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Abstract: The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s)
on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant
developments have emerged in applications where the σ-hole interaction was demonstrated to play a
key role in the control over chirality. The aim of this review is to give a comprehensive overview of the
current advancements in the use of σ-hole interactions in stereoselective processes, such as formation
of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and
asymmetric catalysis.

Keywords: chalcogen bond; enantioselectivity; enantioseparation; halogen bond; σ-hole; noncovalent
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1. Introduction

σ-hole interactions encompass all noncovalent interactions between atoms with σ-
hole(s) on their surface (σ-hole donors) and negative sites (σ-hole acceptors: anions, lone
electron pairs or π electrons). The term “σ-hole” was introduced by Politzer et al. in
order to define the region of positive electrostatic potential mapped on a density isosurface
(VS) observed in a series of covalently bonded atoms, such as halogens (Cl, Br, I) [1,2],
chalcogens (S, Se, Te) [3] and pnictogens (N, P, As, Sb, Bi) [4]. The number of σ-holes in
each atom is directly related to its covalency; thus, halogens possess one σ-hole, whereas
chalcogens possess two σ-holes and pnictogens three. For these interactions, more specific
names in relation to the nature of the atom in the interaction through its σ-hole(s) are
generally employed in the literature, i.e., halogen bond (acronym XB) [5,6], chalcogen bond
(ChB) [7] and pnictogen bond (PnB) [8,9]. In recent years, the list of σ-hole interactions was
enriched, since many other atoms were shown to have σ-holes. The current list contains
tetrel bond (TeB for C, Si, Ge, Sn, Pb) [10], aerogen or noble gas bond (NgB for Ar, Kr,
Xe) [11], regium or coinage-metal bond (CiB for Cu, Ag, Au, Pt) [12,13], spodium bond (SpB
for Zn, Cd, Hg) [14], osme bond (OmB for Fe, Ru, Os) [15] and wolfium bond (WfB) [16].

More precisely, σ-holes result from the anisotropy of charge distribution in covalently
bonded atoms appearing in VS. representations on electron isodensity surfaces as depleted
areas (often positive) of V on the outer sides opposite to the covalent bonds. Consequently,
the σ-hole acceptors approach the σ-hole sites in a very directional manner, almost linearly
to the bond involving the σ-hole donor (angles generally between 160 and 180◦). It is worth
noting that the remaining regions of electron density, especially those containing lone-pair
electrons, appear as negatively charged areas able to interact with electron-deficient atoms,
such as hydrogens, to form hydrogen bonds (HB) [17], halogens through XB (or type II
halogen···halogen interactions [18]) and chalcogens through ChB (or chalcogen···chalcogen
interactions [19]) (Figure 1).
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by XB was reported by the group of Metrangolo and Resnati in 2005 from the co-crystal-

lization of 1,8-diiodoperfluorooctane 1 and N,N,N’,N’-tetramethyl-p-phenylenediamine 

[36]. A chiral supramolecular organization resulted from strong intermolecular XB be-

tween iodine and nitrogen. Following this work, the same group noticed that by mixing 

compound 1 and BaI2.2H2O in the presence of calixarene 2, a chiral double helical structure 

could be obtained. Calixarene 2 was used for sequestration of Ba+, allowing I− to strongly 

interact through XB with the diiodo derivative 1 [37] (Figure 2a). Later, Goldberg et al. 

showed that XB-driven spontaneous resolution could occur by self-assembly of porphy-

rins bearing three iodophenyl and one pyridine groups. In addition to the expected N···I 

Figure 1. Halogen bond (XB) and chalcogen bond (ChB) as representative members of σ-hole interactions.

While the name “σ-hole interaction” would suggest that its interaction energy is
entirely dominated by electrostatics, it is important to keep in mind that it contains other
components, such as charge transfer, polarization and dispersion [20].

Applications based on σ-hole interactions, especially XB and ChB, have grown rapidly
over the last two decades, and important developments have resulted in crystal engineering,
in biology, in supramolecular chemistry and in catalysis [6,21–31]. Although early studies
reported the use of σ-hole interactions for inducing stereoselective processes in the solid
state, their involvement in solution is much more recent. This emerging field is expected to
strongly impact chirality-based applications in the next decades. The aim of this review
is therefore to provide the current advancements of the field in different applications,
comprising those based on chiral supramolecular assemblies (Section 2), enantioseparation
(Section 3), enantioselective complexation (Section 4) and asymmetric catalysis (Section 5).
Part of the latter application was recently covered in a review [32], and only the very recent
examples will be examined herein.

2. Chiral Supramolecular Assemblies

Supramolecular chirality, defined as chirality at the supramolecular level, has found
many applications in material science [33]. Supramolecular assemblies are formed through
noncovalent interactions of one or several components. In these systems, chirality may
arise from the specific association of either achiral or chiral components through different
processes [34].

2.1. Spontaneous Resolution

Spontaneous resolution describes the process by which the segregation of enantiomers
occurs upon crystallization, thus leading to conglomerates with the formation of a 1:1
mixture of homochiral crystals [35]. The first case of spontaneous resolution induced by XB
was reported by the group of Metrangolo and Resnati in 2005 from the co-crystallization
of 1,8-diiodoperfluorooctane 1 and N,N,N′,N′-tetramethyl-p-phenylenediamine [36]. A
chiral supramolecular organization resulted from strong intermolecular XB between iodine
and nitrogen. Following this work, the same group noticed that by mixing compound 1
and BaI2

.2H2O in the presence of calixarene 2, a chiral double helical structure could
be obtained. Calixarene 2 was used for sequestration of Ba+, allowing I− to strongly
interact through XB with the diiodo derivative 1 [37] (Figure 2a). Later, Goldberg et al.
showed that XB-driven spontaneous resolution could occur by self-assembly of porphyrins
bearing three iodophenyl and one pyridine groups. In addition to the expected N···I
contacts, other XBs implying iodine, such as I···π and I···I, were observed in the crystal [38].
More recently, Mak et al. described the spontaneous resolution of pairs of intertwined
supramolecular right-handed and left-handed double helices by self-assembly of achiral
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2-(iodoethynyl)quinoline 3 [39]. The chiral helical organization was mainly promoted by
I···N XBs between iodoethynyl and quinoline functionalities (Figure 2b).
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Figure 2. Representative examples of spontaneous resolution (XB is represented by blue dash
lines): (a) Crystal structure of the chiral double helical structure formed by mixing 1, 2 and BaI2

.2H2O;
(b) Crystal structure of the right-handed helix obtained by self-assembly of 3 (Reprinted/adapted
with permission from Ref [37]. Copyright 2009, Wiley and from Ref [39]. Copyright 2018, Wiley).

2.2. Chiral Amplification

The introduction of halogen atoms in organic building units can regulate supramolec-
ular chirality and the corresponding chiroptical responses [40]. In XB-based chiral self-
assembly systems, the control over supramolecular chirality was realized by chiral amplifi-
cation with important consequences regarding their chiroptical applications.

Chiral amplification is a phenomenon occurring during the formation of chiral supramolec-
ular systems by strong cooperative interactions between monomers [41]. Jiang et al. ap-
plied this concept to the formation of supramolecular single and double helices through
XBs [42,43]. A single-stranded helix was obtained in the solution phase by using helical ami-
dothioureas 4 functionalized by iodophenyl groups able to interact through I . . . π XBs [42].
Structural modification of the amidothiourea allowed the folding of monomer 5, which
could now interact through I···S XBs to produce a double-stranded helix [43] (Figure 3a).
By using pyrene-conjugated halogenated phenyl-alanine derivatives, XB was also shown
to invert the chirality of the self-assembled helical structures [44]. While the fluorinated
molecule produced a M-helical structure, the other compounds bearing Cl, Br and I, and
therefore able to interact through XB, induced the formation of P-handed helices. An inter-
esting change from helical to propeller chirality, mediated by XB, was also reported [45].
The phenomenon of chiral amplification may also result in the production of polymers with
amplified chiroptical properties. This was nicely demonstrated by Jin et al. through the
formation of XB-based self-assembled chiral emitters with amplified circularly polarized lu-
minescence (CPL) [46]. While monomers 6 and 7 separately showed very weak chiroptical
responses, the self-assembled chiral blades exhibited highly amplified circular dichroism
(CD) and CPL signals (Figure 3b).
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Figure 3. Representative examples of chiral amplification: (a) Formation of single or double helices
through self-organization of 4 and 5, respectively; (b) Formation of a chiral blade with increased
chiroptical properties by combining 6 and 7.

3. Enantioseparation

Although the possibility that XBs and ChBs interactions may contribute to the enan-
tiomer distinction emerged from some studies dating back to the end of the 20th century,
comprehensive studies in this field have only been reported in the last decade [47,48].

3.1. Enantioseparations Based on XB

Nowadays, it is known that halogen substituents can contribute to molecular recogni-
tion by playing multiple roles as nucleophiles, electrophiles, electron-withdrawing groups,
hydrophobic and repulsive sites [47]. In the early 1990s, the main recognized functions
of halogens in enantioseparation science for the resolution of the racemate of a chiral
compound in its pure or enriched enantiomers were related to their high electronegativ-
ity and relevant electron-withdrawing properties increasing in the order I < Br < Cl < F.
Hydrophobicity and polarizability were the other features recognized in halogens, which
increased following the opposite order F < Cl < Br < I.

3.1.1. Initial Observations on the Multiple Role of Halogens in Enantioseparation

The first observations on an “unusual” function of halogens in enantioseparation
science date back to the 1990s. In those years, Caude et al. observed that chiral compounds,
containing benzenoid rings acting as π-basic sites, presented reduced retention and separa-
tion factors during their enantioseparation by chiral stationary phases (CSPs) containing
π-acidic sites when halogens were introduced as substituents of the π-basic sites [49].

In 1996, Pirkle et al. highlighted an opposite unusual halogen effect on the high-
performance liquid chromatography (HPLC) enantioseparation of some halogenated chiral
compounds by using the brush-type Whelk-O1 as the chiral column (Table 1) [50,51].
Indeed, the increase in retention and separation factors observed for the amide deriva-
tives of l-phenyl-l-ethylamines 8 and 9 and for diethyl 1-(N-3,5-dimethylphenyl)amino-l-
phenylmethanephosphonates 10, featuring halogen substituents in the meta or para positions
of the benzenoid ring, relative to their nonhalogenated analogs, was considered unexpected
and inexplicable on the basis of the previous observations on this kind of enantiosepara-
tions [50]. The phenomenon was described by the authors as follows: “Unexpectedly, para
and meta halogen substituents increase both retention and enantioselectivity when nonaqueous
organic mobile phases are used. The more polarizable the halogen, the greater the effect” [50].
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Table 1. Halogen effect on the enantioseparation of derivatives 8–11 on Whelk-O1 [50,51].
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Next, the same group observed a similar behavior in the enantioseparation of 5-methyl-
5-phenylhydantoins 11, highlighting that “contrary to one’s intuition, the electronegative
halogen substituents increase enantioselectivity, the effects being greater for the more polarizable
halogens [ . . . ] an understanding of the principle by which halogen substituents give rise to
enhanced levels of enantioselectivity can profitably be used in the design of chiral selectors and chiral
catalysts” [51]. On the one hand, a description of what we define today as the XB could
be read in those words. On the other hand, Pirkle never related explicitly the halogen-
dependent effects on enantioseparation to the XB, likely due to the fact that for a long
time, the distribution of the electron density of halogens was considered isotropic and,
consequently, F, Cl, Br and I, as substituents, were merely considered as Lewis bases in
enantioseparation science [47]. Later, the identification of the anisotropic distribution of
the electron density on halogens allowed for recognizing their properties as electrophiles
(Lewis acid).

3.1.2. Enantioseparations Based on Diastereomeric Salt Formation

The first XB-based enantiorecognition process was reported in 1999 by Resnati et al.,
and racemic 1,2-dibromohexafluoropropane 12 was resolved by using the Lewis base (–)-



Molecules 2022, 27, 4625 6 of 23

sparteine hydrobromide 13 as the chiral inductor (Figure 4) [52]. The resolution process
originated from the highly specific inclusion of only the (S)-enantiomer of 12 in the helical-
arranged chiral crystal based on the formation of a C-Br···Br− interaction as XB between
the C-bound Br atoms of 12 and the Br− ions of 13. The C-Br···Br− distances were close
to 3.3 Å, thus approximately 20% shorter than the sum of the van der Waals radii of the
two bromine atoms.
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Figure 4. Structures of 1,2-dibromohexafluoropropane 12 and (–)-sparteine hydrobromide 13.

Later, the same authors found that the attractive intermolecular interaction between
iodine or bromine atoms of perfluorocarbon halides and nucleophilic sites of hydrocarbons
can drive their self-assembly through molecular recognition [53]. On this basis, racemic
perfluorocarbons were enantioseparated through an XB-driven recognition mechanism.

In 2010, Saigo et al. synthesized and used the O-ethyl 4-chlorophenylphosphonothioic
acid 14 as a chiral selector for the enantioseparation of racemic 1-(4-halophenyl)ethylamines
(halo = F, Cl, Br, I) 15 through diastereomeric salt formation (Figure 5) [54]. The chiral
selector 14 showed an excellent enantioselective recognition ability for the fluorinated and
iodinated amines 15a and 15d with the switch of the absolute configuration of the enantio-
enriched isomers in the deposited salts from R for the amine 15a to S for the amine 15d.
X-ray crystallographic analyses of the four pairs of diastereomeric salts showed that XBs
in the salt crystals were shown to play a very important role in the switch, no XB being
observed in the crystal containing fluorinated 15a.
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3.1.3. HPLC Enantioseparations

Although not directly related to enantioseparation science, in 2012, Jin et al. de-
scribed the unprecedented utilization of XB in the solid phase extraction of perfluorinated
iodoalkanes (PFIs) from n-hexane. In this study, the strong anion-exchange (SAX) sor-
bent 16 functioning as an XB acceptor formed an associate with perfluorinated iodoalkanes
(PFIs) 17 and 18 behaving as XB donors (Figure 6) [55]. In this study, following a multidisci-
plinary approach, the results showed that the adsorptivities of SAX 16 for the PFIs 17 were
stronger than those for the monoiodo-PFIs 18. In accord with the negligible electrophilic
properties of fluorine, SAX 16 proved to have no adsorption for hexafluorobenzene, which
has no properties as an XB donor.
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On the one hand, the study of Jin’s group demonstrated that the XB could also function
as a pivotal noncovalent interaction in separation science. On the other hand, these results
paved the way for the utilization of XB in enantioseparation science, an idea which our
groups have developed successfully, starting from 2014 [56].

1. Enantioseparation of atropisomeric 4,4′-bipyridines based on XB

By using HPLC as a technical tool, analytes as XB donors, polysaccharide-based chi-
ral selectors as XB acceptors and using a n-hexane-based mixture as a mobile phase, we
demonstrated that XB can drive binding and enantiorecognition of halogenated atropiso-
meric 4,4′-bipyridines, particularly in the case of heavy halogens, such as bromine and
iodine [56–58]. The most important findings acquired in this field are summarized below:

(i) the performances of the polysaccharide carbamate-based derivatives as XB acceptors
are determined by the electron charge density on the carbonyl oxygens (Figure 7). On
this basis, cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) proved to be the chiral
selector with the best XB acceptor properties because of a negative electrostatic potential
minimum (VS,min) (−173.3 kJ/mol), which makes carbonyl functionality a good σ-hole
acceptor, similar in terms of VS,min and structure to other typical acceptors, such as acetone
(−177.0 kJ/mol) or N-methylacetamide (−216.3 kJ/mol). On the contrary, chlorinated
polysaccharide-based derivatives, such as cellulose tris(3-chloro-4-methylphenylcarbamate)
(CCMPC) and tris(3,5-dichlorophenylcarbamate) (CDCPC), showed lower capability as XB
acceptors due to the reduced electron charge density on the carbonyl oxygens (−159.2 kJ/mol
and 147.3 kJ/mol, respectively);
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Figure 7. Structures of cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), cellulose tris(3-chloro-
4-methylphenylcarbamate) (CCMPC) and tris(3,5-dichlorophenylcarbamate) (CDCPC). VS,min values
for the carbonyl oxygens (DFT/B3LYP/6-311G*) are reported.
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(ii) as test probes functioning as XB donors with different electrophilic properties, our
groups developed halogenated 4,4′-bipyridines 19 (Figure 8a) [59], where halogens serve as
σ-hole sites and inductors of chirality by restricted rotation around the 4,4′-bipyridyl bond.
With the aim to confirm the capability of the test probes as XB donors, some halogenated
bipyridines were also studied in the solid state [58,59], and nitrogen–halogen noncovalent
interactions were observed, with the percentage penetration (p.p.) of the N and halogens’
van der Waals spheres increasing from chlorine to iodine (−15.1% (N···I)≤ p.p. ≤ −2.8% (N···Cl)).
Moreover, the calculations of the electrostatic potential maxima (VS,max) allowed us to
evaluate the depth of the σ-holes on chlorine, bromine and iodine, increasing in the order
Cl < Br < I, as a measure of the electrophilic properties of these sites (the electron density
isosurfaces of compounds 19a–c are depicted in Figure 8b as representative examples);
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Figure 8. Halogenated 4,4′-bipyridines 19 (a), and VS representations on electron density isosurfaces
(0.002 au) for representative compounds 19a–c (b). For the VS representations, colors toward red
depict negative VS, while colors toward blue depict positive VS, and colors in between (orange,
yellow, green) depict intermediate values.

(iii) given that the enantioseparation of functionalized 4,4′-bipyridines is dependent on
the substituents carried by the heteroaromatic scaffold [60], the chromatographic responses
of the halogenated analogs 19 were found strictly dependent on the σ-hole depth of the
halogen substituents, retention and enantioselectivity increasing from chlorine to bromine
and iodine [57,58]. In this study, the use of distinct orthogonal techniques provided comple-
mentary information for a more comprehensive picture of XB-based enantiodifferentiation
processes, which are the result of a balanced action of CSP, analyte and mobile phase;

(iv) the enantioseparation of derivatives 19 was solvent dependent and also dependent
on the ability of the CSP as an XB acceptor. As shown in Figure 9 for the representative
compound 19d, the separation dropped by using polysaccharide-based selectors with lower
capability as XB acceptors, namely the CCMPC and CDCPC (Figure 9d–f), compared to
the CDMPC (α = 2.44, resolution (RS) = 11.3) (Figure 9c) due to the reduced XB ability of
the chiral selector (structural effect). Moreover, the polar interaction contribution to the
selectivity was progressively suppressed by changing the mobile phase from the n-hexane-
based mixture to ethanol (α = 1.48, RS = 2.8) (Figure 9b) and methanol (α = 1.00, RS = 0.0)
(Figure 9a) because alcohols exerted a cap effect on the carbonyls of the chiral selector by
means of competitive hydrogen bonds (HBs) (medium effect) [57,58];

(v) in most cases, retention followed the order F < Cl < Br, which could be determined
by the electrophilic σ-hole on the halogen atoms by using n-hexane-based mixtures, as well
as by hydrophobic contacts favored in aqueous mixtures. However, it has been demon-
strated that water may have little influence on the interaction energies and geometries of
XB adducts in solution [61]. Thus, XB can be considered as a hydrophobic equivalent of
the hydrophilic hydrogen bond [62], potentially also acting in water-containing mobile
phases. Coherently, halogen-dependent enantioseparations were also obtained by using
acetonitrile/water mixtures as mobile phases [58];
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(vi) molecular dynamics (MD) simulations were performed by using a nonamer frame-
work of the CDMPC polymer, 16 bipyridine enantiomers, n-hexane as explicit solvent and
the explicit σ-hole approach [63] to properly account for the anisotropic distribution of the
electron density on halogens [58,64]. This computational approach confirmed the presence
of halogen–oxygen contacts governing the dynamics of the enantioseparations, with inter-
esting geometric and penetration parameters. Moreover, in this study, the involvement of
different sites was statistically evaluated over 10 nanoseconds of MD. As a result, for the
iodinated derivative, the carbonyls of the virtual chiral selector were shown to be the most
frequent recognition sites, whereas for the chlorinated system, a wider distribution was
observed without any specific involvement of the carbonyl sites [64].

Later, studies integrating experimental analysis and computational techniques, such
as V analysis and MD simulations, demonstrated that XB, as a selector–selectand inter-
molecular interaction, is less effective in the presence of strong HBs or π–π interactions in
the enantioseparation of 4,4′-bipyridine derivatives with amylose-based selectors, whereas
it has shown effective tuning ability with cellulose-based selectors, even in the presence of
HBs contributing to enantiodifferentiation [65].

2. Enantioseparation of planar chiral ferrocenes based on XB

Very recently, the impact of halogen type and position on the enantioseparation of
halogenated ferrocenes [66] was investigated with polysaccharide-based chiral selectors
by correlating theoretical and experimental data [67]. For this purpose, thermodynamic
quantities associated with the enantioseparations were derived from van’t Hoff plots, and
for 1-halo-2-(iodoethynyl)ferrocenes (1-halogen = F, Cl, Br) 20, halogen-dependent ther-
modynamic profiles were identified on a CDMPC-based column (Figure 10). In particular,
with the aim to unravel the functions of halogen substituents in mechanisms underlying the
selector–selectand complex formation at the molecular level, local electron charge densities
of specific molecular regions of the interacting partners were evaluated in terms of calcu-
lated V and related source function contributions [68]. On this basis, it was demonstrated
that HB involving the NH group of the selector, as the HB donor, participates in the enan-
tiodifferentiation mechanism for the fluorinated ferrocene 20a, whereas an XB involving the
carbonyl group of the selector occurred for the more polarizable 1-bromoferrocene 20c [67].
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Figure 10. Enantioseparation of ferrocenes 20a (a), 20b (b) and 20c (c) at variable temperatures on
a CDMPC-based chiral column with n-hexane/2-PrOH 95:5 v/v as mobile phase and variation of
the VS,min and VS,max values (au, atomic unit) (d–f) as the 1-halogen substituent changes in the
series of 1-halo-2-(iodoethynyl)ferrocenes 20a–c (Reprinted/adapted with permission from Ref. [67].
Copyright 2022, Elsevier).

3. Miscellaneous

After the pioneering investigations on XB-based enantioseparations discussed above,
a number of other studies hypothesized the participation of XBs in enantioseparation
processes on polysaccharide-based chiral selectors [69–74]. In this regard, some open
questions emerge:

(i) the involvement of fluorine in XB in enantioseparation science is rather unlikely [75].
In fact, fluorine is a very weak XB donor due to its high electronegativity and low polar-
izability, and it was shown to act as an electrophile only when bound to strong electron-
withdrawing groups, such as CN or F [6];

(ii) very recently, XB has been proposed as a noncovalent interaction involved in the
enantioseparation of some chlorinated compounds on polysaccharide-based CSPs [69,72,73].
In this regard, a theoretical re-examination of these hypotheses evidenced that the elec-
tronic properties of chlorine as a substituent make this atom a weak XB donor; thus, a poor
involvement in XB is expected for this halogen, particularly in competitive systems, where
HB can also participate in enantiorecognition [48,64];

(iii) in other studies, it was hypothesized that in chlorinated polysaccharide-based
selector, the chlorine substituent may participate in XB with analytes functioning as XB
acceptors [70,71,74]. Recently, theoretical calculations demonstrated the presence of elec-
trophilic σ-holes on chlorines but small in magnitude [48]. On this basis, the potential
of these chlorines to be involved in XBs is rather limited, particularly considering that
the corresponding N-H moieties of the chlorinated selectors are stronger competitive elec-
trophilic sites. Thus, it is likely that analytes with properties like XB and HB acceptors
show a preference toward N-H. On the other hand, in the 1980s, Okamoto et al. assumed
that in cellulose phenylcarbamates, polar substituents located on the phenyl rings of the
phenyl carbamate moiety participated in non-enantioselective noncovalent interactions
with chiral analytes because they are located far from a chiral glucopyranose unit [76],
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without any favorable contribution to enhancing enantioselectivity. On this basis, it is likely
that the chlorine of the polysaccharide-based selectors has no other function beyond that of
modulating the electron charge density on the carbamate sites.

3.1.4. Supercritical Fluid Chromatography (SFC) Enantioseparations

The effect of non-polar pressurized carbon dioxide on XB-driven enantioseparations
was also explored under SFC conditions [48]. Carbon dioxide is considered a hexane-
like solvent with respect to its elution strength [77]. Thus, changing n-hexane to carbon
dioxide should cause no relevant changes in retention and selectivity [78]. Actually, carbon
dioxide is not really hexane-like because it is more polarizable, and it has local dipoles
(C=O bonds) and partial charges on both carbon and oxygen [78]. Moreover, theoretical
calculations and related experimental data proved that carbon dioxide can participate in
XBs (O=C=O···X) acting as XB acceptor [79]. In this perspective, the results of a series of
comparative enantioseparations performed under SFC (carbon dioxide/2-propanol 9:1)
and NPLC (n-hexane/2-propanol 9:1) conditions on CDMPC demonstrated a strong impact
of carbon dioxide on the enantioseparation of halogenated derivatives containing strong
XB donor sites [48].

3.1.5. Self-Disproportionation of Enantiomers (SDE)

Soloshonok et al. reported the first example of XB-driven self-disproportionation of
enantiomers (SDE) performed through achiral medium-pressure liquid chromatography
(MPLC) and gravity-driven chromatography [80]. This phenomenon is based on the self-
association of enantiomers, yielding fractions of nonracemic samples, which are enriched
and/or depleted in one of the constituent enantiomers under achiral chromatographic
conditions [81]. In MPLC experiments using n-hexane-containing mixtures as mobile
phases and mebroqualone (21) as analyte (Figure 11a), two clear peaks with a distinct
boundary between them were observed (Figure 11b). By using a preparative MPLC column
and starting from (P)-21 (>65.8% enantiomeric excess (ee)), the authors separated the
two peaks, and their enantiomeric composition was analyzed by enantioselective HPLC.
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Figure 11. (a) Structure of mebroqualone (21); (b) MPLC chart of 21; (c) XB in the crystal packing of
rac-21 (Reprinted/adapted with permission from Ref. [80]. Copyright 2017, Wiley).

The data obtained revealed that the less polar fraction contained enantiomerically pure
(P)-14 (>99% ee). Otherwise, the more polar fraction provided enantiomerically depleted
(P)-14 (35.4% ee). The results of a crystallographic study suggested the possibility of an XB
between C=O groups and the ortho-bromine atoms in the racemic crystals, the observed
distance C=O···Br being 3.145 Å (Figure 11c). The racemic crystals proved to be more stable
than those of (P)-14, where XBs were not observed. If such interactions are still present in
solution, it is reasonable to argue that, under chromatographic conditions, the first fractions
are monomers of the excess enantiomers, and the last fractions correspond to heterochiral
XB high-order species representing the racemic portion of the considered sample.

3.2. Enantioseparations Based on ChB

On the basis of the most recent findings, XB appears to be a new code by which chiral
molecules can relate to each other in enantioseparation science. On the other hand, other
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interactions involving electrophilic σ-holes, such as ChB, could be envisaged to perform
the same function. Enantioseparations of selenium and sulfur derivatives were reported in
the literature, and higher retention and selectivity were observed for selenium compounds
compared to sulfur analogs [82–84]. Nevertheless, in general, the impact of σ-holes of
sulfur and selenium in enantioseparation science has been neglected, and until recently,
ChB remained explored to a lesser degree in this field.

Following the studies on XB-based enantioseparations, later, we also considered ChB,
and, again exploiting the 4,4′-bipyridine core, we designed and prepared bipyridines 22
containing sulfur or selenium as electrophilic chalcogen sites [85–88]. As mentioned above,
in this case, due to the valence of the atoms, two σ-holes could be identified. Thus, in
the new 4,4′-bipyridine motif, the σ-holes on sulfur and selenium were electronically dif-
ferentiated by a proper substitution. The design was computationally guided by using
the V analysis and the source function electrostatic potential decomposition applied to
the sulfur- and selenium-centered σ-holes [86–88]. On this basis, the pentafluorophenyl
group (22a) proved to be effective for the purpose of enhancing the electrophilic ability
of one σ-hole, whereas the second one was blocked using the atropisomeric structure
as a steric tether (Figure 12a). As a result, high selectivity was observed for the fluori-
nated derivative 22a, confirming the pivotal role of the pentafluorophenyltio group as the
“enantioseparation driver”, while poor selectivity was observed for the nonfluorinated
compound 22b (Figure 12b) [86].
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Figure 12. (a) Structure of derivatives 22a and 22b; (b) comparative enantioseparation of com-
pounds 22a and 22b (CDMPC, n-hexane/2-propanol) (Reprinted/adapted with permission from
Ref. [80]. Copyright 2018, Elsevier).

Further to these results, we observed that the pentafluoro derivative presented an
additional region of electronic charge depletion centered on the fluorinated aromatic ring,
which could be involved in the enantiodiscrimination process forming the so-called π-
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hole bond, conceptually analogous to the σ-hole bond and involving an unpopulated π*
orbital, the π-hole, as a donor. With the aim of gaining insights on the function of these
holes, for a large series of compounds containing fluorinated rings and electrophilic sulfur
and selenium centers, the values of the second eluted enantiomers were correlated to the
VS,max values associated with electrophilic regions. Interesting correlations were observed,
which enable us to reasonably conclude that both ChBs and π-hole bonds can function as
noncovalent interactions in enantioseparation science.

4. Enantioselective Complexation

Enantioselective complexation is the process by which a host molecule selectively
recognizes and binds one chiral guest over its enantiomer [89]. σ-hole interactions were
also exploited in this field for the enantioselective recognition of anionic or neutral sub-
strates [25,29].

4.1. Recognition of Anionic Guests

In 2016, by using chiral receptor 23a, Beer et al. observed for the first time the positive
influence of XB on the enantioselective discrimination of different amino-acid-derived chiral
oxoanions. Indeed, these anions interacted with receptor 23a through highly directional,
almost linear I···O XBs, whereas angles in the range 130–140◦ were observed for HBs with
the non-iodinated receptor 23b. The sterically bulky indole moiety of NBoc-tryptophan
resulted in the largest selectivity of 1.67 with preference for the (S)-enantiomer with 23a,
whereas 23b led to very low stereo-induction (Figure 13) [90]. A quite similar selectivity of
1.69 was obtained by employing the neutral halogenated tetradendate receptor [91].
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with permission from Ref. [90]. Copyright 2016, Royal Chemical Society).

The role of XB in the chiral discrimination of anions was again demonstrated by Beer
et al. by using [2] and [3]rotaxanes [92,93] (Figure 14). It was shown that [2]rotaxane 24 was
more effective than the individual non-interlocked components, giving a selectivity of up
to 2.93 for the (S)-NBoc-proline anion. Molecular dynamics (MD) simulations revealed that
the linear XBs between the anion and the rotaxane cavity allowed the guest to be in close
proximity of the chiral (S)-BINOL unit [92] (Figure 14a). Based on the same principle, a
more sophisticated [3]rotaxane 25, bearing two binding sites around a chiral (S)-BINOL unit,
was developed for the recognition of dicarboxylate anions. A good discrimination of chiral
NBoc-glutamate was observed with a selectivity of 5.7 for the (S)-glutamate enantiomer [93]
(Figure 14b).

Finally, with the aim to compare the influence of XB, ChB and HB on the chiral selectiv-
ity and sensing of dicarboxylate anions, three structurally related chiral host systems 26a–c
bearing I, Se and H were prepared. The XB-based host 26b performed the best in the chiral
recognition of chiral dicarboxylates (glutamate and tartrate) and, together with the ChB-
based derivative 26c, allowed higher discrimination of dicarboxylate geometric isomers
(fumarate/maleate and phthalate/isophtalate). Moreover, the ChB-based host displayed di-
agnostic fluorescence responses to different dicarboxylate geometric isomers and enhanced
stability toward highly basic oxoanions in aqueous solvent media (Figure 15) [94].
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Society and from Ref [93]. Copyright 2018, Wiley).
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Figure 15. Structure of chiral hosts 26a–c.

4.2. Recognition of Neutral Guests

The enantioselective complexation of neutral molecules emphasizing the involvement
of XB was also explored in 2017 by two different research groups. Diederich et al. studied
the chiral recognition properties of enantiopure alleno-acetylenic cage receptor 27 toward
(±)-trans-1,2-dihalocyclohexanes and (±)-trans-1,2-dimethylcyclohexane [95]. While the
latter formed a weak complex with 27 (Ka = 110 M−1), much stronger complexes were
obtained with (±)-trans-1,2-dichloro- and (±)-trans-1,2-dibromocyclohexane (Ka = 3800 M−1

and 29,000 M−1, respectively). The higher values for the halo derivatives were the result of
strong directional XBs between halogens and acetylene/aryl groups, as observed in the
co-crystal structures. The best chiral recognition result was observed for the 1,2-dibromo
derivative with a ratio of 3:1 for the diastereomeric complexes formed by the (R,R)- and
(S,S)-enantiomers with 27 (Figure 16).
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Figure 16. Chiral recognition of trans-1,2-dibromocyclohexane in the diaxial conformation bound
to the interior of 27 (Reprinted/adapted with permission from Ref [95]. Copyright 2017, American
Chemical Society).

Kanger et al. reported a chiral XB donor 28 able to interact with urea 29 and behaving
differently in the presence of either its (S,S) or (R,R) enantiomer, as shown by 1H NMR [96].
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Indeed, the different NMR shifts compared to the free XB donor obtained with (S,S)-29
(+0.035 ppm) and (R,R)-29 (+0.027 ppm) confirmed the enantiodiscrimination ability of 28
(Figure 17). XB probably occurred between the I and S atoms, with possible HB involving
of the NH of 29 and the negative belt of iodine in 28.
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5. Asymmetric Catalysis
5.1. XB-Based Catalyzed Asymmetric Reactions

The enantiodiscrimination property of XB donors suggests that potential enantiose-
lectivity induction in asymmetric reactions could be expected. In this regard, Huber et al.
developed the bidentate XB donor 30 and demonstrated its ability of enantiodiscrimination
toward several diamines and diols through XB formation [97]. More interestingly, 30 was
used as a chiral organocatalyst in the Mukaiyama reaction of ethyl glyoxylate 31 with
TMS-enolate 32, furnishing the aldol product 33 with 30% ee. This report represents the
first example of enantioselective reaction involving only the σ-hole interactions (Figure 18).
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Similarly, García Mancheño et al. described the tetradentate iodotriazole 34a and
its non-iodinated analog 34b as enantiopure receptors for chiral mono and dicarboxylate
anions [98]. In particular, titration of XB donor 34a with the tartrate salts revealed a good
selectivity of 2.10 for the D-enantiomer of the tartrate tetrabutylammonium salt. The
two receptors were then used as catalysts in the Reissert-type dearomatization of activated
quinoline 35 with silylketeneacetal 36. Interestingly, while the (S)-product 37 was favored
with the 34a catalyst, (R)-37 was formed preferentially with the non-iodinated catalyst 34b.
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Moreover, whereas at high catalyst loading (10% cat), a higher ee was obtained with 34b
(58% ee vs. 30% ee), 34a performed better at lower loading (1% cat: 28% ee vs. 18% ee). These
results suggest that catalyst 34a is more able to outcompete the uncatalyzed background
reaction, which produces 41% of the racemic product under the same conditions. CD
experiments showing opposite Cotton effects for the two catalysts suggest a different
spatial organization. Additional DFT calculations showed that the introduction of the large
iodine atoms as substituents to the 34b scaffold caused a distortion of the helical cavity
that prevented a higher coordination number. These results explain the observed reversed
selectivity between the two catalysts (Figure 19).
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Figure 19. XB-catalyzed asymmetric Reisser-type reaction.

More recently, our groups described the bis-iodotriazolium catalyst 38 bearing planar
chirality of ferrocene. This bidendate catalyst performed efficiently in the aza-Diels–Alder
reaction between imine 39 and Danishefsky diene 40, but product 41 was obtained with a
very low ee of 6%, probably because of the high flexibility of the two iodotriazolium arms
of the catalyst [99] (Figure 20).
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Bifunctional chiral catalysts able to conduct XBs and HBs were found to be much
more efficient in terms of enantioselectivity induction than the previous catalysts based
only on XBs. In recent years, very limited chiral backbones were used by different authors.
Yoshida et al. developed chiral binaphthyl-based halonium derivatives 42 bearing an amino
functionality. The bromonium catalyst 42a was used in the vinylogous Mannich reaction of
cyanomethyl coumarins 43 with ketimines 44, delivering the coupling products 45 in high
yields and ee up to 96% [100]. The iodonium catalyst 42b was, however, more powerful
in the asymmetric addition of bulky thiols to ketimines 44 for the formation of N,S-acetal
products 46 in high yields and enantioselectivities [101]. In both cases, the DFT-calculated
plausible key intermediate structures showed that both XBs and HBs concur with the
observed high enantioselectivity induction (Figure 21).
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Arai et al. employed the Cinchona alkaloid-derived chiral catalysts 47a bearing iodine
installed on a pentafluorobenzene ring as an XB donor, an amidic NH group as an HB
donor and an amine as a basic site. This catalyst was found to be very efficient in the
asymmetric Mannich-type reaction of malononitrile with N-Boc α-ketiminoesters 48 [102]
and in the enantio- and diastereoselective double Mannich reaction of malononitrile with
N-Boc imines 49 [103]. Products 50 and 51 were obtained in high yields and ee, and in both
cases, the role of XB was confirmed by using model compounds lacking iodine functionality
(Figure 22a,b). A very similar chiral catalyst 47b was used by Kanger et al. in the highly
enantioselective Michael addition of malononitrile to vinyl phosphonates 52 to generate
coupling product 53 [104] (Figure 22c). The authors demonstrated an interesting effect of the
NH group, which enhanced the Lewis acidity of iodine by establishing an intramolecular
I···H HB. In a very recent publication, the same authors employed a simplified chiral
backbone possessing XB, HB and Lewis base properties [105]. This multi-functional catalyst
based on the chiral trans-cyclohexane diamine backbone was applied in the enantioselective
Mannich reaction between malononitrile and diphenylphosphinoyl-protected aldimine,
affording products in high yields (74–98%) and moderate to high ee (70–89%). However,
the control experiments with model compounds bearing other halogens instead of iodine
showed that the enantioselectivity is controlled by HB and not by XB.
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5.2. PnB-Based Catalyzed Asymmetric Reactions

Tan et al. reported the first case of asymmetric PnB catalysis by using the chiral
antimony(V) cation/anion pair 54 [106]. The high performance of this catalyst was proven
in enantioselective transfer hydrogenation reaction with a low catalyst loading. Indeed,
the reduction in benzoxazines 55 with Hantzsch ester 56 performed very well with only
0.05 mol% of catalyst, and ee as high as 98% were obtained for products 57. The control
experiments revealed that the high catalytic activity of 54 is based on PnB of Sb+ combined
with the Lewis basic property Sb− (Figure 23).

Molecules 2022, 27, x FOR PEER REVIEW 19 of 24 
 

 

5.2. PnB-Based Catalyzed Asymmetric Reactions 

Tan et al. reported the first case of asymmetric PnB catalysis by using the chiral anti-

mony(V) cation/anion pair 54 [106]. The high performance of this catalyst was proven in 

enantioselective transfer hydrogenation reaction with a low catalyst loading. Indeed, the 

reduction in benzoxazines 55 with Hantzsch ester 56 performed very well with only 0.05 

mol% of catalyst, and ee as high as 98% were obtained for products 57. The control exper-

iments revealed that the high catalytic activity of 54 is based on PnB of Sb+ combined with 

the Lewis basic property Sb− (Figure 23). 

 

Figure 23. PnB-catalyzed asymmetric reduction in benzoxazines 55. 

5.3. ChB-Based Catalyzed Asymmetric Reactions 

Although efficient ChB-based asymmetric catalysis relying on the direct interaction 

of the catalyst with the substrate is still unreported, the importance of ChB for the stabili-

zation of intermediates or catalysts was recently described in two asymmetric reactions. 

By studying a series of isochalcogenourea catalysts 58 (X = O, S, Se), Smith et al. demon-

strated that the higher activity and selectivity of the sulfur- and selenium-based catalysts 

in different catalytic reactions was due to the increased stability of the N-acetylated inter-

mediates 59 allowed by strong intramolecular S···O and Se···O ChBs. For instance, 58-Se at 

500 ppm catalyst loading allowed the kinetic resolution of tertiary alcohols 60 with con-

versions in the range of 31–50% and selectivity between 70 and 120 (Figure 24a) [107]. A 

very recent example by the same group highlighted again the importance of S···O ChB in 

asymmetric organocatalysis [108]. 

Finally, Furuta et al. showed that conformational control of the dirhodium catalyst 

61 by ChB led to an increased enantioselectivity in the catalytic intramolecular C−H inser-

tion into α-aryl-α-diazoacetates 62 for the formation of cis-α,β-diaryl γ-lactones 63 [109]. 

Indeed, X-ray diffraction analysis indicated that the Rh centers in this catalyst are embed-

ded in a defined chiral environment arising from the presence of intramolecular ChBs 

(Figure 24b). 

Figure 23. PnB-catalyzed asymmetric reduction in benzoxazines 55.

5.3. ChB-Based Catalyzed Asymmetric Reactions

Although efficient ChB-based asymmetric catalysis relying on the direct interaction of
the catalyst with the substrate is still unreported, the importance of ChB for the stabilization
of intermediates or catalysts was recently described in two asymmetric reactions. By study-
ing a series of isochalcogenourea catalysts 58 (X = O, S, Se), Smith et al. demonstrated that
the higher activity and selectivity of the sulfur- and selenium-based catalysts in different
catalytic reactions was due to the increased stability of the N-acetylated intermediates 59
allowed by strong intramolecular S···O and Se···O ChBs. For instance, 58-Se at 500 ppm
catalyst loading allowed the kinetic resolution of tertiary alcohols 60 with conversions in
the range of 31–50% and selectivity between 70 and 120 (Figure 24a) [107]. A very recent
example by the same group highlighted again the importance of S···O ChB in asymmetric
organocatalysis [108].
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Finally, Furuta et al. showed that conformational control of the dirhodium catalyst 61
by ChB led to an increased enantioselectivity in the catalytic intramolecular C−H inser-
tion into α-aryl-α-diazoacetates 62 for the formation of cis-α,β-diaryl γ-lactones 63 [109].
Indeed, X-ray diffraction analysis indicated that the Rh centers in this catalyst are embed-
ded in a defined chiral environment arising from the presence of intramolecular ChBs
(Figure 24b).

6. Conclusions

After the definition of the σ-hole concept at the beginning of the twenty-first century,
the ability of many atoms to drive noncovalent interactions could be rationalized, offering
new opportunities in chemistry, as shown by the increasing number of applications. In the
present review, we focused on the applications where the σ-hole interaction was demon-
strated to play a key role in the control over chirality. To date, the emerging applications are
limited to the formation of chiral supramolecular assemblies, separation of enantiomers,
enantioselective complexation and asymmetric catalysis.

However, this field is still in its infancy, and many improvements and new develop-
ments are expected in future years. While most current applications are based on XB, the
emergence of new σ-hole interactions, such as ChB and PnB, should widen their utility in
stereoselective processes.
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