justified in most cases when mapping at a global scale (c.f. Fig 4),

this may quickly become inappropriate depending on the properties of a particular corpus.

Depending on our viewpoint and purpose, the Cancer corpus could be used to analyze loca-

tions related to the genetic analysis of tumour data (where point representations, related to

specific facilities, are appropriate) or to explore locations related to tumour incidence (where

more aggregated locations, related to large regions served by specialized hospitals, would be

more meaningful). Although we are largely constrained to the use of points to initially repre-

sent all extracted locations, given points are returned by the geocoding service, we could also

use a bounding box for a subset of results, which gives an indication of area. Furthermore, we

could filter points by feature type, thus mapping only results of similar scales. Importantly, by

keeping location representations in both textual and explicitly spatial form, there remains the

possibility of re-generating and refining geometries using the extracted location strings.

Though a point is a rather simplistic way to represent a single scientific article, a larger col-

lection of such points may be an appropriate way to represent and map an entire corpus of

articles, particularly on the global scale where small differences in study site areas would not be

visible. Global density maps, such as the kernel density map of sites in [15] or the rectangular-

grid point aggregation in [27], can be created from point collections and are especially useful

to highlight geographical research gaps in the corpus as a whole. As for interactive maps of

study sites, a good example is JournalMap (https://www.journalmap.org/), a geosemantic

search tool developed for an ecology-focused corpus where locations have been manually

identified [22]. One straightforward enhancement of this tool would be to use bounding

boxes to estimate the area/scale of study sites.

An alternative approach to performing our task would be to use sentence classification,

including recently developed deep learning approaches [51]. Instead of identifying a set of rele-

vant locations by targeting certain portions of the article (pre-NER) and filtering irrelevant

locations (post-NER), one could instead classify each sentence in the article as either describ-

ing study/sample sites or not. Those sentences likely to contain study/sample site descriptions

could then be further processed to extract location strings to be sent to a geocoding tool, such

as is done in our work. Such a classification approach was used in [24] who classify sentences

into ‘environmental’ or ‘experimental’ sentences, with the environmental sentences featuring

relevant locations such as study sites, and experimental ones featuring irrelevant locations

such as the provenance of chemicals.
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Conclusion

Writing a scientific paper is time-consuming and expensive, and we should maximize the

value of each and every scientific work. Full-text analysis on large article collections is now

possible, and should be increasingly applicable thanks to open access policies making more

full-text articles available for processing. In this paper, we processed two collections of scien-

tific articles, starting from collections of full-text PDFs, extracting locations using NER tools

and rule-based processing, and geocoding these locations to spatially represent them.

Recording spatially explicit geographical information (such as a point coordinate, a bound-

ing box, or a set of geometries) for scientific articles is an important step to facilitate meta-anal-

yses and to identify geographical biases in scientific research. We tackled this problem by

building an automatic processing pipeline, with the following takeaways:

• We use current tools, with minimal customization, making our pipeline easily extendable to

other corpora of scientific articles.

• Our pipeline has high precision for identifying and resolving relevant location mentions

(0.84 for an environmental corpus and 0.78 for a biomedical one) and is effective in extract-

ing relevant locations at the article level (F1 0.81 for the environmental corpus and 0.75 for

the biomedical one).

• We specify our task such that the aim is to filter and identify only relevant location mentions,

suitable for both visualization and processing by human annotators. We reduce the number

of location mentions to be triaged greatly through our approach.

• An error analysis reveals that failures can occur throughout the chain. These failures are also

dependent on the nature of the problem specification (e.g. the difference between identifying

all toponyms or identifying relevant location mentions).

An important limitation of our work lies in the use of customisation with respect to

domain. Although we aimed to minimise customisation, introducing new domains of scien-

tific articles may require further adjustment of the rules we applied. However, by minimising

the extent of customisation, and identifying which components of our pipeline are most

important, we believe that our approach could be transferred to new domains with respect to

scientific publications. To do so, it is important that a pool of documents be annotated to

explore how relevant location mentions are used in a text.

Future systems will benefit from improvements in the performance of individual system

components (e.g. improved toponym recognition through deep learning approaches). Equally,

the ability of geocoders to return more complex geometries, as appropriate for the scale of

analysis, has clear potential for both representation and analysis of scientific corpora. We sug-

gest that future work focus not only on such improvements in individual tasks, but also on

gathering requirements from potential users of geographical exploration and search interfaces

for scientific article corpora. The success of these approaches depends on their usefulness and

practicality.
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(PDF)

S1 Fig. Location reporting quality over time for the Cancer corpus. We combined our loca-

tion quality judgements with the manually annotated publishing years of all our manually

annotated articles (N = 199, one article was excluded because it contained no samples and
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instead developed an algorithm) to plot the evolution of location quality reporting over time.

For each time interval, we plotted the proportion of articles in that time interval which were in

each of 4 location quality categories (good, medium, bad, none). The resulting plot suggests

that location reporting quality is slowly improving over time. In particular, the proportion of

articles reporting no location at all is steadily decreasing and the proportion of articles with

either ‘good’ or ‘medium’ location reporting is trending upwards.

(PDF)

S1 Table. Extended Orchards results. Result table including both results considering just

studies (‘Orchards-studies’) and results for the full set of test articles (‘Orchards-full’). This full

50 document Orchards test set includes article types other than studies, including reviews, edi-

torials, and popular science articles.

(PDF)

S2 Table. Extended location unit results. Below, we show extended set of results for the loca-

tion unit evaluation, which includes extraction recall and F1, and full pipeline recall and F1.

(PDF)

S3 Table. Complete results for sensitivity tests. Evaluation of pipeline with test data set (50

documents per corpus).

(PDF)

S4 Table. (a) Detailed annotation of 50 articles. Locations were annotated in 50 Cancer arti-

cles and classified into four categories: relevant, not relevant, correct if found but not strictly

relevant (shortened as ‘correct’ in the table), and other. The counts for each category are

shown in the table. (b) Detailed annotation of 50 articles. Locations were annotated in 49

orchard articles (after one duplicate was identified) and classified into four categories: relevant,

not relevant, correct if found but not strictly relevant (shortened as ‘correct’ in the table), and

other. The counts for each category are shown in the table.

(PDF)
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