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Purpose. The aim of this study is to explore pathological mechanisms of bone fragility in type 2 diabetes mellitus (T2DM) patients.
Methods. Identifying common genes for T2DM and osteoporosis by taking the intersection is shared by the Comparative
Toxicogenomics Database (CTD), DISEASES, and GeneCards databases. The differentially expressed genes (DEGs) and the
differentially expressed miRNAs (DEMs) were identified by analyzing the Gene Expression Omnibus (GEO) datasets
(GSE35958, GSE43950, and GSE70318). FunRich and miRNet were applied to predict potential upstream transcription factors
and downstream target genes of candidate DEMs, respectively. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were performed to explore potential mechanisms using Metascape. Eventually, a
miRNA-gene network was constructed by Cytoscape software. Results. 271 common targets and 35 common DEGs between
T2DM and osteoporosis were screened out in the above databases, and a total of ten DEMs were obtained in the GSE70318.
SP1 was predicted to potentially regulate most of the DEMs. Enrichment analysis showed the PI3K-Akt signaling pathway and
AGE-RAGE signaling pathway in diabetic complications may play an important role in diabetic skeletal fragility. Two genes
(NAMPT and IGFBP5) were considered as key genes involving in the development of diabetic osteoporosis. Through the
construction of the miRNA-gene network, most of the hub genes were found to be potentially modulated by miR-96-5p and
miR-7-5p. Conclusion. The study uncovered several important genes, miRNAs, and pathological mechanisms involved in
diabetic skeletal fragility, among which the PI3K-Akt signaling pathway and AGE-RAGE signaling pathway in diabetic
complications may play important roles.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a common endocrine
metabolic disease in humans and accounts for more than
90% of all patients with diabetes [1]. Accumulating studies
had shown that T2DM was relevant to a lot of chronic con-
ditions, including coronary artery disease, kidney disease,
diabetic retinopathy, and neuropathy, as well as bone disor-
ders [2]. A recent study indicated that 37.8% of Chinese dia-
betic patients suffered from osteoporosis [3]. In addition,
multiple studies have demonstrated that T2DM was sug-
gested as an independent risk factor for osteoporotic frac-
tures [4, 5], and the risk of having a fragility fracture in
T2DM patients increased 1-3 fold compared to healthy con-

trols [6]. Osteoporosis-associated fracture has been taken
into account as an important complication of T2DM [7].
Previous studies have shown that T2DM negatively affects
bone strength regardless of bone mineral density [8, 9]. Farr
and Khosla [10] found that there were quality defects in both
cortical and trabecular bones in T2DM patients. Moreover,
bone microindentation testing displayed lower bone
material strength in T2DM patients compared to those
without diabetes [11]. Histomorphometric analysis of bone
also showed that bone trabecular and cortical microarchitec-
ture are both deranged in T2DM patients and may contrib-
ute to bone fragility [12]. However, the more exact
molecular basis between skeleton fragility and T2DM is still
not fully understood.

Hindawi
BioMed Research International
Volume 2022, Article ID 3921570, 18 pages
https://doi.org/10.1155/2022/3921570

https://orcid.org/0000-0002-5554-6196
https://orcid.org/0000-0003-3871-5143
https://orcid.org/0000-0002-6450-2486
https://orcid.org/0000-0002-0447-6677
https://orcid.org/0000-0003-1905-9494
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/3921570


Several factors including obesity, hyperinsulinemia,
hyperglycemia, accumulation of advanced glycosylation
end products (AGEs), and presence of microvascular disease
were considered being involving the pathogenesis of diabetic
skeletal fragility [6]. Obesity and hyperinsulinemia typically
emerge in the early phase of diabetes, and they can induce
bone resorption by stimulating osteoclast activity through
promoting a chronic inflammation environment [13]. AGEs,
producing by nonenzymatic glycation of various proteins,
can mediate generation of reactive oxygen species (ROS)
and inflammatory cytokines, thus inducing osteoclastogene-
sis and osteoblast dysfunction [14]. Furthermore, the Wnt/
β-catenin pathway has been shown to negatively regulate
bone formation in T2DM patients [15]. Sclerostin is an
important regulator of the Wnt/β-catenin pathway. Studies
showed that patients with T2DM have higher serum levels
of sclerostin, which can bind to Wnt coreceptors, inhibiting
osteoblastogenesis and bone formation [16, 17]. These find-
ings strongly suggested the interaction between bone metab-
olism impairment and glucose metabolism. However, they
were mainly from clinical perspectives, and few studies had
investigated genomic relationship between them.

In this study, we explored the common pathogenesis
between T2DM and osteoporosis by combining the multi-
source T2DM and osteoporosis-related data. Simulta-
neously, we constructed a miRNA-gene network to identify
some potential miRNAs and genes involved in T2DM oste-
oporotic fracture. Our study offered a new approach to
identify pathological mechanisms and potential targets for
T2DM with osteoporotic fracture. The research workflow
is shown in Figure 1.

2. Methods

2.1. Data Gathering. Data in this study were obtained from
public databases and gene expression databases. The Com-
parative Toxicogenomics Database (CTD) is a publicly avail-
able database which provides information about interactions
between environmental chemicals and gene products and
their effect on human diseases [18]. The GeneCards is a
searchable, comprehensive database that provides compre-
hensive information on human genetic information compre-
hensively. The knowledge base automatically integrates
gene-centric data from more than 100 web sources, includ-
ing genomic, transcriptomic, proteomic, genetic, clinical,
and functional information [19]. The DISEASES database
incorporates evidence such as the Genetics Home Reference,
UniProtKB, and DistiLD [20]. We extracted data related
with T2DM and osteoporosis from the CTD (https://
ctdbase.org/), GeneCards (/http://www.genecards.org/), and
DISEASES (https://diseases.jensenlab.org/) that were down-
loaded in October 2021.We selected the “type 2 diabetes
mellitus” and “osteoporosis” as the keywords.

2.2. Common Gene Targets between T2DM and Osteoporosis.
The common disease-related genes between T2DM and
osteoporosis from these three databases were obtained using
Venn diagram, which was drawn by the website (https://
www.bioinformatics.com.cn), a free online platform for data

analysis and visualization. All these genes were considered
to play an important role in the common pathogenesis
between T2DM and osteoporosis and were extracted for
further analysis.

2.3. Enrichment Analysis and PPI Network Construction. The
Metascape [21] (https://metascape.org/), an excellent inte-
grated analytics platform that combines functional enrich-
ment, interactome analysis, and gene annotation within
one integrated porta, was used to perform the functional
analysis. The reviewed items include the Kyoto Encyclopedia
of Genes and Genomes (KEGG), GO cellular component,
GO biological process, and GO molecular function. Min
overlap= 3 and Min enrichment = 1.5 were the screening
conditions. P < 0:01 was considered statistically significant.

The protein-protein interaction (PPI) network was ana-
lyzed using the String database (https://string-db.org). An
interaction with a corresponding combined score was
selected and used to construct a PPI network with Cytoscape
software. Cytoscape (version 3.7.2) is an open-source soft-
ware that creates and surveys the molecular interaction net-
work [22].

2.4. Analysis of Datasets in GEO. Gene expression profiles
were collected from the Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) by searching the “type 2
diabetes mellitus” and “osteoporosis” terms. Eventually, the
three microarray datasets (GSE35958 [23], GSE43950 [24],
and GSE70318 [25]) were downloaded from the GEO
database. The GSE35958 dataset contains five samples of
human mesenchymal stem cells from osteoporosis patients
and the other four bone marrows from nonosteoporotic
age-matched donors after total hip arthroplasty. The
GSE43950 includes a total of 14 samples: nine type 2
diabetes CD34+ cells samples and five age-matched healthy
CD34+ cells samples in peripheral blood. The GSE7031
dataset includes serum microRNA information from post-
menopausal women. Furthermore, T2DM without osteopo-
rotic fractures was selected as the control group (n = 19) and
T2DM with osteoporotic fractures was selected as the experi-
mental group (n = 19). The platforms of the GSE35958,
GSE43950, and GSE70318 were GPL570, GPL10379, and
GPL20631, respectively.

GEO2R, an interactive web tool, was used to screen out
differentially expressed miRNAs (DEMs) and differentially
expressed genes (DEGs) between the experimental group
and control group. jlogFCj > 1 and the adjusted P value <
0.05 were considered to indicate statistical significance. To
show the differential expression of DEMs and DEGs in dif-
ferent samples, the plot and heat map packages in the R stu-
dio were applied to draw the volcano map and heat map.

2.5. Target Gene Prediction of DEMs. To identify the regula-
tory mechanisms and functions of miRNAs, the miRNet
(https://www.mirnet.ca/), a comprehensive atlas of miRNA-
target interactions that contains information about miRNA-
target interactions resulting from the existing miRNA-target
prediction programs (such as TarBase, miRTarBase, miRe-
cords, and miRanda) and displays the association in a visual
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network, was applied to predict the potential target genes of
candidate DEMs.

2.6. Prediction of Upstream Transcription Factors of DEMs.
FunRich (http://www.funrich.org/), an independent soft-
ware tool mainly for functional enrichment and interaction
network analysis of genes and proteins, was used to predict
the potential upstream transcription factors. The P value <
0.05 was considered statistically significant.

2.7. Integrated Analysis and Construction of the miRNA-
Gene Interaction Network. The common disease gene targets
between T2DM and osteoporosis in the three public data-
bases, the common DEGs, and the target genes of the DEMs
were used to find the overlapping targets by using Venn dia-
gram. These overlapping genes were considered as hub genes
and suggested to function in inducing osteoporotic fractures
in T2DM patients.

Overlapping genes obtained by the above methods were
further used to construct the miRNA-gene interaction net-
work by putting the miRNAs-gene pairs selected above
together, and Cytoscape software (version 3.7.2) [22] was
used to visualize it simultaneously.

2.8. ROC Curve Analysis. Receiver operating characteristic
(ROC) curve analysis, a commonly used method to deter-
mine the performance of diagnostic biomarkers, is widely

used in biostatistics. Herein, ROC curves were constructed
to discriminate T2DM with the osteoporotic fracture group
from the control T2DM group for the serum miRNAs, and
the areas under the ROC curves (AUCs) were analyzed to
measure the diagnostic accuracy of each identified miRNA
in the miRNA-gene interaction network. The ROC plot
was calculated and visualized using GraphPad Prism v5.0,
and the AUC value was used to evaluate the ROC curve,
with values between 0 (lowest) and 1 (highest) performance.

3. Results

3.1. Identification of Common Targets from the Three
Databases. To integrate the disease-related biological data,
T2DM-related genes and osteoporosis-related genes avail-
able in the GeneCards, DISEASES, and CTD databases were
combined. Finally, 271 genes were determined to be shared
among the three resources and the detailed information is
listed in Supplemental Table S1. The Venn diagram of
intersection between T2DM- and osteoporosis-related gene
targets is depicted in Figures 2(a), 2(b), and 2(c).

3.2. Enrichment Analysis and PPI Network of Common
Targets from the Three Databases. Then, the GO and KEGG
analyses on the 271common targets were performed using
the Metascape database. Figure 2(d) contains the top 15
results of KEGG analysis, which consists of pathways in

KEGG and GO analysis

KEGG and GO analysis

miRNA-gene network miRNA ROC curves

PI3K-Akt signaling pathway and AGE-RAGE
signaling pathway in diabetic complications

Potential transcription factors of DEMs

34 common genes

Common  DEGs Potential target genes of DEMs

DEGs: GSE359558 and GSE43950 DEMs: GSE70318271 common gene targets

�ree public databases GEO database

Figure 1: Schematic diagram of the study design.
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cancer, cytokine-cytokine receptor interaction, the P13K-
Akt signaling pathway, Th1 and Th2 cell differentiation,
and the AGE-RAGE signaling pathway in diabetic complica-
tions. GO biological process analysis showed that the 271
genes were particularly enriched in response to peptide,
response to growth factor, blood vessel development,
response to nutrient levels, and cellular response to lipid.
The top five GO molecular function analysis results of the
common genes are receptor ligand activity, transcription

factor binding, glycosaminoglycan binding, growth factor
binding, and hormone activity. As for the top five GO cellu-
lar component analysis results, we found extracellular
matrix, vesicle lumen, membrane raft, endocytic vesicle,
and endoplasmic reticulum lumen. Figure 2(e) presents this
information of GO functional annotation. Furtherly, the
PPI network of 271 common targets (182 nodes, 305 edges)
with a combined score > 0:9 was obtained by Cytoscape
(Figure 2(f)).
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Figure 2: The analysis of two disease gene targets in the three public databases. (a–c) Venn diagram of intersection between T2DM- and
osteoporosis-related gene targets. (d) KEGG pathway analysis results of 271 common gene targets. (e) GO analysis results of 271
common gene targets. (f) PPI network diagram of 271 common gene targets with a combined score > 0:9. OP: osteoporosis; T2DM: type
2 diabetes mellitus.
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3.3. Analysis of the Common DEGs. After analysis of GEO2R,
DEGs (2473 in the GSE35958 including 1954 upregulated
genes and 519 downregulated genes, and 239 in the
GSE43950 including 219 upregulated and 20 downregulated
genes) were identified by limiting the adjusted P value < 0.05
and jlogFCj > 1 (Figures 3(a) and 3(b)). Among these DEGs,
33 genes were upregulated and two genes were downregu-
lated in both the GSE35958 and GSE43950, which are shown
in Figure 3(c) and Figure 3(d). The detailed information
about 35 common DEGs is listed in Table 1. The PPI net-
work of these 35 common genes with a combined score >
0:4 is shown in Figure 3(e). The KEGG and GO enrichment
analyses were also performed by Metascape. KEGG analysis
results showed that these genes were mainly enriched in
fluid shear stress and atherosclerosis, rheumatoid arthritis,
the AGE-RAGE signaling pathway in diabetic complica-
tions, the NF-kappa B signaling pathway, and the MAPK
signaling pathway (Figure 3(f)). In terms of GO enrichment
analysis, they were mainly involved in regulation of cell-cell
adhesion, positive regulation of leukocyte migration, secre-
tory granule membrane, and cytokine activity (Figure 3).

3.4. Identification of DEMs and Their Predicted Targets. After
screening with the threshold of an adjusted P value < 0.05 and
jlogFCj > 1, ten DEMs were identified in the GSE70318, and
they are all downregulated DEMs including miR-550a-5p,

miR-500a-5p, miR-181c-3p, miR-96-5p, miR-323a-3p, miR-
203a-3p, miR-32-3p, miR-942-3p, miR-7-5p, and miR-16-
2-3p. The detailed information about DEMs is shown in
Supplemental Table S2. A heat map and a volcano plot were
plotted to display this information (Figures 4(a) and 4(b)).

Moreover, a total of 1543 genes targeted by these candi-
date DEMs were predicted by the miRNet database. For bet-
ter visualization, DEMs with their target genes are displayed
in a DEM-target gene network in Figure 4(c). In addition,
the number of target genes for each DEM is listed in
Table 2, and all predicted target genes are listed in Supple-
mental Table S3.

3.5. Prediction of Upstream Transcription Factors of DEMs.
In the present study, the upstream transcription factors of
candidate DEMs were predicted using FunRich software.
Eventually, eight upstream transcription factors were con-
sidered statistically significant, including SP1, SP4, YY1,
EGR1, E2F1, MEF2A, NFYA, and MYC. This result is pre-
sented in Figure 4(d).

3.6. Integrated Analysis Results. In order to find the hub
genes, a Venn diagram of intersection between the targets
of DEMs, 271 common genes, and 35 common DEGs was
constructed (Figure 5(a)). It is noteworthy that a gene
(NAMPT) was found to be shared by multisets, implicating
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Figure 3: The analysis results of the common DEGs. (a) Volcano map of the GSE35958. (b) Volcano map of the GSE43950. The jlogFCj > 1
and an adjusted P value < 0.05 were set as the threshold to screen DEMs. Red spots represent upregulated genes, and green spots represent
downregulated genes in the volcano map. (c) The Venn diagram of the upregulated genes between the GSE35958 and GSE43950. (d) The
Venn diagram of the downregulated genes in the GSE35958 and GSE43950. (e) PPI network diagram of the common DEGs with a
combined score > 0:4. (f) KEGG pathway analysis results of common DEGs. (g) GO enrichment analysis results of common DEGs.
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a significant role for NAMPT in both osteoporosis and
T2DM. As shown in Figure 5(a), 27 intersection genes
between targets of DEMs and 271 common genes, and eight
intersection genes between targets of DEMs and 35 common
DEGs were obtained. The detailed information about these
34 overlapping genes is listed in Table 3, and the PPI
network of these genes with a combined score > 0:4 was
obtained by Cytoscape (Figure 5(b)). Simultaneously, GO
enrichment analysis and KEGG pathway enrichment analy-
sis were also performed. KEGG pathway analysis showed
that they were significantly enriched in the AGE-RAGE
signaling pathway in diabetic complications, endocrine
resistance, the HIF-1 signaling pathway, and the PI3K-Akt
signaling pathway (Figure 5(c)). GO analysis showed that

they were particularly enriched in negative regulation of cell
differentiation, negative regulation of cellular component
organization, cell-cell junction, and transcription factor
binding (Figure 5(d)). Again, these results highlight the
importance of the PI3K-Akt signaling pathway and the
AGE-RAGE signaling pathway in diabetic complications.

3.7. Construction of miRNA-Gene Network. To better inves-
tigate the molecular mechanisms of these DEMs in T2DM
with osteoporotic fracture, the miRNA-gene network was
constructed by Cytoscape software and a total of nine miR-
NAs and 34 genes were obtained (Figure 6). The miR-96-
5p and miR-7-5p had the highest degree in DEMs, while
the IGFBP5 had the highest degree in hub genes, suggesting

Table 1: The detailed information about 35 common DEGs in the GSE35958 and GSE43950.

Gene/dataset
GSE35958 GSE43950

Adj. P value logFC Adj. P value logFC

TIMP2 0.0301804 1.067603 0.000286 2.18

ALDH3B1 0.0412961 1.195918 0.044747 1.82

EXOC7 0.0235592 1.249935 0.021148 1.04

ICAM1 0.01655111 1.812343 0.046365 1.31

WIPF1 0.0225064 1.320364 0.002505 1.04

SVIL 0.0456309 1.407409 0.028703 1.14

PLAUR 0.0184105 1.46844 0.007675 3.34

SLC25A37 0.0315111 1.485996 0.040526 2.76

LAPTM5 0.0261593 1.495128 0.047332 1.81

MAPKAP1 0.0270001 1.511965 0.02719 2.12

ZDHHC5 0.0212057 1.540676 0.038415 1.32

MIA3 0.0086971 1.609845 0.038795 1.59

CPD 0.0355536 1.635179 0.033381 2.11

NAMPT 0.0208943 1.639585 0.015879 3.95

IL1R1 0.0196939 1.678116 0.021148 1.42

BCL6 0.0263706 1.685134 0.013304 2.34

CD44 0.0061623 1.697591 0.047805 1.11

OGDH 0.0234526 1.814095 0.008177 1.4

TNF 0.0336169 1.917344 0.025653 3.47

SAR1B 0.0126974 2.026727 0.032663 1.08

MAP3K2 0.0023339 2.344297 0.031489 1.77

PDE4B 0.0277296 2.401498 0.042734 2.7

UBE2D3 0.0439363 2.816778 0.03572 2.26

SBF2 0.0147589 2.944771 0.039608 2.46

TRIM8 0.0018391 2.956019 0.039673 1.13

BHLHE40 0.0005991 3.244912 0.021148 3.42

VEGFA 0.012642 3.259643 0.009092 2.91

SLC6A6 0.0252533 3.431333 0.013647 1.31

TRIB1 0.0221217 3.47739 0.013547 2.79

RAB7A 0.0489256 3.486461 0.017748 1.25

BEST1 0.0364247 3.592602 0.006973 2.54

CSGALNACT2 0.0080592 3.73142 0.038795 2.19

RARA 0.000817 3.98471 0.044649 1.53

EIF5B 0.0039468 -2.89269 0.01708 -1.07

DAZAP1 0.0340059 -1.07479 0.039575 -1.04

9BioMed Research International



–L
og

10
 (a

dj
.P

- v
al

ue
)

4–4 2–2 0
0

1

2

3

4

5

Log2FC

Up regulated
Down regulated
Not changed

(a)

Group

Group
T2DM
T2DM + OP

4

–4

2

–2

0

hsa-mir-181c-3p

hsa-mir-323a-3p

hsa-mir-32-3p

hsa-mir-16-2-3p

hsa-mir-7-5p

hsa-mir-500a-5p

hsa-mir-230a-3p

hsa-mir-942-3p

hsa-mir-96-5p

hsa-mir-550a-5p

(b)

(c)

Figure 4: Continued.

10 BioMed Research International



which might play crucial roles in the development of T2DM
with osteoporotic fracture.

3.8. ROC Curves of miRNAs. To investigate the efficacy of
DEMs in the miRNA-gene network as potential biomarkers
of osteoporotic fractures with T2DM, we performed ROC
curve analysis of these miRNAs. The expression levels of
the DEMs were significantly different between experimental
and control individuals (Figure 7). AUC values were used to
evaluate the potential of the DEMs as diagnostic markers.
The AUC value of miR-550a-5p was 0.870, and it also had
the highest accuracy. Moreover, all nine miRNAs had high
specificity with AUCs > 0:7, among them six miRNAs had
high specificity with AUCs > 0:8. These results indicated
that these miRNAs, especially miR-550a-5p, have potential
for clinical application.

4. Discussion

Available evidence suggests that osteoporosis and T2DM, two
common chronic diseases, may coexist and progressively
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Figure 4: The analysis results of the GSE70318 dataset. (a) Volcano map of the GSE70318. (b) Heat map of the GSE70318. The jlogFCj > 1
and an adjusted P value < 0.05 were set as the threshold to screen DEMs. Green spots represent downregulated miRNAs in the volcano map;
red color represents high expression and blue color represents low expression in the heat map. (c) Potential target genes of DEMs predicted
by miRNet. (d) Potential transcription factors of DEMs predicted by FunRich. OP: osteoporosis; T2DM: type 2 diabetes mellitus.

Table 2: Potential target genes of the nine DEMs.

miRNAs Number of targets

hsa-miR-96-5p 201

hsa-miR-7-5p 578

hsa-miR-203a-3p 308

hsa-miR-323a-3p 75

hsa-miR-32-3p 124

hsa-miR-16-2-3p 85

hsa-miR-181c-3p 32

hsa-miR-500a-5p 145

hsa-miR-550a-5p 95

hsa-miR-942-3p 69

Total 1543

11BioMed Research International



increase in prevalence and are boosted by aging [26]. The risk
of fracture of patients with T2DM is increased with longer
duration of disease, but the mechanisms remain relatively
undefined [5]. Recently, it is easier to reveal the potential dis-
ease pathobiology with the development of bioinformatic
technology. However, it seems that few studies have explored
the molecular mechanisms of bone fragility in T2DM at the
genetic level. Therefore, we tried to explore the underlying
mechanisms of bone fragility in T2DM using bioinformatic
technology to provide some clues for developing dual-
purpose prevention methods.

In this study, data from the three public databases were
extracted to identify the common gene targets between oste-
oporosis and T2DM. A total of 271 common gene targets
were identified to be further analyzed. The result of GO
functional analysis showed that the common genes were
closely associated with the blood vessel development,
response to growth factor, and cellular response to lipid. A
previous study reported that chronic hyperglycemia, the
main features of diabetic, caused severe impairment in lipid
metabolism [27]. Disruption in lipid metabolism leads to
increased level of very low-density lipoprotein (VLDL) and
total cholesterol (TC) [28]. VLDL and TC accumulate in
subendothelial and endothelial cell layers, which will result
in atherosclerosis and narrowing of vascular lumen. A chan-
ged vascular supply to the skeleton, in particular cortical

bone, could compromise bone formation [29]. Thus, we
speculated that the dysregulation of blood vessel develop-
ment and cellular response to lipid stimulus functions in
the process of diabetes led to bone fragility.

The results of KEGG pathway enrichment analysis
showed that the common genes were mainly enriched in
cytokine-cytokine receptor interaction, T cell differentiation-
related pathways, the PI3K-Akt signaling pathway, and the
AGE-RAGE signaling pathway in diabetic complications.
Emerging evidence has showed that numerous cytokines,
including TGFβ, IL-6, IL-1β, and IL-21, are associated with
bone remodeling in diabetes [30, 31]. High glucose increases
expression of inflammatory factors, and a hyperosmotic envi-
ronment leads to the overexpression of TLR-4, which can
facilitate inflammatory response and affecting osteoblast min-
eralization [32]. In the previous studies, the activation of the
PI3K-Akt signaling pathway has been amply documented to
have an association with the proliferation of osteoblasts. A
study performed by Ma et al. [33] showed that IRS-1, an acti-
vator of PI3K, was capable of enhancing the proliferation of
the primary rat osteoblasts. In terms of T2DM, it is clear that
the PI3K-Akt signaling pathway is closely related to the path-
ogenesis of insulin resistance [34]. High-glucose-induced
insulin signaling blockade can be attenuated by preventing
the inaction of the PI3K-Akt signaling pathway [35]. Hyper-
glycemia can promote the production of reactive oxygen
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species by stimulating the PI3K-Akt signaling pathway, and
the latter inhibits osteoblast proliferation and differentiation,
leading to the development of osteoporosis in T2DM [36].
Moreover, the AGE-RAGE signaling pathway in diabetic com-
plications may also be critical. Hyperglycemic condition leads
to excessive accumulation of AGEs, which influence the for-
mation of collagens and ROS, inducing structural changes in
bone and impairing bone strength [37]. Higher levels of AGEs
have been identified as a biomarker for the increased risk of
fractures [38]. Suzuki et al. [39] found that AGEs accumulate
in osteoblasts with age and induce apoptosis via ER stress by

activating glucose-regulated protein, inositol-requiring pro-
tein-1α (IRE1α), C-Jun n-terminal kinase, etc. These findings
have demonstrated that these pathways were associated with
bone metabolism in T2DM, which can provide potential
directions for the study of the molecular mechanism of
T2DM complicated by osteoporosis.

Next, 35 common DEGs between T2DM and osteoporo-
sis were identified by analyzing the GSE35958and GSE43950
datasets. Enrichment analysis results of these DEGs high-
lighted the role of immune and inflammatory response,
which were broadly consistent with the above results. It is

Table 3: The detailed information about the 34 hub genes and their regulated DEMs.

Gene Full name DEMs

CCND1 G1/S-specific cyclin-D1 hsa-miR-96-5p

EFNB2 Ephrin-B2 hsa-miR-96-5p

GAPDH Glyceraldehyde-3-phosphate dehydrogenase hsa-miR-96-5p

KRAS GTPase Kras hsa-miR-96-5p

LOX Protein-lysine 6-oxidase hsa-miR-96-5p

NOTCH2 Neurogenic locus notch homolog protein 2 hsa-miR-96-5p

PON2 Serum paraoxonase/arylesterase 2 hsa-miR-96-5p

RGS2 Regulator of G-protein signaling 2 hsa-miR-96-5p

TERF2 Telomeric repeat-binding factor 2 hsa-miR-96-5p

TIMP1 Metalloproteinase inhibitor 1 hsa-miR-96-5p

TNFRSF10A Tumor necrosis factor receptor superfamily member 10A hsa-miR-96-5p

GGCX Vitamin K-dependent gamma-carboxylase hsa-miR-7-5p

IGFBP5 Insulin-like growth factor-binding protein 5

hsa-miR-7-5p

hsa-miR-203a-3p

hsa-miR-16-2-3p

LRP6 Low-density lipoprotein receptor-related protein 6 hsa-miR-7-5p

SRSF1 Serine/arginine-rich splicing factor 1
hsa-miR-7-5p

hsa-miR-500a-5p

NR1H2 Oxysterols receptor LXR-beta hsa-miR-7-5p

KEAP1 Kelch-like ECH-associated protein 1 hsa-miR-7-5p

AKAP11 A-kinase anchor protein 11 hsa-miR-7-5p

SIRT2 NAD-dependent protein deacetylase sirtuin-2 hsa-miR-7-5p

DLX5 Homeobox protein DLX-5 hsa-miR-203a-3p

CDKN1B Cyclin-dependent kinase inhibitor 1B hsa-miR-323a-3p

RORA RAR-related orphan receptor alpha hsa-miR-32-3p

YWHAH Tryptophan 5-monooxygenase activation protein eta hsa-miR-32-3p

NAMPT Nicotinamide phosphoribosyltransferase hsa-miR-32-3p

ABCG2 ATP-binding cassette sub-family G member 2 hsa-miR-16-2-3p

LIF Lif, interleukin 6 family cytokine hsa-miR-181c-3p

ERCC1 DNA excision repair protein ERCC-1 hsa-miR-550a-5p

SLC6A6 Solute carrier family 6 member 6 hsa-miR-96-5p

SLC25A37 Solute carrier family 25 member 37 hsa-miR-7-5p

TRIM8 Tripartite motif containing 8 hsa-miR-7-5p

TNF Tumor necrosis factor hsa-miR-203a-3p

VEGFA Vascular endothelial growth factor A hsa-miR-203a-3p

NAMPT Nicotinamide phosphoribosyltransferase hsa-miR-32-3p

UBE2D3 Ubiquitin conjugating enzyme E2 D3 hsa-miR-16-2-3p

CD44 CD44 antigen hsa-miR-203a-3p
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noteworthy that the AGE-RAGE signaling pathway in dia-
betic complications was enriched again, suggesting its
importance in diabetic osteoporosis. What is more, a core
gene (NAMPT) was found to be shared by multi-datasets.
In T2DM, the NAMPT gene codes the protein visfatin,
which is critical for beta cell function via mediation of nico-
tinamide adenine dinucleotide biosynthesis [40]. The single-
nucleotide polymorphisms in NAMPT gene were associated
with glycemic and metabolic traits as well as T2DM suscep-
tibility [41]. In bone metabolism, it has been reported that
NAMPT plays a critical role in osteoblast differentiation
through epigenetic augmentation of Runx2 transcription
[42] and acts as a negative regulator of RANKL-mediated
differentiation of bone marrow macrophages into osteoclasts

[43]. However, few studies directly analyze the role of
NAMPT in T2DM bone metabolism, which emphasizes its
importance in future research.

Then, the analysis of the GSE70318 dataset showed that
the expression of various miRNAs has experienced some
extent of alteration in T2DM patients with osteoporotic frac-
ture compared to T2DM patients. As reported in recent
studies, the expression of miRNA can be modulated by tran-
scription factors [44, 45], and thus, we filtered out possible
transcription factors. Specificity protein 1 (SP1), a C2H2-
type zinc-finger transcription factor [46], is the most com-
mon transcription factor. A previous study has shown that
a polymorphism that affects an SP1 binding site in the
COLIA1 gene is associated with reduced bone mineral

Figure 6: The miRNA-gene regulatory network. miRNAs are represented by a V shape, the common genes are represented by an ellipse
shape, the DEGs are represented by triangles, and the gene (NAMPT) is represented by the diamond shape.
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density and an increased risk of osteoporotic fracture in
postmenopausal population [47]. Following that, Yu et al.
[48] suggested that SP1 played a role in human osteoblast
differentiation and mineralization by SP1-dependent trans-
activation of FZD1. In addition, experiment has also shown
that insulin- and glucose-responsive genes can be regulated
by a dynamic interplay between glycosylation and phos-
phorylation of SP1 [49]. These evidences indicate that tran-
scription factor SP1 may contribute to the etiopathogenesis of
bone fragility in T2DM. As for other remaining transcription
factors, there is no clear relationship between them and bone
metabolism in T2DM, but it is worthy of further exploration.

Moreover, by constructing DEM-gene network, we
found that most of hub genes could be potentially targeted
by miR-96-5p and miR-7-5p. Prior research demonstrated
that miR-96-5p indirectly regulated glutathione levels, a
key antioxidant responsible for eliminating the damaging
oxidative stress-related reactive oxygen species [50]. How-
ever, Yu et al. [51] observed that miR-96-5p levels were
markedly low under high-glucose conditions. The serum
levels of miR-96-5p in T2DM with osteoporotic fracture
are almost 3 times lower than control T2DM subjects, which
may hint that diabetes-induced oxidative stress levels regu-
lated by miR-96-5p might be a potential path mechanism
for the higher fracture rate in T2DM individuals [52].
Despite the miR-96-5p, miR-7-5p has been reported to have
the ability of inducting osteoblast differentiation and upreg-
ulating the expression of osteogenic differentiation-related
proteins, including Runx2, ALP, collagen type I alpha 1
(Col1a1), and OCN [53]. The downregulation of miR-7-5p
may result in decreased bone mass and osteoblastogenesis,
but its role in diabetic osteoporosis needs further studies.

Proper recognition of populations at increased fracture
risk is indispensable, but the risk of fracture in T2DM indi-
viduals tends to be underestimated. At present, researchers
generally believe that the pathophysiology of osteoporosis
ultimately causing fractures had a heterogeneous etiology
with different miRNA expression patterns. Therefore, we
performed ROC curve analysis of nine DEMs in the DEM-
gene network. Results show that the miR-550a-5p has the
highest score of AUC, and it has been verified to inhibit oste-
ogenic differentiation in vitro [25]. Additionally, miR-181c
has been proved to engage the progression of bone loss in
osteoporosis and the bone homeostasis mediated by osteo-
clasts and osteoblasts [54]. Other remaining miRNAs (like
miR-7-5p and miR-96-5p) have also been shown to be
related to bone metabolism and believe that they are worthy
of further exploration.

IGFBP5 (insulin-like growth factor binding protein 5) is
selected as the key genes in the miRNA-gene network.
Insulin-like growth factors (IGFs) have regulatory effects in
bone cells, such as regulating cell proliferation, differentia-
tion, and apoptosis, and are controlled by their cognate
receptors, IGF-binding proteins (IGFBPs), and IGFBP pro-
teases [55]. It has been shown that IGFBP5 controls osteo-
blast differentiation and osteoblast-osteoclast cross-talk
[56]. In support of this, IGFBP5 treatment increased bone
formation parameters in vitro and in vivo in osteoblasts
derived from IGF-I knockout mice [57]. At the same time,

IGFBP5 can enhance insulin sensitivity to exert antidiabetic
effects by inhibiting the expression of the thioredoxin-
interacting protein (TXNIP) and arrestin domain-containing
4 (ARRDC4) [58]. Therefore, the expression of IGFBP5 may
simultaneously regulate blood glucose metabolism and bone
metabolism, engaging in bone fragility in T2DM.

To our knowledge, few studies have explored the com-
mon molecular mechanism between osteoporosis and
T2DM by advanced bioinformatics methods. Due to the
high rate of osteoporotic fracture in T2DM, we explored
the pathological mechanisms of bone fragility in T2DM
based on the joint analysis of multi-databases and multi-
datasets for the first time, which helped to develop dual-
purpose prevention methods. However, there are several
limitations to our present study. First of all, the study was
performed based only on the serum samples not bone tissue,
so studies aimed at bone tissue in T2DM are needed. In
addition, the miRNA-gene interactions were only based on
predictions from public databases, and further studies with
cellular and animal experimental validations are still needed
to validate our analysis.

5. Conclusion

In this study, we explored the common pathomechanism
between T2DM and osteoporosis and found that the PI3K/
AKT signaling pathway and the AGE-RAGE signaling path-
way in diabetic complications might play crucial roles in the
common pathomechanism. Simultaneously, a miRNA-gene
network was constructed and identified some potential miR-
NAs and genes, which may participate in the pathogenesis of
bone fragility in T2DM. We hope that these findings can
contribute to deepen our knowledge on the pathologic
mechanism of bone fragility in T2DM.
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