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A B S T R A C T   

Background: The presumptive diagnosis of hemoglobinopathies relies on routine tests such as Complete Blood 
Count (CBC), peripheral blood smear, Liquid Chromatography (LC), and Capillary Electrophoresis (CE), along 
with clinical findings. Pathologists suggest molecular sequencing of HBA and HBB genes to correlate blood 
picture with clinical findings in order to identify unknown rare haemoglobin (Hb) variants or variants that 
coelute with Hb. This paper presents a low-resolution mass spectrometry (MS)-based method for presumptive 
identification of variants that eluted in zone 12 of CE, followed by molecular sequencing of the HBB gene for a 
definitive diagnosis of hemoglobinopathies. 
Methods: Eight patient samples with a variant peak in zone 12 of CE (Sebia) were analyzed using MS. The mass- 
to-charge ratio (m/z) observed was deconvoluted to determine the mass of Hb variants. The β variants were 
subsequently confirmed through molecular sequencing. 
Results: Based on the intact mass of the variants, there were two samples of the α variant (α + 58 Da and α + 44 
Da), and six samples of the β variant. Out of these six β variant samples, three were the β + 58 Da variant, and 
three were the β + 30 Da variant. By correlating the intact mass information with the CE pattern and considering 
the ethnicity of the patients, it was presumed that the α variants were HbJ Meerut (α + 58 Da, x-axis 102) and 
HbJ Paris-I (α + 44 Da, x-axis 80). Molecular analysis confirmed the identity of β variants as Hb Rambam/HbJ 
Cambridge, HbJ Bangkok (+58 Da), and Hb Hofu (+30 Da). 
Conclusion: The mass information of Hb variants obtained using Electrospray triple quadrupole MS assists pa-
thologists in recommending the appropriate molecular sequencing for identifying unknown variants.   

Introduction 

HbVar, a database of haemoglobin (Hb) disorders known as hemo-
globinopathies, has documented 1422 Hb variants to date [1]. These 
variants occur due to point mutations on the α, β, δ, and γ globin chains. 
In addition to the clinically significant Hb variants such as HbS, C, E, D- 
Punjab, and O-Arab, other Hb variants can also be observed in diag-
nostic laboratories using cation exchange-high performance liquid 

chromatography (CX-HPLC) [2] or capillary electrophoresis (CE) [3]. 
Fast-moving Hbs on HPLC and CE are rare variants that are accidentally 
detected during antenatal or family screening [4]. One example of such 
a variant is the HbJ family, which encompasses around 50 different 
forms [5,6]. Some examples of α variants include HbJ Meerut, HbJ 
Birmingham, and HbJ Cape Town; while β variants include HbJ Balti-
more/Bangkok/Kaohsiung/Cape Town, which are observed in various 
ethnicities globally [7]. 

Abbreviations: ARMS, Amplification Refractory Mutation System; BEH, Ethylene Bridged Hybrid; CBC, Complete Blood Count; CE, Capillary Electrophoresis; CX, 
Cation Exchange; EDTA, Ethylene Diamine Tetra Acetic acid; ESI, ElectroSpray Ionisation; Hb, Hemoglobin; HBA1 and HBA2, Alpha globin genes; HBB, Beta globin 
gene; HPLC, High Performance Liquid Chromatography; HRMS, High Resolution Mass Spectrometry; MALDI-ToF, Matrix Assisted Laser Desorption Ionisation-Time 
of Flight; MS, Mass Spectrometry; PCR, Polymerase Chain Reaction; RBC, Red Blood Cell; TQ, Triple Quadrupole; UPLC, Ultra Performance Liquid Chromatography. 
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The clinical presentation of patients with HbJ variants range from 
asymptomatic cases to mild effects on hematologic indices [8,9]. Pre-
sumptive identification of these variants has been reported based on 
migration zone, migration axis and percentage of the variant using CE 
[7]. Confirmation is typically performed through molecular sequencing 
[9] of the α and β genes of Hb. However, when the involvement of the 
globin chain is not known, it becomes cost-prohibitive to sequence both 
α genes (HBA1 and HBA2) along with the β globin gene (HBB) to confirm 
the presence of an Hb variant. Instead, a cost-effective method, known as 
Amplification Refractory Mutation System (ARMS) PCR, is utilized for 
detecting rare mutations [10], as well as studying genotype-phenotype 
correlation in prospective research studies. 

In recent years, mass spectrometry (MS), a powerful analytical 
technique, has been used in research laboratories to identify hemoglobin 
variants based on the intact mass information of the variant globin chain 
[11–13]. However, the use of MS in clinical diagnostic laboratories has 
been mainly limited to low-resolution MS for quantification of small 
molecules [14,15] and peptides [16,17], while high-resolution MS and 
Matrix Assisted Laser Desorption Ionization - Time-of-Flight (MALDI- 
ToF) MS have been explored for analyzing intact protein diagnostic 
markers [18,19]. 

Unlike CX-HPLC and CE which measure the Hb tetrameric complex, 
MS measures the mass-to-charge ratio (m/z) of expressed monomeric 
globin proteins. Therefore, this study aims to highlight the value of 
intact mass information in determining the affected globin chain type in 
a clinical laboratory setting. The analysis of proteins using low- 
resolution Triple Quadrupole MS in a diagnostic laboratory is demon-
strated. This report presents the first correlation between mass infor-
mation and CE pattern to identify HbJ variants that migrated in zone 12 
of CE. 

Materials and methods 

All the K2 EDTA blood samples analyzed for variants were routine 
clinical samples. These samples were originally sent to the laboratory 
requesting a complete blood picture and the detection of hemoglobin-
opathies using CE. Any extra samples that remained after testing were 
then used to record mass information using Liquid Chromatography (LC) 
Electrospray Ionisation TQMS and to perform molecular analysis in 
order to confirm any β variants detected. 

Reagents and instruments 

HPLC grade acetonitrile, 98 % formic acid (Ranbaxy Fine Chemicals 
Limited, New Delhi, India), and HPLC grade water (Thermo Fisher Sci-
entific, USA) were utilized. For molecular studies, DNA was extracted 
from blood samples using the QIAamp DNA Mini Kit (Qiagen). Complete 
blood count analysis was performed using the Sysmex XN1000 auto-
matic analyzer (Sysmex Corporation, Kobe, Japan). Identification and 
quantification of normal Hb and Hb variants were conducted using the 
CAPILLARYS Hemoglobin (E) kit on a CAPILLARYS 2 Flex Piercing In-
strument (Sebia, Lisses, France). 

Sample preparation 

To release Hb from whole blood, 5 μl of the blood sample was diluted 
with 995 µl of water and vortexed. The resulting mixture was then 
centrifuged at 10,000 rpm for 5 min. From the supernatant, 40 µl was 
taken and further diluted with 360 µl of MS-compatible solvent con-
sisting of 40 % acetonitrile acidified with 0.2 % formic acid. 

LCMS procedure 

For the separation of Hb proteins from impurities, an ultra- 
performance liquid chromatography (UPLC) system (Acquity H-Class 
Plus, Waters, India Pvt Ltd) was used. A BEH C18 column with 

dimensions of 2.1 mm x 50 mm, a particle size of 1.7 µm, and a pore size 
of 130 Å was used for the elution of globin chains. Solvent A consisted of 
HPLC-grade water with 0.2 % formic acid, while solvent B consisted of 
acetonitrile with 0.2 % formic acid. The globin chains were eluted iso-
cratically at 60 % solvent B for one minute with a flow rate of 300 µl. 

The mass measurement of intact Hb and its variants was performed 
using Xevo TQD (Waters, India Pvt Ltd) in positive ion mode with a 
capillary voltage of 3.2 kV, cone voltage of 40v, source temperature of 
150OC, desolvation temperature of 550 OC with a mass range of 
650–1200 m/z. All the instruments were calibrated according to the 
manufacturer’s instructions. LCMS data was acquired using MassLynx 
v4.1. 

To obtain better mass accuracy, spectral peaks (m/z) were internally 
calibrated for each sample using α globin chain peaks as a reference file 
provided by the vendor. The internally calibrated m/z data were then 
deconvoluted using Max Ent1 software (Waters, India Pvt Ltd) to obtain 
the mass information for intact Hb and its variants. The parameters used 
were uniform Gaussian as a damage model, minimum intensity ratio set 
to 80 %, and iterations until convergence. 

For molecular identification of β variants, Sanger sequencing was 
performed on PCR products obtained from the β globin chain using a 
BigDye terminator sequencing kit on an Applied Biosystems 3730xI DNA 
Analyzer. The sequence data were analyzed using Geneious software 
v2022.0.1, and the reference sequence used was NG_059281.1 for the 
HBB gene. 

The study was approved by the Institutional Human Ethics Com-
mittee (IHEC) according to DCGI guidelines (Reg. No: Ec/NEW/INST/ 
2022/2627) and the study approval no. is NAALM/EC/1.1/02-2022. 

Results 

Eight samples, with a variant peak in zone 12 of CE were subjected to 
intact mass measurement. Except for one sample, all were from female 
patients within the age group of 21–39 years. All patients were 
asymptomatic and had normal red blood cell (RBC) indices, except for 
cases 3, 4, and 8, which exhibited a microcytic hypochromic blood 
picture. The CE patterns of all variants are depicted in Fig. 1. 

Cases one and two (Fig. 1a, b) were presumed to be α variants based 
on the presence of minor peaks in zone D or zone D/S. Case one dis-
played a different migration position on the x-axis (102) compared to 
case two (x-axis 80), indicating the presence of two distinct α variants 
[7]. However, the variant percentage was similar in both cases at 28 %. 

In contrast, cases three to eight (Fig. 1c–h) did not exhibit minor 
peaks in zones D/S and thus were designated as β variants. The x-axis 
positions ranged from 90 to 96 for these samples and displayed two 
different CE patterns with respect to variant levels. Cases three to five 
(Fig. 1c–e) demonstrated variant levels of 50–54 %, while cases six to 
eight (Fig. 1f–h) exhibited variant levels ranging from 21 % to 37 %. 
Detailed information regarding complete blood count (CBC) and CE 
parameters can be found in Table 1. 

Intact mass information for all the variant samples was obtained 
through LC ESI TQMS after deconvoluting the raw data (m/z). Fig. 2 
illustrates the deconvoluted mass of Hb and its variants that migrated in 
zone 12 on CE. Fig. 2a shows a variant mass of α + 58 Da, while Fig. 2b 
displays a variant mass of α + 44 Da. Fig. 2c–e demonstrate the presence 
of a β variant with + 58 Da, which has an intensity equivalent to that of 
the β chain but different from that of the α chain. Lastly, Fig. 2f–h exhibit 
the mass of variants as + 30 Da from the β chain. The table provided in 
Table 1 presents details regarding the molecular masses, variations 
compared to normal Hb, and identification of the analyzed variants 
within this study. 

Discussion 

Cation exchange HPLC (CX-HPLC) is considered the gold standard 
for identifying structural variants or defects in globin chain expression 
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[20,21]. However, CE has also been documented as an alternative 
technique by Keren et al. [3]. While both CX-HPLC and CE can identify 
variants based on elution profile or migration pattern, there have been 
reports highlighting the overlap of certain variants [22,23], leading to 
potential misdiagnosis of Hb disorders [24]. 

To achieve a definitive diagnosis of variants, molecular techniques 
such as gene sequencing [25] or protein sequencing using high- 
resolution MS [26,27] are necessary. However, due to their cost and 
limited availability in diagnostic laboratories, low-resolution TQMS, 
which is commonly used for quantifying metabolites and peptides, is 
employed for protein analysis. 

In this study, the intact mass information of eight variants that eluted 
in zone 12 of CE is provided. This information assists in the identifica-
tion of Hb variants when higher resolution techniques are not accessible. 

The presumptive identification of Hb variants, based on the intact 
mass information obtained, was compared to the presumptive identifi-
cation derived from the CE pattern, considering parameters such as 
migration zone, migration position, and variant percentage. To supple-
ment this analysis, information from relevant literature sources [28], the 
Hemoglobin Atlas from Sebia (Sebia customer extranet: https:// 
extranet.sebia.com) and patient ethnicity was considered. 

Based on these considerations and information sources, case one was 
presumed to be HbJ-Meerut and case two presumed to be HbJ-Paris I. 
This study represents the first report of correlating intact mass infor-
mation with CE patterns for providing presumptive identification of α 
variants. However, molecular confirmation is still necessary for defini-
tive identification of these variants. 

Two masses of β variants were observed in this study: β + 58 Da 
(cases three-five) and β + 30 Da (cases six-eight). In addition to the β +
58 Da variant, glutathionylation (+305 Da) was also detected for both 
the β chain and its variant. Such modifications are not evident in CE and 
are concealed within the HbA peak. 

To identify the possible variants associated with a mass increase of β 
+ 58 Da, the HbVar database [1] was consulted, which indicated that 
this mass change could result from amino acid substitutions such as Gly 
> Asp or Ala > Glu. By comparing this information with the probable 
variants that could migrate to zone 12 on CE according to Sebia’s data, 
potential candidates were deduced from the UniProt sequence of HBB 
(P69905). Presumptive identification included J-Bangkok, J-Calabria, 
Rambam (J-Cambridge), and Pyrgos. 

In cases three and four, similar parameters were observed in terms of 
variant percentage, migration position on CE, intact mass, and 

Fig. 1. Capillary electrophoresis migration pattern of presumptive Hb variants in zone 12 along with variant %. 1a- HbJ Meerut; 1b-HbJ Paris I; 1c, d-HbJ Cam-
bridge/Rambam; 1e-HbJ Bangkok; 1f-h-Hb Hofu. 

Table 1 
Summary of sample details, CBC, red cell morphology, CE parameters, the mass difference from the normal globin chains, mutation location and the presumptive 
identification of the variants. The presumptive identification of β variants was confirmed by molecular sequencing. Hb-Hemoglobin, RBC- Red Blood cell Count, MCV- 
Mean Corpuscular Volume, MCH-Mean Corpuscular Hemoglobin, RDW-Red blood cell Distribution Width, RCM-Red Cell Morphology, NN-Normocytic normochromic, 
MH microcytic hypochromic.  

Case 
No. 

Hb 
(g/dl) 

RBC 
(x106/ 
µl) 

MCV 
(fl) 

MCH 
(pg) 

RDW 
(%) 

HbA0 
(%) 

HbA2 
(%) 

F 
(%) 

Variant 
(%) 

CE  
(x 
Axis) 

RCM Mass 
diff (Da) 

Mutation Variant 

1  12.4  4.61 82.9  32.6 13.8 69.7  1.5 1 28.8 102 NN α + 58 α120Ala → Glu HbJ Meerut 
2  15.4  5.43 83.9  28.5 13.9 70.6  1.8 0 27.6 80 NN α + 44 α12Ala → Asp HbJ Paris I 
3  12.5  5.27 74.4  23.7 14 44.1  2.0 0 53.9 91 MH β + 58 β69Gly → Asp Hb Rambam 
4  10.5  5.17 67  20.3 14.4 44.3  1.8 0 53.9 90 MH β + 58 β69Gly → Asp Hb Rambam 
5  13.5  5.07 80.4  33.1 12.5 47  2.4 0 50.6 94/95 NN β + 58 β56Gly → Asp HbJ Bangkok 
6  11.5  4.49 83.3  25.6 15.4 59.7  3.3 0 37 93 NN β + 30 β126Val → Glu Hb Hofu 
7  11.8  4.56 82.2  25.9 13.9 67.8  4.0 0 28.2 96 NN β + 30 β126Val → Glu Hb Hofu 
8  6.6  4.44 62.2  14.9 20.7 75.8  3.0 0 21.2 96 MH β + 30 β126Val → Glu Hb Hofu  
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glutathionylation and the clinical picture of microcytic hypochromic, 
while it was different for case five in all the above parameters (Table 1). 
These factors indicate that there may be two different β variants with a 
similar mass increase (+58 Da). Molecular analysis confirmed cases 
three and four as Rambam (Hb J-Cambridge). Rambam is a rare Hb 
variant with normal RBC function and stability [29]. Bisse et al. [30] in 
1998 using MS reported Hb Rambam along with β glycation (+162 Da) 
of both the variant and the wild type. In the present study, we observed 
glutathionylation of both variant (Hb Rambam) and wild type (+305 
Da). Glutathionylation of hemoglobin at βCys93 residue may result from 
an oxidative imbalance in erythrocytes [31]. Case five was confirmed by 
molecular sequencing as Hb J Bangkok, with similar CE patterns as 
observed by Beverley [7]. In the absence of mass information, definitive 
identification of variants requires molecular sequencing of HBA1, HBA2 
and HBB genes. 

Cases six and seven exhibited similar intact mass of β + 30 Da and all 
CE parameters, except for the migration position. The red blood cells 
(RBCs) of both cases displayed normocytic normochromic characteris-
tics, with a slightly higher percentage of A2, although its significance is 
not known. 

For case eight, severe anemia was observed with a Hb level of 6.6 g/ 
dl. The microcytic hypochromic blood picture in this case could be 

attributed to iron deficiency. 
Considering the point mutations that could result in a mass increase 

of + 30 Da, possibilities include Val > Glu; Gly > Ser; Ala > Thr; Arg >
Trp; and Thr > Met substitutions. Among the identified variants in zone 
12 according to Sebia data, only two variants (Hb Hofu and Hb Troll-
hattan) were associated with the Val > Glu mutation. 

Molecular sequencing of the β chain revealed negative results for 
thalassemia, but positive results for heterozygous Hb Hofu in all three 
cases. These findings correlate with a previous study by Purohit et al. 
[32], which characterized Hb Hofu in four families from eastern India 
using HPLC techniques. 

Riou et al. [23] conducted a study demonstrating the highly repro-
ducible migration position of Hb variants on CE. In our present study, a 
CE migration position of 93 indicated the presence of Hb Hofu (+30 Da), 
consistent with the findings reported by Riou et al. A migration position 
of 96 with a + 30 Da mass was also observed, further supporting the 
identification of Hb Hofu in cases 7 and 8. On the other hand, a 
migration position of 94/95 corresponded to a mass increase of + 58 Da 
in case 5. 

The co-migration of variants poses challenges for screening tech-
niques like CX-HPLC and CE, making it difficult to achieve unambiguous 
identification of specific variants. Intact mass information obtained from 

Fig. 2. Deconvoluted mass spectra of presumptive Hb variants using Max Ent software. 2a and 2b are presumed to be α variants with a mass difference of + 58 Da 
(HbJ Meerut) and + 44 Da (HbJ Paris I). 2c and 2d are presumed to be β variants (HbJ Cambridge/Rambam) with a mass difference of + 58 Da and + 305 Da 
(glutathionylation). 2e with a mass difference of + 58 Da from β globin is presumed to be HbJ Bangkok. 2f-h are β variants with a mass difference of + 30 Da 
presumed to be Hb Hofu. All β variants are confirmed using molecular sequencing. 
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ESI TQMS is valuable as it provides insights into which globin chain is 
affected by the variant. Low-resolution TQMS has been demonstrated by 
Rai et al. [11] to successfully identify Hb Lepore BW through intact mass 
measurement in clinical samples. 

Intact mass information can be routinely obtained in high- 
throughput manner within clinical diagnostic laboratories. This infor-
mation aids pathologists in determining or advising on which globin 
chain should be sequenced for definitive diagnosis of hemoglobinopa-
thies using molecular techniques. 

Many of the clinically significant Hb variants arise due to mutations 
in the β chain, resulting in a lack of detailed studies on α variants in the 
literature. The clinical presentation of these variants can vary depending 
on coexisting abnormalities in other globin chains [33,34]. Pitfalls can 
occur in diagnosing HbS due to additional mutations in the α chain that 
contribute to clinical symptoms, making it challenging to reach a 
conclusive diagnosis [35]. 

The intact mass information presented in this study could serve as a 
valuable tool for pathologists and clinicians by providing guidance on 
appropriate molecular tests to be conducted. Additionally, it offers in-
sights into modifications occurring within the globin chain, such as β 
glutathionylation as observed in cases three and four. 

Newborn screening for clinically significant variants like HbS, E, C, 
D-Punjab, and O-Arab using TQMSMS based on analysis of variant- 
specific peptides has gained wide acceptance and is routinely 
employed in diagnostic laboratories [36,37]. The intact mass informa-
tion provided for these variants adds another dimension to the complex 
process of diagnosing hemoglobinopathies. 

Overall, intact mass information is a valuable addition that com-
plements existing diagnostic approaches and enhances our under-
standing of hemoglobinopathies. 

In this study, the potential of ESI TQMS as a complementary tech-
nique to CX-HPLC and CE in a clinical setting was demonstrated. This 
technique provides intact mass information on unknown variants and 
post-translational modifications of globin chains in a clinical setting. 
The intact mass information of the clinically significant variants such as 
HbE, C, D-Punjab, and O-Arab overlap with the wild type β chain on low- 
resolution instruments. 

To resolve overlapping peaks and improve accuracy, high resolution 
MS (HRMS) can be employed for specific cases [18,19]. The quality of 
spectral data and the selection of appropriate regions for deconvolution 
contribute to the precision of mass measurements. 

Nevertheless, low-resolution MS remains highly valuable due to its 
cost-effectiveness in qualitative analyses of Hb variants within diag-
nostic laboratories. It serves an important role in routine clinical 
practice. 

Conclusion 

ESI TQMS is an alternative technique that can effectively differen-
tiate between α and β variants of Hb. It offers valuable guidance to pa-
thologists in determining the appropriate globin chain to be sequenced 
for a better understanding of the underlying pathophysiology in patients 
with Hb disorders. The integration of intact mass information as an 
additional parameter, aids in the interpretation and diagnosis of these 
conditions. 

The feasibility of utilizing low-resolution MS for measuring the intact 
mass of Hb and its variants in a diagnostic laboratory setting is 
demonstrated in this study. This highlights the potential for imple-
menting this technique as a routine tool within clinical practice, 
providing valuable insights into Hb disorders. 
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