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Abstract

Technological advances and reduced costs of high-density methylation arrays have led to an increasing number of
association studies on the possible relationship between human disease and epigenetic variability. DNA samples from
peripheral blood or other tissue types are analyzed in epigenome-wide association studies (EWAS) to detect methylation
differences related to a particular phenotype. Since information on the cell-type composition of the sample is generally not
available and methylation profiles are cell-type specific, statistical methods have been developed for adjustment of cell-type
heterogeneity in EWAS.

In this study we systematically compared five popular adjustment methods: the factored spectrally transformed linear
mixed model (FaST-LMM-EWASher), the sparse principal component analysis algorithm ReFACTor, surrogate variable
analysis (SVA), independent SVA (ISVA) and an optimized version of SVA (SmartSVA). We used real data and applied a
multilayered simulation framework to assess the type I error rate, the statistical power and the quality of estimated
methylation differences according to major study characteristics.

While all five adjustment methods improved false-positive rates compared with unadjusted analyses, FaST-LMM-EWASher
resulted in the lowest type I error rate at the expense of low statistical power. SVA efficiently corrected for cell-type
heterogeneity in EWAS up to 200 cases and 200 controls, but did not control type I error rates in larger studies. Results based
on real data sets confirmed simulation findings with the strongest control of type I error rates by FaST-LMM-EWASher and
SmartSVA. Overall, ReFACTor, ISVA and SmartSVA showed the best comparable statistical power, quality of estimated
methylation differences and runtime.
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Introduction cells in an organism coptaln 1den1§1<.:al DNA sequences,

regulation of gene expression by additional mechanisms is
Epigenetic modifications such as DNA methylation are major necessary for the temporal control of highly specialized cell
factors governing gene transcription [1, 2]. Since all nucleated types in multicellular organisms such as humans. Epigenetic
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regulation of gene expression, e.g. DNA methylation, is crucial
for tissue development and during cellular differentiation.
Its alteration may be involved in diseases such as cancer
and cardiovascular disease [3-5]. In contrast to heritable
genetic variants that alter the DNA sequence, epigenetic
marks can be added and removed to reshape cellular gene
expression profiles in response to external stimuli such as
toxins and pathogens, and during disease progression [2, 6].
DNA methylation represents a dynamic adaptation mechanism
governed by an intricate interplay between intrinsic (e.g. genetic)
and external (e.g. environmental) factors that may be causal
for certain phenotypes and diseases. In addition, changes in
DNA methylation can originate during the course of disease
development even years before disease onset in a noncausal,
associative manner and may thus constitute prognostic and
predictive biomarkers [4, 6-8].

The technological development and price reduction of high-
density oligonucleotide arrays that simultaneously measure
DNA methylation at more than 450000 positions across the
genome have sparked increasing interest in the evaluation
of epigenetic changes associated with human disease [9].
Epigenome-wide association studies (EWAS) examine methy-
lation levels across the whole genome according to particular
phenotypes (e.g. cancer patients versus unaffected individuals)
[5]. One of the major challenges in EWAS based on peripheral
blood samples or other tissue types is that biological samples
usually contain a mixture of different cell types. Given the
role of methylation profiles in cell-lineage differentiation, cell-
type heterogeneity among study participants can strongly
confound association results, especially when the cell-type
composition is associated with the phenotype of interest.
Laboratory information on cell-type composition is generally
sparse and, in contrast to the investigation of heritable genetic
variants, cell-type heterogeneity is a crucial factor that needs to
be adjusted for. Nonconsideration of cell-type heterogeneity has
probably led to spurious associations in early EWAS, and several
adjustment methods have been developed [3, 10].

Adjustment of cell-type heterogeneity in EWAS

When the cell-type composition of investigated EWAS samples
is known, cell-type proportions can easily be integrated into
regression models as adjustment covariates. However, informa-
tion on cell-type composition is usually sparse, and retrieval
of high-quality data is technically demanding and expensive.
For example, the agreement between pathologists’ scores for
immune-cell staining tends to be poor [11]. DNA sequencing
data may be used for the estimation of tumor purity as well
as the number and fractions of tumor cell subpopulations, but
still does not allow distinction of functional subgroups among
noncancer cells such as fibroblasts and immune cells [12]. In the
case of EWAS based on peripheral blood samples, whole blood
cell counts could be used for cell-type adjustment, butin practice
this information is frequently missing and available counts only
apply to a limited number of cell types [13].

To circumvent the limited availability of whole blood cell
counts, Houseman et al. [14] proposed to infer this information
from an external data set that includes methylation data for
specific types of blood cells. This adjustment method was quite
popular in early EWAS, but it relies heavily on the assumption
that all relevant cell types are known and well represented in
the external methylation data set [15-17]. However, some cell
types needed for adjustment are still unknown and probably
depend on investigated phenotypes. In fact, a particular

subtype of lymphocytes not represented in Houseman'’s data
set has been suggested to be responsible for false-positive EWAS
results [18].

Reference-free methods for cell-type heterogeneity
adjustment

To overcome the aforementioned limitations several approaches
that rely neither on measured cell-type compositions nor on
external references have been developed [19-24]. Reference-
free methods are expected to correct study results without
prespecification of a particular set of cell types, which offers
additional flexibility. Popular approaches specifically developed
for EWAS are factored spectrally transformed linear mixed
model (FaST-LMM-EWASher), ReFACTor and an optimized
version of surrogate variable analysis (SVA) (SmartSVA) [21-23].
More general methods like SVA [20], which was originally
developed for correction of batch effects in gene expression
studies, and independent SVA (ISVA) [24] are also used for
EWAS adjustment. In two recent publications SVA has even
been suggested to be the best overall reference-free adjustment
method [25, 26].

FaST-LMM-EWASher builds on a factored spectrally trans-
formed linear mixed model algorithm initially applied to correct
for population stratification in genome-wide association studies
[22, 27]. In FaST-LMM a genetic similarity matrix is estimated
relying on measured methylation values. This random effect
covariance matrix is then combined with fixed-effect factors
such as gender and age in a linear mixed model to capture—and
adjust for—the possible relatedness/dependence among indi-
viduals [28]. To account for cell-type composition in EWAS the
approach was further extended, and only the most strongly
correlated methylation markers based on a principal component
analysis are used for adjustment of cell-type heterogeneity. If
genomic inflation is still present, the top principal components
(PCs) are consecutively added as covariates [22].

ReFACTor was specifically developed by Rahmani et al. [21]
to adjust for cell-type confounding in EWAS. As in FaST-LMM-
EWASher, the correction of cell-type heterogeneity is unsuper-
vised, i.e. the phenotype of interest is not considered in the
adjustment. Basic ReFACTor assumptions are that only a small
subset of t methylation markers is associated with cell-type
composition and that measured -methylation values in an indi-
vidual are the result of a weighted sum of average methylation
in k different cell types with weights equaling the individual
cell-type proportions. Using the matrix O of observed/measured
B-methylation values across individuals, ReFACTor calculates a
k-rank approximation matrix O’, which retains the t most infor-
mative markers. The top k PCs from O’ are then used as covari-
ates in association tests to adjust for cell-type heterogeneity.

Unlike FaST-LMM-EWASher and ReFACTor, SVA was originally
designed to deal with confounding by unmeasured factors such
as environmental and batch effects in gene-expression data sets
[20]. SVA is a supervised adjustment method. First, a linear model
with the phenotype is fitted to extract the ‘signal of interest’
from the measured methylation matrix. Subsequently, a singular
value decomposition of the residual matrix is used to construct
surrogate variables in an iterative process that captures methy-
lation variability attributable to unmeasured confounders. The
surrogate variables are then used to extend the initial linear
model and calculate adjusted effects and corresponding prob-
ability values.

ISVA and SmartSVA build upon the original SVA algorithm.
ISVA relies on independent component analysis instead of



singular value decomposition of the residual matrix to derive the
surrogate variables. Compared with SVA, ISVA identifies latent
variables that are neither linearly nor nonlinearly correlated and
thus statistically independent [24]. SmartSVA aims to improve
SVA in the common situation where the primary variable of
interest and the confounders (in the present context cell-type
composition) are correlated and SVA does not converge to
a reliable solution during iterative construction of surrogate
variables. SmartSVA imposes an explicit convergence criterion
and predetermines the number of surrogate variables based on
random matrix theory. In order to mitigate the effect of potential
correlations between primary and latent variables, SmartSVA re-
weighs the probability that methylation markers are related
to the phenotype of interest conditional on unmodeled
confounders [23].

Given the large impact of cell-type heterogeneity on the
design and statistical analysis of EWAS, the present comparison
of adjustment methods aims at providing practical recommen-
dations on the main relevant issues in the field. We investigate
first the parameters that influence the nature and magnitude of
cell-type methylation confounding. To reach this objective, we
develop and apply a multilayered simulation framework based
on real methylation data, which allows controlled modifications
of critical parameters. Then, we use simulated and real data
sets to compare the reference-free adjustment methods FaST-
LMM-EWASher, ReFACTor, SVA, ISVA and SmartSVA. We identify
method-specific strengths and limitations and guide researchers
in their choice of the most appropriate adjustment method.

Materials and methods
Simulation framework

Synthetic data sets offer the advantage that the ground truth
is known and that relevant parameters can be adjusted delib-
erately to assess their impact on obtained results. We therefore
developed a multilayered simulation design based on real blood
cell-type-specific methylation levels with a generative model to
create ‘measured/observed’ methylation g values (8 € [0,1]) in
a mixture of K different blood cell types (Figure 1). Methylation
was modeled as cell-type and marker-specific g = i + € at
methylation marker j in cell-type k = 1,...,K based on cell-type-
specific average methylation 7, and €j, ~ N(0; "ji) with cell-type
and marker-specific o2 . Observed methylation at j is the average
cell-type methylation weighted by cell-type proportions: g =
% (note that > pr = 1). Cell-type proportions p may differ
systematically between cases and controls. A set S of markers
was differentially methylated in cases and controls with cell-
type c.

Publicly available methylation data from flow cytometry-
sorted blood-cell types (CD14+ monocytes, CD19+ B cells, CD4+
helper T cells, CD56+ NK cells, CD8+ cytotoxic T cells, eosinophils
and neutrophils) were used as a basis for simulation [29].
Raw data per cell type were background corrected, followed
by functional normalization before g values were calculated;
markers with single nucleotide polymorphisms (SNPs) or cross-
reactivity were excluded [30, 31]. For computational reasons
simulations were restricted to markers on chromosome 1
(j = 1,..,42772 methylation markers). Average methylation tj,
and its variation oj, were calculated separately for marker j in
cell-type k across the reference subjects.

For simulation of phenotype-dependent cell-type propor-
tions per individual, blood cell count data on neutrophils,
monocytes, eosinophils and total lymphocytes from a cohort
study involving colon cancer patients and healthy controls
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were used [32]. Total lymphocytes were split into B-cell, CD4+
and CD8+ T-lymphocyte subpopulations according to [29], and
average cell-type proportions for cases and controls were
summarized in k x 1 vectors ocse and oo With k=6.
For n=1000 individuals i (500 cases, 500 controls), cell-type
composition p; was generated using a Dirichlet distribution as
Dirichlet(pacqse) OF Dirichlet(pa ontro) With p = 20.

To test a range of scenarios, varying numbers of methyla-
tion markers S € {0, 5, 50, 500, 5000} were simulated as differen-
tially methylated in c = neutrophils. The methylation difference §
between cases and controls was chosen to achieve 80% power in
an unadjusted analysis of 200 cases and 200 controls (§ = 0.0045)
and to mimic a strong biological signal (§=0.1). In addition, 25
scenarios (S=50 markers with a differential methylation § ~
Unif(0.001, 0.01) between n =200 cases and 200 controls) were
simulated. B per cell type k and marker j were generated
for each individual i € 1,..,n as described above and com-
bined as a cell-type-specific matrix By. For case subjects and
k =neutrophils, the markers j among the S differentially methy-
lated markers were altered as fr, = g — 6 with & = § if By, > 0.5
and §; = -4, otherwise, to ensure that g/ € [0,1]. Cell-type-
specific g values were subsequently combined per individual
as the weighted average according to cell-type proportions p;
before combining all individuals into one final ‘observed’ 8-value
matrix for further processing.

Real methylation data sets

In addition to simulated data, nine real methylation data
sets were used to benchmark the adjustment methods. They
comprised the exemplary data with methylation measurements
in tumor and normal breast tissue samples provided by
Zou et al. [22] with FaST-LMM-EWASher (www.microsoft.com/en-
us/download/details.aspx?id=52501) and eight studies retrieved
from Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/
geo/). Seven data sets contained blood methylation measure-
ments: Liu et al. [17] investigated patients with rheumatoid
arthritis (RA) and healthy controls (GSE42861); Tsaprouni et
al. [33] selected current, former and never smokers, here
grouped as current smokers versus nonsmokers (GSE50660);
and Veldhoven et al. [34] prospectively investigated women
who were disease-free at the time of blood collection and
compared methylation profiles of women who subsequently
developed breast cancer compared with those who remained
healthy (GSE51057). Heyn et al. [35] examined the methylation
profiles in cord blood from newborns and peripheral blood
from adults older than 90 years (GSE30870). Two samples with
sorted blood cell subtypes were included to increase overall
variability. Hannon et al. [36] investigated schizophrenic patients
versus non-psychiatric controls (GSE80417, phase I cohort),
while Chen et al. [23] examined peripheral blood of patients
with congenital hypopituitarism and age-matched controls
(GSE107737). Philibert and colleagues compared the methylation
profiles of drinkers versus non-drinkers (GSE110043). To assess
the performance of adjustment methods in tissue methylation
data, we included an additional data set with breast cancer and
normal samples generated by Stefansson et al. [37] (GSE52865).

To allow comparison with simulated scenarios and to reduce
the computing time and memory requirements, the methy-
lation data sets were restricted to markers on chromosome
1, with the exception of the FaST-LMM-EWASher methylation
data set, which contains only 22 690 markers. Cross-reactive
CpG markers, markers that contained SNPs and markers with
missing methylation data were excluded prior to downstream
analysis [31].
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Figure 1. Simulation of EWAS data sets. (1) Blood cell-type proportions of cases and controls for six cell type were simulated using Dirichlet distributions based on
observed cell-type compositions of cancer patients and healthy controls. (2) Public flow-sorted blood cell-type methylation data of healthy individuals were used to
simulate matrices of cell-type-specific g-values. (3) The simulated cell-type proportions and g-values per individual were combined to generate a matrix of ‘observed’
methylation values. In case subjects, S CpG markers in neutrophils were altered by § before generating the final methylation matrix. Different scenarios were created
using varying values for individuals per group n, number of differentially methylated CpG markers S and the § between cases and controls.

Association analysis and cell-type adjustment

To assess the impact of simulated cell-type confounding and to
compare the performance of the cell-type adjustment methods,
unadjusted results were compared with results after adjust-
ment. The linear model §; = a; + Xb; + ¢; was fitted for unad-
justed analyses, where the methylation g at marker j depended
on the intercept a;, X was equal to 1 for cases and 0 for controls, b;
was used to estimate the methylation difference in cases versus
controls and e;was a random error term. No additional clinical
covariates were considered.

The adjustment of cell-type heterogeneity with FaST-LMM-
EWASher was conducted using the R version after applying the

patch described by McGregor et al. [25]. Per default, FaST-LMM-
EWASher excludes markers with average methylation values
outside the interval [0.2, 0.8]. This filter excludes the majority of
markers in an average methylation data set and may be one of
the causes of previously reported conservative results after FaST-
LMM-EWASher adjustment [25]. This filter was therefore not
applied in the present comparison. Apart from this exception,
FaST-LMM-EWASher was run using default parameters includ-
ing a maximum of 10 PCs for adjustment. ISVA was run with
default parameters, with the exception of ‘fastICA’ for indepen-
dent component analysis. ReFACTor, SVA and SmartSVA were
run using default parameters.
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Table 1. Average type I error rates with the corresponding 95% intervals for simulated null scenarios after different cell-type adjustment
methods

Cell-type adjustment method

FaST-LMM-
Unadjusted EWASher ReFACTor SVA ISVA SmartSVA

Individuals

per group Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

25 0.182 0.170 0.194 0.022 0.015 0.033 0.049 0.049 0.050 0.049 0.049 0.050 0.053 0.050 0.055 0.051 0.050 0.051
50 0.222 0.188 0.257 0.019 0.011 0.026 0.049 0.049 0.050 0.050 0.049 0.051 0.051 0.050 0.051 0.050 0.049 0.051
100 0.380 0.360 0.398 0.018 0.010 0.025 0.049 0.048 0.049 0.049 0.049 0.050 0.05 0.049 0.050 0.050 0.049 0.051
200 0.484 0.481 0.487 0.045 0.041 0.050 0.049 0.049 0.049 0.053 0.051 0.053 0.05 0.049 0.051 0.050 0.049 0.050
300 0.545 0.541 0.549 0.048 0.048 0.049 0.049 0.049 0.050 0.105 0.073 0.136 0.049 0.049 0.050 0.049 0.049 0.050
400 0.582 0.580 0.584 0.048 0.047 0.048 0.049 0.048 0.049 0.224 0.184 0.265 0.049 0.049 0.050 0.049 0.049 0.049
500 0.616 0.615 0.616 0.048 0.048 0.049 0.049 0.049 0.050 0.518 0.453 0.583 0.05 0.049 0.052 0.049 0.049 0.050

Bold type denotes 95% CI that includes 0.05

Performance metrics

The impact of simulated cell confounding and the improve-
ments in detection and estimation achieved by the adjustment
methods were evaluated by the type I error rate, the statistical
power and the genomic inflation factor (GIF), as well as the bias,
variance and mean squared error (MSE) of estimated methyla-
tion differences. The type I error rate was calculated as

#p — values < «

Type I error rate = ——————
P # of all tests

for a significance level of « = 0.05. A type I error rate above

5% generally indicates too many false-positive findings due to

confounding, whereas error rates under 5% are usually indicative

of overcorrection. No correction for multiplicity was applied.
The statistical power was calculated as

_ #of diff. methylated markers with p values < «

Power #of diff. methylated markers

The methylation difference §=0.0045 between cases and
controls in the majority of simulated scenarios was chosen
to reach 80% power in the analyses of neutrophils alone,
thus resulting in an expected power of 60-80% in mixed-cells
analyses.

The GIF was initially developed to quantify the inflation
of genetic association tests due to population stratification
[38-40]. It is defined as the ratio of empirically observed test
statistic to its expected median [41] and was calculated here as

__ median observed test statistics s :
GIF = o vmocted tost statistic expected test statistic * with the median of the expected

test statistic being the median of a X12d -distribution with one
degree of freedom equal to 0.455. In the absence of confounding
the GIF approaches 1.0, whereas a GIF > 1.0 indicates a
systematic deviation from the null distribution that can be
attributed to confounding.

Results
Simulated data sets without differential methylation

To assess the overall influence of cell-type heterogeneity on
EWAS results we first investigated ‘null’ scenarios, i.e. scenarios
without simulated differentially methylated markers in cases
and controls. The type I error rate equals the false-positive rate
under the null scenarios, and it should be close to the chosen
a-level when cell-type confounding has been perfectly adjusted
for. The GIF due to stratification has been found to scale up

with increasing population size in GWAS [40, 41]. We therefore
simulated studies of different sizes by sampling patients and
controls with a 1:1 ratio with n ¢ {25, 50, 100, 200, 300, 400,
500} individuals per group. In unadjusted analyses, the type I
error rate was above the nominal « level for n = 25 individuals
and increased with increasing study size (Table 1). Across all
study sizes, FaST-LMM-EWASher, ReFACTor, ISVA and SmartSVA
corrected the type I error inflation close to the nominal level,
with a tendency toward overcorrection by FaST-LMM-EWASher.
The correction performance of SVA broke down for studies with
more than 200 individuals per group. Similar results were found
examining the GIF with increasing study sizes (Figure 2).

The limited adjustment ability of SVA for large studies could
be related to the first step of this method, where the signal
of interest is extracted from the matrix of methylation data
taking into account the case-control phenotype. In the case of
large studies with marked cell-type differences between cases
and controls, the initially fitted linear model may remove an
excess of methylation variability, resulting in insufficient pos-
terior adjustment. To evaluate this hypothesis, we repeated the
SVA adjustment for n =500 individuals per group using ran-
domly permuted case-control information for the first step of
the SVA correction. Interestingly, permuted phenotypes led to a
controlled type I error rate and GIF (Supplementary Figure S1).
This result indicates that in situations with a strong correlation
between phenotype and cell-type composition, especially in the
case of weak additional phenotype-dependent methylation sig-
nals, SVA may be of limited use.

We found considerable differences among the investigated
adjustment methods regarding computation time. While
runtime always increased with higher n, this effect was much
stronger for SVA than for FaST-LMM-EWASher and ISVA and
was hardly present for ReFACTor and SmartSVA, which showed
a similar runtime to unadjusted analyses (Supplementary
Figure S2).

Simulated data sets with differential methylation, low §

In the first set of simulated alternative scenarios, the case—
control difference in B-methylation values at the differentially
methylated markers was fixed to § = 0.0045 in neutrophils to
achieve 80% power in studies with n = 200 individuals per group.
Different numbers of differentially methylated markers were
considered (S € {5, 50, 500, 5000}). Overall, the statistical power to
detect differential methylation was highest, close to the nominal
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Figure 2. Distribution of the GIF in simulated null scenarios according to the sample size of the study.

power of 0.8, for unadjusted analyses, with average powers of
0.83 (S=15) and 0.79-0.80 (S = 50, 500 or 5000) (Figure 3). FaST-
LMM-EWASher resulted in decreasing power with increasing S,
with only 13% power for S = 500 and 7% for S = 5000. In contrast,
adjustment with ReFACTor, SVA, ISVA and SmartSVA resulted
in a ~10% power reduction compared with unadjusted analy-
ses independently of the number of differentially methylated
markers S (Figure 3). In simulation scenarios with § ranging
between 0.001 and 0.01 for differentially methylated markers,
the statistical power increased with increasing § (Supplementary
Figure S3). In agreement with Figure 3, the statistical power was
similarly high for SVA, ISVA and ReFACTor, and markedly lower
for FaST-LMM-EWASher (Supplementary Figure S3a).

In addition to the detection power, the availability and
quality of estimated methylation differences for differentially
methylated markers is relevant in the analysis of EWAS. FaST-
LMM-EWASher provides adjusted P-values but does not provide
estimated methylation differences, representing an important
limitation. The average difference of g values between cases
and controls was estimated using unadjusted linear models,
ReFACTor, SVA, ISVA and SmartSVA. The quality of estimated
methylation differences was examined by the bias, the variance
and the MSE compared to the expected §=0.0031 in the
simulated cell mixture [42, 43]. Comparison of unadjusted
and adjusted analyses revealed that ReFACTor, SVA, ISVA and
SmartSVA are clearly superior to unadjusted analyses with
very similar estimation quality for the four methods (Figure 4,
Supplementary Table S1).

In scenarios with variable §, cell-type adjustment also
improved the quality of estimated methylation differences.
Interestingly, low (§ < 0.0033) methylation differences were
overestimated, while high (§ > 0.0066) methylation differences
were underestimated after adjustment with by all four methods
(Supplementary Figure S3b). Analysis of the bias, the variance

and the MSE revealed good overall performances for the four
adjustment methods, clearly superior to unadjusted estimates
(Supplementary Table S2).

Simulated data sets with differential methylation,
high §

Adjustment methods that do not consider case-control status
(unsupervised methods such as FaST-LMM-EWASher and ReFAC-
Tor) rely on the markers that show the strongest methylation
differences among all samples to estimate adjustment compo-
nents. As demonstrated above, this may be advantageous com-
pared with supervised methods such as SVA when cell-type het-
erogeneity is the strongest source of methylation variability and
correlates with the variable of interest. However, when methy-
lation differences related to the case-control phenotype are
stronger than cell-type heterogeneity effects, supervised adjust-
ment considering case—control status may lead to overcorrection
and loss of power. To test this hypothesis, methylation data were
simulated assuming n=200, S € {50, 500, 5000} and § = 0.1 for dif-
ferentially methylated markers. This larger difference in methy-
lation levels compared with the previous analyses was chosen
to achieve a relevant influence of the differentially methylated
markers on the overall methylation patterns on top of variabil-
ity due to cell-type composition. Biologically, this corresponds
to a 10% difference in average methylation at a given locus
and is within the range of methylation differences reported in
EWAS [44-46].

While all adjustment methods adequately corrected the type
I error rate inflation as seen before, differences in statistical
power became evident for higher S (Supplementary Table S2).
In particular, the very high power reached in unadjusted anal-
yses was retained by SVA, ISVA and SmartSVA. In contrast,
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Figure 3. Statistical power to detect differences in methylation across simulated scenarios according to the number of differentially methylated markers (n = 200 per
group, § = 0.0045).
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Figure 4. Estimated absolute methylation differences in simulation scenarios with differentially methylation. (The dotted line indicates the expected methylation
difference § = 0.0031 in a simulated cell mixture, n = 200 per group; FaST-LMM-EWASher does not provide estimated methylation differences).

FaST-LMM-EWASher and ReFACTor adjustment resulted in con- Investigation of real data sets

siderable power loss with increasing number of differentially

methylated markers. This result indicates that the magnitude Simulations were complemented by real data from methylation
of true biological effects relative to cell-type confounding is a studies covering a wide range of study designs (Table 2). Over-
key factor that should be considered in the choice of cell-type all, potential confounding as indicated by increased GIFs was

adjustment method. present in unadjusted analyses for all data sets (Table 2). The
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Table 3. Overall performance of the five investigated cell-type adjustment methods
Adjustment method Type I error rate control® Statistical power Estimated methylation differences Runtime?
FaST-LMM-EWASher +++ - Not available +
ReFACTor + + + ++
SVA - + + -
ISVA + + + +
SmartSVA ++ + + ++

1

200 controls (Table 1 and Table 2).
235ee Supplementary Figure S2.

Zou et al. [22] breast cancer data set and the Liu et al. [17] RA
data showed the strongest signs of confounding with GIFs of
29.6 and 24.7, respectively. This was an even larger inflation than
in the simulated null scenarios with 500 subjects per group (GIF
16.3, Figure 2). SVA was not able to control the type I error rate
inflation in the Liu et al. [17] RA data (adjusted GIF 11.0, Table 2).
This result is in line with our simulations and could be due to
a strong correlation between cell-type composition and pheno-
type together with weak methylation differences between cases
and controls. ReFACTor, ISVA, SmartSVA and in particular FaST-
LMM-EWASher strongly reduced the GIF and the proportion of
significant markers for the Zou et al. [22] data set, but the GIF
actually increased after SVA correction (Table 2).

In order to comprehensively compare the different adjust-
ment methods, we examined six additional real blood-cell
methylation data sets covering a spectrum of investigated
phenotypes, plus one breast tissue methylation data set.
Unadjusted analyses showed varying degrees of genomic
inflation that may have been attributable to real differences, cell-
type composition and other confounding factors (Table 2). The
adjustment methods improved the control of genomic inflation
and the false-positive rates for all datasets. The tightest control
of genomic inflation was achieved by FaST-LMM-EWASher, with
a GIF equal or lower than 1.00 in six of nine datasets. ReFACTor
and ISVA decreased the GIF and the type I error rates, but
nominal levels were not reached. SVA did not sufficiently control
the genomic inflation, and the GIF even increased after SVA
adjustment in the data sets by Liu et al. [17] and Heyn et al. [35].
SmartSVA resulted in a GIF equal to or lower than 1.00 in two of
nine datasets.

Taken together, the comparison of cell-type adjustment
methods based on these nine data sets clearly demonstrates
that cell-type heterogeneity is present at varying degrees in real-
world data sets and requires correction by appropriate adjust-
ment methods. It also shows that study characteristics such
as anticipated cell-type differences between cases and controls
influence not only confounding, but also the performance of the
adjustment methods.

Discussion

In the present study we investigated two related issues that
are currently of central importance for the analysis of EWAS
data: (1) what study parameters influence the type and impact
of cell-type confounding and (2) what adjustment methods
should be used to mitigate false findings attributable to cell-type
heterogeneity. We developed and applied a simulation frame-
work that allows fine tuning of critical study parameters, for
example the study size or changes in the number and associated
effects of differentially methylated markers, facilitating a
systematic assessment. We complemented simulation results

+++: in simulations and 6 out of 9 investigated real datasets; ++: in simulations and 2 out of 9 investigated real datasets; +: in simulations, -: maximum 200 cases and

with analyses of real data sets, which allowed us to examine a
broad range of cell-type compositions and hidden confounders
such as age, medication or batch effects that may possibly have
different distributions in cases and controls.

Using our simulation framework, we demonstrated that the
impact of cell-type confounding increases with increasing study
size. A similar observation with respect to genomic inflation was
made for GWAS [38-40], but it has not been reported in the con-
text of EWAS, probably because previous simulations considered
smaller study sizes [25, 26]. The impact of cell-type confounding
is more pronounced in the case of large differences in cell-
type compositions between cases and controls. Accordingly, the
genomic inflation was highest in the breast cancer data set of
Zou et al, [22] in the data set of Stefansson et al, [37] and in
Liu et al.’s [17] RA data set.

Across all scenarios and data sets, FaST-LMM-EWASher
achieved the tightest control of false-positive rates. In fact, FaST-
LMM-EWASher was overly conservative in the simulated null
scenarios where the GIF and false-positive rate were below the
nominal level. Moreover, FaST-LMM-EWASher suffered from a
dramatic loss of power in scenarios with simulated differential
methylation. Low power has been previously observed [25, 26],
which may be attributable to the filtering of markers with g-
methylation values over 0.8 and under 0.2, i.e. the majority of
markers including differentially methylated ones. In the present
analysis this filter was therefore removed. Nevertheless, very few
of the simulated markers with differential methylation were
recovered after FaST-LMM-EWASher adjustment. This renders
FaST-LMM-EWASher primarily suitable for situations in which
avoidance of false positives is a major concern, even if true
positives are missed in the process.

ReFACTor was specifically designed to correct for cell-type
heterogeneity in EWAS [21] and exhibited reliable and robust
adjustment of cell-type confounding across the largest pro-
portion of simulated and real data sets. In contrast to SVA-
related adjustment methods, ReFACTor uses an approach that
is unsupervised with respect to the phenotype and relies for
the cell-type adjustment on the most variable markers across
the complete data set. For this reason, the adjustment perfor-
mance of ReFACTor does not depend on the study size. For the
same reason, however, adjustment with ReFACTor may translate
into decreased statistical power when large methylation differ-
ences (§ = 0.1) are present. The methylation differences identi-
fied in most blood-based studies are few and slight, and one
potential way to improve the performance of ReFACTor when
many and large methylation differences are expected is to select
the markers for adjustment based on the controls only [21].

SVA was proposed as the method of choice in two recent
comparative studies by McGregor et al. [25] and Kaushal et al.[26].
Overall, SVA efficiently minimized the MSE and variance in simu-
lated scenarios with varying and fixed §, but SVA did not control
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the type I error rate inflation in studies with more than 200
cases and 200 controls. Similarly, SVA incompletely controlled
the GIF in the real-world EWAS data sets. In advance to the
construction of surrogate variables, SVA removes the phenotype-
related variation by fitting a linear model to the methylation
data. This first step may result in a limited adjustment if the
cell-type composition is the dominating driver of methylation
differences between cases and controls. Given its design,
SVA may thus be of limited utility in scenarios with strong
phenotype-dependent differences in cell-type compositions,
especially in large studies. In contrast, SVA may be well suited if
strong biological differences are present, as in our simulations
with large § of differentially methylated markers between cases
and controls. In those scenarios, SVA controlled the type I error
rate and retained very high power independent of the number
of truly differentially methylated markers.

Given that previous studies suggested SVA as the method of
choice [25, 26], we evaluated ISVA [24] and SmartSVA [23], which
extend and aim to improve on the original SVA algorithm. Across
the simulated data sets, ISVA showed a better performance
than SVA regarding genomic inflation and type I error rates,
while retaining high power. In some of the real data sets, ISVA
incompletely controlled the genomic inflation. However, since
the true number of methylation differences in real data sets is
unknown, it is difficult to quantify the extent of confounding
and the comparative performance of adjustment methods in real
data sets.

The recently proposed SmartSVA algorithm [23] specifically
addresses the limitations of SVA in situations where the primary
variable of interest (usually a particular phenotype) is correlated
with potential confounders (usually the cell-type composition).
In agreement with the present results, this situation often leads
to a lack of convergence and insufficient adjustment of genomic
inflation by SVA. By imposing an explicit convergence criterion,
SmartSVA aims to control the inflation of type I error rates
even in such circumstances. SmartSVA indeed showed excellent
control of type I error rate while retaining high power across all
simulation scenarios. In the real data sets, SmartSVA showed the
second most stringent control of type I error inflation after FaST-
LMM-EWASher, but again, ranking the performance of adjust-
ment methods based on real data is difficult.

Anovel aspect of this study was the assessment of the quality
of estimated methylation differences (bias, variance and MSE)
according to the adjustment method and major study character-
istics, which is fundamental for the design and implementation
of subsequent validation assays. FaST-LMM-EWASher does not
provide adjusted estimated methylation differences between
cases and controls. The quality of estimated methylation
differences after adjustment with ReFACTor, SVA, ISVA and
SmartSVA was clearly superior to unadjusted estimates, low
(8 < 0.0033) methylation differences were overestimated and
high (5§ > 0.0066) methylation differences were underestimated.
The comparison of cell-type adjustment methods by users
instead of method developers is another strength of the
present study. Because of publication bias and authors’ better
knowledge of their own algorithms than previous software,
the real advantage of new methods over established ones is
often overestimated, and unbiased comparisons by independent
researchers are beneficial [47]. Table 3 summarizes our findings
based on simulated and real data sets. FaST-LMM-EWASher
resulted in the lowest type I error rate at the expense of low
statistical power. SVA did not control type I error rates in EWAS
with more than 200 cases and 200 controls. The statistical
power, the quality of estimated methylation differences and

the runtime were best, and very similar with ReFACTor, ISVA
and SmartSVA.

Key Points

¢ Cell-type heterogeneity is an important issue in EWAS
based on peripheral blood samples.

¢ Laboratory information on the cell-type composition
of investigated samples is usually sparse, and several
techniques have been developed to adjust EWAS results
for cell-type heterogeneity.

® Here we describe the development and application
of a flexible, multilayered simulation framework and
use real data sets to compare five popular cell-type
adjustment methods: FaST-LMM-EWASher, ReFACTor,
SVA, ISVA and SmartSVA.

* In most investigated scenarios, FaST-LMM-EWASher
tends to be conservative. ReFACTor, ISVA and SmartSVA
control false-positive rates and achieve a high statistical
power, while SVA minimizes the mean squared error of
estimated methylation differences, but does not control
false-positive rates in large EWAS.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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