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Abstract: The neuroimaging techniques such as dopaminergic imaging using Single Photon Emission
Computed Tomography (SPECT) with 99mTc-TRODAT-1 have been employed to detect the stages
of Parkinson’s disease (PD). In this retrospective study, a total of 202 99mTc-TRODAT-1 SPECT
imaging were collected. All of the PD patient cases were separated into mild (HYS Stage 1 to
Stage 3) and severe (HYS Stage 4 and Stage 5) PD, according to the Hoehn and Yahr Scale (HYS)
standard. A three-dimensional method was used to estimate six features of activity distribution and
striatal activity volume in the images. These features were skewness, kurtosis, Cyhelsky’s skewness
coefficient, Pearson’s median skewness, dopamine transporter activity volume, and dopamine
transporter activity maximum. Finally, the data were modeled using logistic regression (LR) and
support vector machine (SVM) for PD classification. The results showed that SVM classifier method
produced a higher accuracy than LR. The sensitivity, specificity, PPV, NPV, accuracy, and AUC with
SVM method were 0.82, 1.00, 0.84, 0.67, 0.83, and 0.85, respectively. Additionally, the Kappa value
was shown to reach 0.68. This claimed that the SVM-based model could provide further reference for
PD stage classification in medical diagnosis. In the future, more healthy cases will be expected to
clarify the false positive rate in this classification model.

Keywords: 99mTc-TRODAT-1; Parkinson’s disease; support vector machine; logistic regression

1. Introduction

All of our everyday human behaviors and actions are associated with the transmission of
neural signals. Neurotransmission can be broadly classified into electrical transmission and chemical
transmission. Electrical transmission is achieved by establishing a link between two neighboring
cells. This form of transmission is rapid and bidirectional. It is often observed in human smooth
muscle and myocardial cells. Chemical transmission is the transmission of specific chemicals, known
as neurotransmitters, secreted by presynaptic neurons to neurotransmitter receptor proteins on the
postsynaptic neuron membrane. When the neurotransmitters bind with the receptors, the postsynaptic
neurons are either activated or inhibited [1]. Although chemical transmission is unidirectional and
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slower than electrical transmission, more effector cells can be influenced at the same time. Chemical
neurotransmission is extremely active in the central nervous system (CNS) and peripheral nervous
system (PNS). It is the most common form of neurotransmission in the human body [2].

Dopamine and acetylcholine are two of the neurotransmitter chemicals that help cells transmit
impulses. They are responsible for the transmission of emotional and sensory information across
neural pathways. A balance between dopamine and acetylcholine is strictly maintained in the
neurotransmission system [3], and their imbalance can lead to neurotransmitter-related diseases.
The motor symptoms of Parkinson’s Disease (PD) are due to the fact that the death of cells in the
substantia nigra results in insufficient secretion of dopamine [4]. Insufficient dopamine secretion leads
to an overabundance of acetylcholine, which triggers resting limb tremors, slowness of voluntary
movement, and rigidity. Physical symptoms of PD can be classified into different stages using the
Hoehn and Yahr Scale (HYS). The HYS was initially proposed in the Journal of Neurology in 1967 [5].
The Scale relies on physical examination to assess the stage of the disease. Currently, the HYS is still
considered the diagnostic reference standard in clinical practice [6].

Although PD is a common degenerative disease, there are still diagnostic difficulties in patients
with very early stages of the disease or in elderly patients. The drug challenge test is applied in
clinical practice to determine pathological properties. The test involves taking synthetic drugs, such as
levodopa, dopamine agonists, or anticholinergics, to increase dopamine levels. This allows physicians
to observe and determine whether patients are responsive to the drugs and to distinguish between PD
and PD-like syndromes [7]. Besides the physical examination and drug challenge test, non-invasive
imaging also provides a valuable diagnostic reference to diagnose PD [8].

Nuclear medicine entails administering drugs containing radioactive tracers and then using
nuclear imaging instruments to detect the distribution of the tracers in the body and obtain a visual
representation of the internal physiological functions [9]. This functional imaging approach can be
used to quantitatively calculate the physiological parameters of different organs, such as the glomerular
filtration rate (GFR), effective renal plasma flow (ERPF), and organ uptake ratio. These parameters
cannot be determined with the naked eye. However, they can be cross-referenced to determine
abnormal organ functioning. Currently, there are many tracers for the dopamine system, including
18F-DOPA–a labeled precursor of dopamine, 99mTc-TRODAT-1 and 123I-β-CIT–imaging agents of the
transporter responsible for recycling released dopamine, and 11C-PHNO and 123I-IBZM–radioligands
for the postganglionic receptors of dopamine. At present, 99mTc-TRODAT-1 single photon emission
computed tomography (SPECT) is the most widely applied approach in Taiwan.

99mTc-TRODAT-1 tracers mark the dopamine transporter (DAT) in the neuronal presynaptic
membrane by binding to the relevant receptors after intravenous injection. Then, SPECT is used to evaluate
the degree of radioactivity, indirectly indicating the function and the number of dopamine neurons in
the striatal pathways [10]. Several earlier studies used the region of interest (ROI) ratio to quantitatively
calculate the specific uptake ratio in the striatum and assess brain neurotransmitter-associated diseases,
thereby achieving diagnostic objectives [11–16]. However, observing the striatal uptake ratio by the
selection of the ROI region may produce subjective errors. In addition, these studies did not discuss the
validity of PD tests.

The purpose of this study was to calculate whole-brain activity distribution and determine the
imaging features of striatal activity volume, followed by analyzing and extracting distinctive features to
serve as explanatory variables for modeling, and then using different classification methods to establish
a SPECT PD classification model. This model developed from whole-brain activity distribution and
striatal activity volume will benefit physicians in the diagnosis of PD and help with long-term follow-up
treatment outcomes.



Sensors 2019, 19, 1740 3 of 12

2. Materials and Methodology

2.1. Subjects

We collected the 99mTc-TRODAT-1 imaging and diagnostic reports archived in the Picture
Archiving and Communication System (PACS) between March 2006 and August 2013. According to
the diagnostic reports from nuclear medicine specialists, six of the patients had healthy brain function
(three men and three women). These patients were between the ages of 31 and 70, with a median age
of 47.5 years. There were 196 patients with PD (80 men and 116 women), whose ages were between
25 and 91, with a median age of 69.13 years (Figure 1). Cases in which patients received an overall
99mTc-TRODAT-1 dose of 25 to 30 millicuries (mCi) and then underwent imaging within 2.5 to 4 h after
administration were included in the study. However, patients who experienced head tremors were
excluded, along with patients who received drug treatment during imaging since interference of the
drugs with the efficacy of 99mTc-TRODAT-1 would make outcomes unreliable. Therefore, a total of
202 99mTc-TRODAT-1 imaging and diagnostic reports were examined in this study. This clinical study
was approved by the Medical Ethics Committee of E-DA Hospital. All patients signed an informed
consent form prior to participation.
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Figure 1. Number of cases according to Hoehn and Yahr Scale (HYS) standard.

2.2. Imaging Instrument and Criteria

A dual-head SPECT instrument (E.camTM Signature Series Fixed 180; Siemens Medical Solutions
Inc.) equipped with the Siemens E.soft Workstation and a fan beam collimator was employed in this
study. The field of view (FOV) of a single detection head was 53.3 × 38.7 cm2, and the diagonal field
of view (Diagonal FOV) was 63.5 cm. A single detection head is equipped with 59 photomultiplier
tubes in a hexagonal arrangement and uses 5/8 inch sodium iodide (NaI(Tl)) crystals with a crystal
size of 59 × 44.5 cm2. A step-by-step scan method was adopted for performing DAT scan using
99mTc-TRODAT-1. The image matrix was 128 × 128. A total of 64 images were captured at a collection
rate of 25 s per image. Filtered back projection (FBP) was adopted for image reconstruction. The filter
was a low-pass Butterworth filter with a cutoff frequency of 0.4 and an order of 8.
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2.3. Experimental Design

This experimental is a retrospective study. A total of 202 99mTc-TRODAT-1 SPECT imaging and
diagnostic reports were collected. Among these were six healthy patients, 102 patients with mild
PD (HYS Stage 1 to Stage 3), and 94 patients with severe PD (HYS Stage 4 and Stage 5) [5,17,18].
A three-dimensional method was used to estimate the features, including skewness, kurtosis,
Cyhelsky’s skewness coefficient, Pearson’s median skewness, DAT activity volume, and DAT activity
maximum, in the images of activity distribution and striatal activity volume [14,19,20]. Subsequently,
the reports were randomly allocated into two groups, each containing 101 reports. One group served
as the training group, and the other served as the validation group. Then, significant statistical
measures of the features was identified using descriptive statistics, the nonparametric Mann–Whitney
U test, the Kruskal–Wallis test, and the Dunn–Bonferroni multiple comparison test. The outcome
data were modeled using logistic regression (LR) and support vector machine (SVM) classification
(n = 101) [18,21–23]. Finally, we developed a PD classification model for SPECT (n = 101) (Figure 2).
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Figure 2. A flow chart of experimental design.

We adopted two approaches for selecting the ROI during three-dimensional evaluation, namely,
the single threshold method and the seed region growing method [24]. The single threshold method
used the whole-brain as the ROI in the reconstructed 99mTc-TRODAT-1 SPECT image to determine the
intensity count value within the region. In nuclear imaging, the intensity contrast derived from the
count value of the image. The single threshold method effectively eliminated the background count
value from the ROI, reducing the calculation error. We set the single threshold value at 15 (because
15 was the maximum value of the axial section located on the periphery of the brain). Any count value
higher than 15 denoted its inclusion in the ROI covering the entire brain. Image histograms were
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plotted to highlight the differences in the morphological distributions between the healthy patients
and patients with various stages of PD (Figure 3). Finally, we quantified the patterns of the histograms.
The resulted quantitative statistical measures described the brain activity distributions of the patients.
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Figure 3. Histogram plots between normal and Parkinson’s Disease (PD) stage. Maximum intensity
projection (MIP) shown the calculation of whole brain and correspond to histogram. The histogram
can describe active uptake in whole brain via values of skewness (SK).

The seed region growing method categorized the image data by sampling the greyscale values,
color values, and intensities of neighboring pixels of initial seed points. We used the seed region
growing method to calculate the volume and region of striatal activity (Figure 4) [25]. The initial
region-growing value was the maximum count value within the axial section of the striatum, therefore,
the maximum striatal activity volume was able to be obtained by this method. The resulted size of the
growth region could be used to explain the features of striatal activity volume.
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Figure 4. Using Seed region growing method calculate the volume of striatal activity. (left) 99mTc-TRODAT-1
SPECT image, (middle) striatal activity in single slide, (right) whole brain (3D) striatal activity.

There were six types of statistical measures adopted in this study. They were the outcomes
calculated and extracted from the two methods mentioned above, namely single threshold method
which gave skewness (SK), kurtosis (KUR), Cyhelsky’s skewness coefficient (CSK), and Pearson’s
median skewness (MES) in the ROI covering the whole-brain, and seed region growing method which
gave Dopamine Transporter Activity Volume (DTAV) and Dopamine Transporter Activity Maximum
(DTAM). The aforementioned statistical measures included the measurement of whole-brain activity



Sensors 2019, 19, 1740 6 of 12

distribution (SK, KUR, CSK, and MES) and striatal activity volume (DTAV and DTAM). The calculation
methods for the various statistical measures are shown in Table 1. Skewness was used to measure the
skewness of the activity distribution by comparing the whole-brain count value to the whole-brain
mean count value. Kurtosis measured the activity distribution curve by comparing the whole-brain
count value and the whole-brain mean count value, where xi represented the count value of the ith
pixel in the image, x represented the mean count value of the image, and n represented the number
of pixels selected in the image. The CSK described the skewness of the activity distribution using
the number of pixels with count value greater than or less than the mean count value, where nbelow
represented the number of pixels with count value less than the mean count value, nabove represented
the number of pixels with count value greater than the mean count value, and ntotal, the total number
of pixels in the selected images. MES measured the skewness of the activity distribution by comparing
the whole-brain median count value and the whole-brain mean count value x was the mean of the
count values of all selected images. Md was the median of the count values of all selected images,
and SD was the standard deviation of the count values of all selected images.

Table 1. Six features were calculated from whole brain and striatal.

Features Formula Location

SK Skewness = ∑ (xi−x)3

n−1

(
n−1

∑ (xi−x)2

)32
Whole-brain

KUR Kurtosis = ∑ (xi−x)4

n−1

(
n−1

∑ (xi−x)2

)2
− 3 Whole-brain

CSK CSK = nbelow−nabove
ntotal

Whole-brain

MES MES = 3(x−Md)
SD

Whole-brain

DTAV DTAV = ∑ (Activity area × Single slice thickness) striatal

DTAM DTAM = max(Activity area × Single slice thickness) striatal

Previous studies largely focused on analyzing the striatal activity region. However, the histograms
of these studies showed different activity distributions between the normal parts of the brain and the
parts affected by PD. Therefore, we incorporated the quantified statistical measures of the histograms
to describe the features of whole-brain activity distribution. Then, descriptive statistics, nonparametric
Mann–Whitney U test, Kruskal–Wallis test, and Dunn–Bonferroni multiple comparison test were
performed to determine the features of the statistical measures associated with whole-brain activity
distribution and striatal activity volume, select the statistically significant features, and thereby create
a classification model for PD patients.

2.4. Classification Implementation

The logistic regression (LR) model is one of the discrete selection method models. It belongs
to the category of multivariate analysis and is widely used in biostatistics, medicine, econometrics,
marketing, and so on. The logistic regression model is used to analyze and interpret the relationship
between a nominal scale dependent variable and independent variable. The binary logistic regression
model can be derived from the linear probability model (LPM) equation. In a logistic regression model,
such as Equations (1) and (2), where P(X) is the probability of an event affected by factor X, the x1,
x2, . . . , xk is an independent variable, such as body weight, age, or image feature; the β0, β1, . . . , βK

are the estimated parameters. The general regression analysis is to explore the relationship between
two or more variables and to establish the mathematical function model to observe the correlation
between the independent variables and the reaction variables, such as success or failure, normal, or
abnormal, etc.

P(X) =
e f (x)

1 + e f (x)
, 0 ≤ P(X) ≤ 1 (1)
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f (x) = β0 + β1x1 + β2x2 + . . . + βkxk (2)

The SVM is widely used in statistical classification. It is a supervised learning method. In
training data, the SVM is to find the hyper-plane in each category. The data on the hyper-plane, which
constitutes a support vector with sufficient information, can perform effective image classification
with less training samples. There are various kernels that can be used during SVM training, including
linear, quadratic, polynomial, and radial basis function (RBF) kernels. SVM was performed using
the WEKA (https://www.cs.waikato.ac.nz/ml/weka/index.html) software. It can be used to handle
data unbalanced situation. In this study, SVM with RBF kernel was used. Finally, the classification is
performed using the SVM or logistic regression and evaluated with the percentage split (50% of the
data formed the training set for building the model, while the other 50% formed the test set for testing
the model) validation strategy.

3. Results

The descriptive statistics of the six statistical measures based on three disease stage
categories—healthy, mild (HYS Stage 1 to Stage 3), and severe (HYS Stage 4 and Stage 5)—were
tabulated in Table 2. Descriptive statistics included mean, 95% confidence interval (upper and lower
bounds), standard deviation value, minimum value, and maximum value. Statistical results indicated
that the mean and standard deviation of skewness in the healthy, mild, and severe groups were
0.52 ± 0.49, 0.05 ± 0.29, and −0.21 ± 0.26, respectively. These findings indicated that the activity
distribution of the healthy subjects was right-skewed, that of the patients with mild PD approximated
normal distribution, and that of the patients with severe PD was left-skewed. The kurtosis values
for the healthy, mild, and severe groups were 4.98 ± 1.52, 3.27 ± 0.56, and 2.67 ± 0.33, respectively.
The findings indicated that the activity distribution curves of the healthy subjects and patients with
mild or severe PD all formed leptokurtic curves. A comparison of the three groups revealed that
the leptokurtic curves of the healthy patients were the most obvious. The Cyhelsky’s skewness
values for the healthy, mild, and severe groups were −0.01 ± 0.09, −0.05 ± 0.09, and −0.07 ± 0.08,
respectively. The findings revealed that the activity distributions in all three groups were left-skewed.
However, skewness was most obvious in the severe PD group. The Pearson’s median skewness
values for the healthy, mild, and severe groups were −0.04 ± 0.28, −0.17 ± 0.31, and −0.26 ± 0.27,
respectively. Similarly, the activity distributions in all three groups were left-skewed, and skewness
was most obvious in the severe PD group. The DTAV of the healthy, mild, and severe groups was
shown to be 33.68 ± 6.58, 15.85 ± 4.63, and 10.09 ± 4.43, respectively. The findings revealed that the
DTAV of the healthy patients was higher than that of the PD patients, and the discrepancy became
greater as PD progressed. The DTAM of the healthy, mild, and severe groups were 291.33 ± 137.53,
364.9 ± 89.83, and 298.24 ± 85.84, respectively. The findings revealed that the DTAM of the mild
PD patients were higher than that of the severe PD patients. Due to the slight differences among
the three groups in several statistical measures, we subsequently performed Kruskal–Wallis test
and Dunn—Bonferroni multiple comparison test to evaluate the differences between the groups.
Descriptive statistics explained the concentration and dispersion of the six statistical measures among
the various classifications. However, they could not explain whether the statistical measures were
significantly different among the groups. Therefore, the Kruskal–Wallis test and multiple comparison
analysis tests were performed to determine the differences between the groups. A p-value of 0.05 was
chosen as its statistical significance cut-off.

https://www.cs.waikato.ac.nz/ml/weka/index.html
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Table 2. The descriptive statistical and Kruskal–Wallis test results between healthy, mild (HYS Stage 1
to Stage 3), and severe (HYS Stage 4 and Stage 5) (n = 202).

Features Group Cases Mean
95% Confidence

Index Standard
Deviation

Minimum Maximum
Kruskal–Wallis
Test (P-value)

Lower Upper

SK
Healthy 6 0.520 0.003 1.041 0.490 −0.330 1.090

<0.001Mild 102 0.050 −0.009 0.108 0.290 −0.550 0.750
Severe 94 −0.210 −0.263 −0.157 0.260 −0.870 0.380

KUR
Healthy 6 4.980 3.383 6.574 1.520 3.530 7.710

<0.001Mild 102 3.270 3.155 3.375 0.560 2.390 5.040
Severe 94 2.670 2.602 2.736 0.330 2.100 4.050

CSK
Healthy 6 −0.010 −0.111 0.087 0.090 −0.200 0.070

0.046Mild 102 −0.050 −0.068 −0.034 0.090 −0.260 0.130
Severe 94 −0.070 −0.091 −0.058 0.080 −0.260 0.110

MES
Healthy 6 −0.040 −0.334 0.256 0.280 −0.550 0.220

0.033Mild 102 −0.170 −0.233 −0.112 0.310 −0.890 0.570
Severe 94 −0.260 −0.316 −0.205 0.270 −0.810 0.440

DTAV
Healthy 6 33.680 26.780 40.582 6.580 24.290 40.470

<0.001Mild 102 15.850 14.940 16.753 4.630 7.390 28.940
Severe 94 10.090 9.178 10.993 4.430 0.720 17.640

DTAM
Healthy 6 291.330 147.010 435.660 137.530 95.000 459.000

<0.001Mild 102 364.900 347.280 382.570 89.830 230.000 739.000
Severe 94 298.240 280.660 315.830 85.840 141.000 509.000

In this study, we used the Kruskal–Wallis test to examine whether there were significant differences
in the data of the three groups and compare such differences. Table 2 showed the variance of the six
statistical measures extracted from the images of the healthy, mild PD, and severe PD patients. Results
indicated that the differences in the three groups of patients (healthy, mild, and severe) regarding the
six statistical measures achieved statistical significance. The p-values for SK, KUR, CSK, MES, DTAV,
and DTAM were p < 0.001, p < 0.001, p = 0.046, p = 0.033, p < 0.001, and p < 0.001, respectively. However,
the Kruskal–Wallis test results only highlighted significant differences between the three patient groups.
They did not show detailed differences between individual patients. Therefore, multiple comparison
test was performed to determine differences between individual patients.

In this study, the Dunn–Bonferroni multiple comparison test was adopted for multiple comparison
testing. The results of the Dunn–Bonferroni multiple comparison test were shown in Table 3. The table
showed that KUR and DTAV achieved significant statistical differences (p < 0.05). SK was similar in
the healthy patients and patients with mild PD. However, the difference in SK in the healthy patients
and those with severe PD achieved statistical significance (p < 0.05), suggesting that SK was a key
statistical measure in this study. The difference in DTAM between the patients with mild and severe PD
achieved statistical significance (p < 0.05). However, there was no statistically significant difference in
the DTAM in the healthy patients and those with mild or severe PD. Finally, CSK and MES were similar
among the three groups. These results showed that SK, KUR, and DTAV were key statistical measures
for distinguishing between healthy patients, patients with mild PD, and patients with severe PD.
Therefore, these three statistical measures were adopted as explanatory variables for PD classification.
Subsequently, we developed PD classification models using logistic regression and SVM (n = 101).
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Table 3. The Dunn–Bonferroni test results between healthy, mild (HYS Stage 1 to Stage 3), and severe
(HYS Stage 4 and Stage 5) (n = 202).

Feature Control
Group

Compare
Group

Dunn–Bonferroni
Test (P-value) Feature Control

Group
Compare

Group
Dunn–Bonferroni

Test(P-value)

SK

Healthy Mild 0.170

MES

Healthy Mild 0.704
Severe 0.001 Severe 0.172

Mild
Healthy 0.170

Mild
Healthy 0.704

Severe 0.001 Severe 0.106

Severe
Healthy 0.001

Severe
Healthy 0.172

Mild 0.001 Mild 0.106

KUR

Healthy Mild 0.038

DTAV

Healthy Mild 0.012
Severe 0.001 Severe 0.001

Mild
Healthy 0.038

Mild
Healthy 0.012

Severe 0.001 Severe 0.001

Severe
Healthy 0.001

Severe
Healthy 0.001

Mild 0.001 Mild 0.001

CSK

Healthy Mild 0.553

DTAM

Healthy Mild 0.596
Severe 0.153 Severe 0.999

Mild
Healthy 0.553

Mild
Healthy 0.596

Severe 0.193 Severe 0.001

Severe
Healthy 0.153

Severe
Healthy 0.999

Mild 0.193 Mild 0.001

Regarding the classification, we first developed independent models based on SK, KUR, and DTAV,
respectively. Then, we also created a model using both SK and KUR and another using SK, KUR,
and DTAV all together, thereby a total of five classification variable groups. To clearly explain the
classification results for each of the variable groups, we redefined DTAV as the feature of activity
volume (FAV), SK and KUR as the features of activity distribution (FAD), and SK, KUR, and DTAV as
the features of activity distribution and volume (FADV; Table 4). Finally, the LR and SVM classification
methods were used to convert the five groups of explanatory variables into models. The validity of the
models was analyzed to identify the optimal classification model.

Table 4. Names of each classified variable.

Item Group 1 Group 2 Group 3 Group 4 Group 5

Variable SK KUR DTAV SK, KUR SK, KUR,
DTAV

Name FAV FAD FADV

Annotation: FADV = Features of Activity Volume, FAD = Features of Activity Distribution, FADV = Features of
Activity Distribution and Volume

The validity of the disease classification models created with the LR and SVM methods was
tested by calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and area under curve (AUC). Among the models, the FADV model created with the SVM
classification method achieved the highest validity. Its sensitivity, specificity, PPV, NPV, accuracy,
and AUC were 82.8%, 100%, 83.7%, 66.7%, 83.2%, and 84.5%, respectively, suggesting that the model
achieved excellent discrimination. The classification consistency of the model (Kappa value) was
0.68, suggesting that the report results are highly substantial. The validity with respect to the various
classification variables modeled with the LR and SVM method was shown in Table 5.



Sensors 2019, 19, 1740 10 of 12

Table 5. The validation of classify model between LR and SVM in healthy, mild, and severe patient
(n = 101).

Validation
LR SVM

SK KUR FAV FAD FADV SK KUR FAV FAD FADV

Sensitivity 0.667 0.737 0.747 0.768 0.818 0.657 0.747 0.747 0.788 0.828
Specificity 0.500 0.500 1.000 0.500 1.000 0.500 0.500 1.000 0.500 1.000

PPV 0.660 0.730 0.747 0.760 0.827 0.650 0.755 0.747 0.780 0.837
NPV 1.000 1.000 1.000 1.000 0.667 1.000 0.333 1.000 1.000 0.667

Accuracy 0.663 0.733 0.752 0.762 0.822 0.653 0.753 0.752 0.782 0.832
AUC 0.738 0.840 0.845 0.866 0.905 0.739 0.790 0.768 0.865 0.845

Kappa 0.344 0.482 0.527 0.539 0.661 0.326 0.509 0.523 0.578 0.680

4. Conclusions

In this study, the sample size of healthy subjects was relatively small because of the retrospective
experimental design. We used a graphical approach to analyze 99mTc-TRODAT-1 SPECT images
and determine whole-brain activity distribution and striatal activity volume. A three-dimensional
evaluation method was used to estimate relevant statistical measures. Skewness and kurtosis were
used to quantify whole-brain activity distribution curves. DTAV was used to quantify striatum
activity volume. A PD (healthy, mild, and severe) classification model was created by modeling
FADV (including SK, KUR, and DTAV) with the SVM classification method, and an accuracy of
83.2% was achieved. Of the FADV classification variable group, the accuracy of the SVM model in
distinguishing between healthy patients, patients with mild PD, and patients with severe PD was 1%
higher than that of the LR model, and the Kappa value of the SVM model was 2% higher than that of
the LR model. Therefore, the SVM classification model achieved high validity. Furthermore, taking
account of whole-brain activity distribution and striatal activity volume facilitates long-term follow-up
examination and treatment efficacy. With this model, clinical physicians can have another reference for
the classification of PD stages, rather than making subjective judgments only.

99mTc-TRODAT-1 SPECT has been proven to be an effective approach for assessing PD. Previous
studies on dopaminergic imaging often applied computed tomography (CT) or magnetic resonance
imaging (MRI) for the fusion and positioning of anatomical images. As a result, they focused on
accurately selecting the ROI. The analysis approaches conducted in these studies were largely based on
quantifying striatal uptake ratio by examining the basal nucleus and background regions (cerebellum
or frontal lobe). The results of most of these studies showed that the striatal uptake ratio in normal
regions of the brain was higher than that in the regions affected by PD and decreased concurrently
with the increase in PD severity and stages. The ROI ratio analysis method could be used to observe
striatal uptake ratio and further test and classify PD.

In this study, we adopted a graphical approach to analyze 99mTc-TRODAT-1 SPECT images,
taking into account the distribution of grayscale values and the range of activity within the striatum.
A three-dimensional evaluation method was used to calculate skewness, kurtosis, and DTAV.
The kurtosis and DTAV values of the various groups achieved significant statistical differences (p < 0.05).
Multiple comparison results indicated that skewness was similar in healthy patients and those with
mild PD (p > 0.05). However, skewness in healthy subjects was significantly different from that in
severe PD patients (p < 0.05). Therefore, SK was a key statistical measure in this study. We also
found that the activity distribution of healthy patients was right-skewed, that of mild PD patients
approximated normal distribution, and that of severe PD patients was left-skewed.

5. Research Limitations and Future Work

A limitation of this study was the use of a retrospective study design. This limited the inclusion
criteria of healthy subjects. Therefore, the sample size was relatively small. In the future, the number
of TRODAT-1 SPECT cases are expected to be increased. In addition, MRI and CT anatomical images
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can be included in ROI designs as a reference. The statistical features can consider using probability
distribution function (PDF) method. That is more general and might be more suitable for modeling
real-world problems. Researchers can also attempt to use other classification methods to create models
for the indication of PD stages and establish AI or deep-learning classification models for other
neurotransmitter-related diseases to identify the optimal classification models for such diseases.
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