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Abstract

Bicuspid aortic valve is the most prevalent cardiac valvular malformation. It is associated with a high rate of
long-term morbidity including development of calcific aortic valve disease, aortic regurgitation and concomi-
tant thoracic aortic aneurysm and dissection. Recently, basic and translational studies have identified some
key processes involved in the development of bicuspid aortic valve and its morbidity. The development of aor-
tic valve disease and thoracic aortic aneurysm and dissection is the result of complex interactions between
genotypes, environmental risk factors and specific haemodynamic conditions created by bicuspid aortic valve
anatomy. Herein, we review the pathobiology of bicuspid aortic valve with a special emphasis on translational
aspects of these basic findings. Important but unresolved problems in the pathology of bicuspid aortic valve
and thoracic aortic aneurysm and dissection are discussed, along with the molecular processes involved.
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Introduction

Bicuspid aortic valve (BAV) is a developmental
abnormality that has an estimated prevalence of 0.5–
2%, and a male predominance of about 3:1 [1].
BAVs usually exhibit normal function at birth and
during early life, but can be associated with signifi-
cant aortic valve disease prior adulthood. However,

later in life BAV is associated with substantial mor-
bidity [2]. Late complications of BAV include aortic
stenosis or regurgitation, infective endocarditis, aortic
dilatation and aortic dissection. In particular, BAVs
are predisposed to progressive calcification, grossly
identical to that occurring in tricuspid aortic valves.
The increased propensity of BAV to calcific aortic
valve disease (CAVD), relative to valves with a
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normal 3-leaflet configuration, is underscored by the
data that calcified BAVs comprise 30–50% of cases
of operated aortic stenosis in adults [3]. Moreover,
calcific stenosis of a BAV is generally accelerated,
appearing approximately a decade earlier than with
TAV. Calcified or regurgitant BAVs often become
clinically important in patients as young as 50 years
old.

Morphology

Congenital BAVs have two functional leaflets, usu-
ally of unequal size, with the larger leaflet often hav-
ing a midline raphe, resulting from incomplete
commissural separation during development. Less
frequently the leaflets are of equal size and the raphe
is absent. Leaflet orientation varies widely among
patients, with the most frequent BAV subtype being
fusion of the right and left (R-L) coronary leaflets
(59% of BAV) and fusion of the right and non-
coronary (R-N) leaflets (37% of BAV).[4] Studies in
eNOS-/- mice and an inbred Syrian hamsters suggest
that the aetiologies of R-N and R-L BAVs appear to
be distinct with the R-N BAV being caused by defec-
tive formation of the outflow tract (OFT) cushion
whereas the R-L BAV is likely the result of defective
OFT septation [5]. When compared to the R-L
fusion, the R-N fusion is associated with a faster pro-
gression rate of aortic valve pathology (stenosis and
insufficiency), especially in young patients [6].

Compared to TAVs, BAVs induce an abnormal,
turbulent flow pattern and higher tissue stresses,
which are concentrated in the abnormally large cusps
and at the raphe. Calcium deposition and fibrosis
predominate in the raphe and at the bases of the
cusps, and the calcification may extend to the mitral

annulus and anterior mitral leaflet. Once stenosis is
present, the clinical course appears to be similar to
that for calcific aortic stenosis in a 3-leaflet valve, in
which the calcific deposits predominate at the cuspal
bases (Figure 1).

Pathobiology

Mineralisation of the aortic valve: Basic concepts

CAVD is manifested as ectopic mineralisation and
fibrosis, beginning initially in the extracellular matrix
(ECM) and promoted by matrix vesicles produced by
valvular interstitial cells (VICs) [7,8]. Histological
analyses of surgically explanted stenotic aortic valves
have revealed that calcific nodules are often sur-
rounded by inflammatory infiltrates, new blood ves-
sels and lipids [9,10]. Key controversies in the
pathogenesis of CAVD with tri- or bicuspid valves
relate to the extent to which its mechanisms are
shared with those of aging and atherosclerosis, and
how the mechanisms of initiation and progression of
calcification are regulated, potentially actively [11].
In particular, for CAVD in BAV, it is uncertain
whether abnormalities noted in clinically removed
BAV tissues are primary or secondary, and what are
the key differences that account for the accelerated
and nearly ubiquitous formation of CAVD in the
context of BAV. In CAVD, the increased mechanical
stress on resident VICs induced by aging-related val-
vular remodelling, inflammation and other mechani-
cal and biochemical processes could play an
important role in early cell injury (apoptosis or
necrosis) and osteogenic differentiation of VICs
[12,13]. Apoptosis/necrosis-enabled dystrophic calci-
fication mechanisms, in which cell injury is an
important and early event, are exemplified by the

Figure 1. Non-mineralised tricuspid aortic valve (left) and stenotic mineralised tricuspid (middle) and bicuspid (right) aortic valves.
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failure of glutaraldehyde-treated bioprosthetic substi-
tute heart valves, in which calcification is initiated
primarily within residual, non-viable porcine aortic
valve or bovine pericardial cells [14]. Mineral found
in CAVD is mostly hydroxyapatite of calcium
(HAC), similar to bone mineral, which can be depos-
ited by an apoptosis-mediated process or by osteo-
genic activity [15,16]. In some explanted stenotic
aortic valves (�15%), well-differentiated osseous
metaplasia is present, suggesting that a process analo-
gous to bone ossification may occur during the devel-
opment of CAVD [17]. Similarly, the expression of
bone-related markers such as Runx2 (a transcription
factor highly expressed during osteogenesis), bone
morphogenetic protein 2 (BMP2), osteopontin, osteo-
calcin and osteonectin is increased in stenotic aortic
valves when compared to non-mineralised aortic
valves [15]. The presence of bone-related proteins
and biomarkers of osteogenic pathways strongly sup-
ports an osteogenic program contributing actively to
the mineralisation of the aortic valve. Crosstalk
between different pathways may trigger an osteoblas-
tic transition of VICs. In mineralised aortic valves,
the level of Wnt3a is increased [18]. Wnt agonists
bind to a membrane receptor formed by Lrp5/6 and
Frizzled and inactivate a complex, which includes
adenomatosis polyposis coli (APC), Axin and glyco-
gen synthase kinase 3(GSK3). As a result, b-catenin
is stabilised and translocates to the nucleus where it
controls the expression of BMP2. In porcine VICs,
Wnt3a-induced myofibroblast differentiation relies on
TGF-b1 [19]. TGF-b1 was shown to induce the
nuclear transclocation of b-catenin on matrices with
fibrosa-like stiffness. The latter finding may explain
the observation that the calcific nodules initiating
CAVD develop in the fibrosa layer.

Several enzymes and transporters of the phosphate
pathway, such as alkaline phosphatase (ALP), ectonu-
cleotide pyrophosphatase/phosphodiesterase 1 (NPP1)
and the phosphate transporter Pit1/SLC20A1 that are
crucial regulators of mineralisation, are also highly
expressed in mineralised aortic valves and regulate
phosphate and pyrophosphate metabolism [20]. Pyro-
phosphate (PPi) is a powerful inhibitor of the nuclea-
tion of HAC whereas inorganic phosphate (Pi) has
pro-mineralising properties. Both NPP1 and ALP pro-
mote mineralisation during CAVD by elevating the
Pi/PPi ratio [16,21]. In this regard, ALP, which is
highly expressed during the mineralisation of VICs,
transforms PPi into Pi [22]. Intracellular channeling
of Pi by Pit1/SLC20A1 contributes to increased
expression of bone-related transcripts and to the pro-
motion of apoptosis-mediated mineralisation [23]. A
fundamental question is whether and to what extent

the biological processes leading to valve calcification
are different in BAV versus TAV.

Disorganised tissue architecture in bicuspic aortic
valve: A contributor to inflammation and
mineralisation

In non-mineralised BAV leaflets from newborn
infants, the trilaminar architecture and compartmental-
isation of valve interstitial cells (VICs) is lost and
there is increased volume of proteoglycans (PG), gly-
cosaminoglycans (GAG) and extracellular matrix
(ECM) (Figure 2) [24]. Disorganised ECM in BAV
may have an important impact on the development of
CAVD later in life as increased PG/GAG content is a
notable feature of CAVD [25]. In stenotic aortic
valves, increased expression of PG promotes the reten-
tion of lipoproteins [26,27]. In turn, the accumulation
of oxidised lipid species triggers the mineralisation of
VICs [28]. Biglycan, which is highly expressed in
mineralised aortic valves, stimulates Toll-like receptor
2 (TLR2) and NF-jB, which promotes the mineralisa-
tion of VIC cultures [29,30]. Also, oxidised-low den-
sity lipoprotein (ox-LDL) increases the synthesis of
dermatan sulfate, which enhances the bioavailability
of TGF-b1 [31]. Although the molecular mechanism
is not clearly delineated, it is possible that the addition
of GAG chain inhibits the normal sequestration of
TGF-b1 by decorin [32].

Inflammation and neovascularisation of the aortic
valve are thought to promote tissue remodelling and
calcification. The normal aortic valve is avascular
and the formation of neovessels participates in the
development of CAVD [14]. To this end, stenotic
BAVs demonstrate increased remodelling, neovascu-
larisation and inflammatory infiltration compared to
TAV, even when accounting for other risk factors for
CAVD [33,34]. The expression of chondromodulin-1
is markedly decreased in BAV compared to TAV
[35]. Chondromodulin-1, expressed in the aortic
valve during development, inhibits cell proliferation
and angiogenesis [36]. Mice deficient for
chondromodulin-1 have thickened aortic valves with
new blood vessels, which is one feature also
observed in human mineralised aortic valves [35]. It
is possible that increased neovascularisation in ste-
notic aortic valves may participate in the recruitment
of circulating osteogenic progenitor cells (OPC) that
increase mineralisation of the aortic valve [37,38].
The role of neovascularisation is not clearly defined,
but it may also enhance inflammation [39]. Mineral-
ised aortic valves are infiltrated by macrophages and
T cells. In BAV, the density of inflammatory cells is
higher when compared to TAV [33]. Studies indicate

Pathology and pathobiology of bicuspid aortic valve 197

VC 2015 The Authors The Journal of Pathology: Clinical Research published by The Pathological
Society of Great Britain and Ireland and John Wiley & Sons Ltd

J Path: Clin Res October 2015; 1: 195–206



that chronic inflammation of the aortic valve is one
important process involved in the ectopic mineralisa-
tion of valvular tissue [40]. The NF-jB cascade is
activated in stenotic aortic valves with a high content
of interleukin 6 (IL-6)[41]. VICs produce IL-6 during
mineralisation and promote an osteogenic transition
through a BMP2-dependent pathway [41]. Also, the
production of TNF-a by macrophages promotes the
mineralisation of vascular cells and VICs [42,43].
Hence, the increased inflammation and neovascular-
isation often observed in BAV may reflect a more
aggressive pattern of mineralisation in these patients.

Contribution of mechanical factors to the
mineralisation of BAV

Why is mineralisation of the aortic valve accentuated
in BAV? This is a key unresolved issue that deserves

further attention. Present data suggest two non-
mutually exclusive possibilities underlying the
increased susceptibility of BAV to mineralisation.
The morphology of the BAV increases the mechani-
cal stress in the valve tissue and alters blood flow
patterns. In addition, it is possible that the genetic
variants that cause BAV formation in utero may con-
tribute to increased mineralisation due to defective
cell differentiation.

Computational modelling and magnetic resonance
imaging suggest that BAVs show greater cuspal
deformation and blood flow turbulence compared to
TAVs [44]. Local stress certainly enhances minerali-
sation of the aortic valve [45]. Mechanical strain has
been shown to promote the expression of collagen
type III by VICs [46], and is increased in the area of
the conjoined leaflets where calcification is often
extensive [47]. Furthermore, cyclic stretch in VICs

Figure 2. Schematic of pathophysiological mechanisms involved in bicuspid aortic valve (BAV). Dysregulation of NO signaling is sus-
pected to play a role in the osteogenic transition of VICs through the Wnt pathway. Increased content of PGs and GAGs and disor-
ganised tissue architecture could also promote lipid retention and increase the bioavailability of TGF-b1. In addition, elevated
mechanical strain promotes the production of BMP2-4, collagen type III and cathepsins K, S, which participate in tissue remodelling
in the BAV. TGF: transforming growth factor, BMP: bone morphogenetic protein, eNOS: endothelial nitric oxide synthase, Lrp5: low-
density lipoprotein receptor-related protein 5, Runx2: runt-related transcription factor 2, NPP1: ecto-nucleotide pyrophosphatase/
phosphodiesterase 1, ALP: alkaline phosphatase, ROCK: Rho-associated protein kinase, NICD: Notch1 intracellular domain, Hrt: Hairy-
related family of transcription factors.
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promotes the expression of cathepsins K and S
[48,49]. In apoE-/- mice, deficiency of cathepsin S
prevented fragmentation of elastin and the develop-
ment of CAVD [50]. Although the exact molecular
process remains to be elucidated, elastin fragments
induce the expression of alkaline phosphatase and
promote the mineralisation of cell cultures [51].
These findings suggest that remodelling of the aortic
valve could be, at least in part, promoted by mechan-
ical cues, which may exacerbate tissue remodelling
in BAV. Also, stretch-dependent expression of trans-
forming growth factor-beta 1(TGF-b1) and BMP-4
has been shown in VICs [52]. In the latter study,
stretch-induced mineralisation of valve tissue was
inhibited by noggin, suggesting that signaling through
the TGF-b superfamily of proteins is an important
pathway leading to the mineralisation of the aortic
valve under mechanical stress. Recently, Bouchareb
et al. showed that cyclic stretch of VICs promoted
activation of the RhoA pathway and intracellular
transport of ecto-nucleotidase to the plasma mem-
brane where it triggered the production of spheroid
mineralised micro-particles [53]. Of interest, the pres-
ence of spheroid mineralised micro-particles has been
recently demonstrated in human aortic valves [54]. It
is suspected that the coalescence of spheroid mineral-
ised micro-particles leads to the formation of larger
mineralised structures. By using scanning electron
microscopy and energy dispersive x-ray, it has been
documented that mineralised micro-particles are
abundant in the area of conjoined leaflets where
ecto-nucleotidases are overexpressed [53]. These
findings suggest that remodelling of the aortic valve
may be initiated or augmented by haemodynamic
stress created by the BAV anatomy, which may exac-
erbate mineralisation of valvular tissues.

Pattern of gene expression in BAV and
relationship with calcification

Familial clustering of BAV and left ventricular OFT
malformations [55] has been associated with
NOTCH1 receptor mutations [56]. The Notch signal-
ling pathway is involved in formation of the OFT
and in endocardial-mesenchymal transition (EndMT),
both of which are important in development of the
aortic and pulmonary valves [57]. Notch receptors
(NOTCH1-4 in mammals) interact with membrane
ligands from neighbouring cells such as the delta-like
(DLL1, 3, 4) and Jagged proteins (JAG1, 2). In addi-
tion to being associated with the genesis of BAV,
NOTCH1 variants with impaired function may
increase Runx2 expression and mediate osteoblastic
transition of VICs. Upon ligand binding, the Notch

receptor undergoes cleavage by c-secretase, which
promotes production of the Notch intracellular
domain (NICD). NICD then translocates to the
nucleus where it associates with recombination signal
binding protein for immunoglobulin jJ region
(Rbpjj) and promotes expression of the hairy-related
family of transcription repressors (Hrt) [58]. Thus,
signalling through Notch1 promotes the expression of
Hrt, which represses the promoter of Runx2. Hence,
decreased Notch1 signaling increases the expression
of Runx2 and causes osteoblastic transition of VICs
(Figure 2). Also, down-regulation of Notch signaling
in VICs reduces Sox-9, a transcription factor of chon-
drogenic cells. Transfection of Sox-9 into VICs res-
cued the hypermineralising phenotype during Notch
inhibition, suggesting that Notch signalling prevents
mineralisation of the aortic valve in a Sox-9-
dependent manner [59]. Mice haploinsufficient for
the Rbpjj transcription factor and supplemented with
a cholesterol-rich diet and vitamin D develop CAVD
but do not have BAV [60]. Intriguingly, GATA5-/-

mice develop BAV (�25% of littermates) and have
lower expression of Jag1 and higher levels of mRNA
encoding for Rbpjj in embryonic tissues, suggesting
dysregulation of the Notch pathway in these mice
[61]. Furthermore, the expression of endothelial nitric
oxide synthase (eNOS), which has conserved GATA
binding sites in its promoter, was significantly
reduced in embryonic tissue of GATA5-/- mice.
These data are of foremost interest considering that a
similar proportion of both eNOS-/- and GATA5-/-

mice develop the right-non-coronary (R-N) fusion
type of BAV [62]. Recently, rare (4% of patients
with BAV) non-synonymous variations within the
transcriptional activation domains of GATA5 were
documented in patients with BAV [63]. Worthy of
note, levels of eNOS were found to be decreased in
BAV leaflets [64]. Studies indicate that nitric oxide
(NO) could modulate mineralisation and lower the
expression of osteoblastic genes in vascular cells. In
this regard, eNOS-/- mice under a cholesterol-rich
diet develop CAVD and mice with BAV have higher
levels of Wnt3a, Lrp5 and Runx2 [65]. These data
suggest that eNOS-derived nitric oxide modulates the
Wnt/Lrp5 pathway, which has been found to promote
mineralisation of the aortic valve in patients with
CAVD [18]. Hence, it is possible that complex inter-
play between GATA5, eNOS, Notch and Wnt/Lrp5
may promote early mineralisation of the aortic valve
in BAV. These data suggest defective cellular
differentiation in BAV that likely predisposes to
mineralisation. Further investigations are needed to
document the role of these pathways and how they
may intersect with mechanical signals in promoting
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mineralisation of BAV. Complicating the elegant
interplay between these pathways and mineralisation
of BAV is the current failure to identify a genetic
cause of BAV in the vast majority of individuals.

Studies from the Encyclopedia of DNA Elements
(ENCODE) project have revealed that, contrary to a
previously held belief, a large portion of the non-
coding genome is transcribed [66]. MicroRNAs
(miRNAs) are short (�22 nucleotides) non-coding
RNAs, which exert an important control over gene
expression at the post-transcriptional level. They bind
to target protein-coding RNA and induce degradation
and/or prevent translational processes. Studies per-
formed in the last several years have emphasised the
role of microRNAs in different cardiovascular disor-
ders. A transcriptomic analysis comparing microRNA
expression in TAV vs. BAV has revealed that 34 of
1583 microRNAs examined in this study were differ-
entially regulated. MicroRNA-141 was decreased by
14.5-fold in BAV and was shown to be an important
negative regulator of BMP2 expression [67]. Differ-
ent patterns of expression of microRNAs between
stenotic and regurgitant BAV have also been
observed. Stenotic BAVs had lower expression of
microRNA-26a and microRNA-30b [68]. Both
microRNA-26a and microRNA-30b were shown to
be negative regulators of the osteogenic pathway and
to lower the expression of BMP2. Hence, differential
expression of microRNAs in BAV may contribute to
increased osteogenic signals through a BMP2-
dependent pathway. However, to date few studies
have examined the role of non-coding RNAs in BAV
and clearly further work is necessary in order to gen-
erate a comprehensive view of their role in the patho-
biology of heart valve disorders.

Aortopathy and BAV

Structural abnormalities of the aortic wall commonly
accompany BAV, even when the valve is haemody-
namically normal, and this may potentiate both aor-
tic dilatation (the most common aortic complication
of BAV) and aortic dissection. Moreover, patients
with BAV have a higher rate of coarctation of the
aorta, and left coronary arterial dominance [69,70].
Development of the aortic and pulmonary valves is
intimately linked to OFT septation and aorta/aortic
arch remodelling. Interactions between the second
heart field (SHF) and neural crest patterning are
important in orchestrating development of the OFT
along with the aortic arch from the common arterial
trunk [71]. Disruption of Notch signalling in the
SHF of transgenic mice, by using a truncated form
of mastermind-like protein (a transcriptional co-

activator of Notch), was associated with defective
neural crest cell patterning and unequal aortic valve
leaflets with a bicuspid-like morphology [72]. Mice
displayed enlarged leaflets and aortic arch abnormal-
ities. Moreover, the mice mutant for Notch signal-
ling had moderate to severe aortic insufficiency (AI)
and showed disorganised aortic wall histology with
dispersed vascular smooth muscle cells (VSMCs). It
should be pointed out that mice with defective
Notch signalling in the SHF had lower expression of
fibroblast growth factor 8 (Fgf8) [73]. Deficiencies
in Fgf8 in the third and fourth pharyngeal endoderm
promoted the development of BAV [74]. These find-
ings support the notion that cross-talk between
Notch and Fgf8 may orchestrate neural crest and
SHF interactions during normal development of the
semilunar valves and aorta/aortic arch (Figure 3).
Thus, the syndromic and non-syndromic associations
between BAV and aortopathy may be based on
embryologic patterning of neural crest cells. Neural
crest cells contribute to the formation of VSMCs of
the aorta and coronary arteries and intervene in the
late phase of semilunar valve development (Figure
3) [75]. Interestingly, the aorta of patients with
BAV shows a high level of apoptosis in neural
crest-derived cells [76]. Hence, although not yet
established firmly in humans, it is possible that one
or more defects originating from the patterning of
neural crest cells play a role in the pathophysiology
of some BAVs. This may explain the higher preva-
lence of congenital head and neck defects in patients
with coarctation and BAV [77]. In association with
an elevated rate of apoptosis, the aorta of BAV
patients shows fragmented elastic fibres with
increased distance between elastic lamellae [78].
Furthermore, dilated aortas from patients with BAV
have a higher metalloproteinase 2 (MMP-2) content
and a lower level of tissue inhibitor of metallopro-
teinase 2 (TIMP-2) compared to TAV patients, indi-
cating increased collagen turnover [79]. More
recently, a defect in cross-linking of collagen associ-
ated with lower expression of lysine oxidase has
been demonstrated in the dilated aortas of BAV
patients [80]. Therefore, loss of elastin combined
with increased collagen turnover and decreased col-
lagen cross-linking may predispose to aneurysm for-
mation in patients with BAV (Figure 4).

Patients with Marfan syndrome have mutations of
the fibrillin-1 gene (FBN1), which results in higher
signalling through the TGFb-1 pathway with
increased phosphorylation of Smad2/3. Interestingly,
BAV aortic tissues have lower fibrillin-1 content
coupled with higher TGFb-1 levels [81,82]. Fibrillin-
1 contributes to the elastomeric properties of the
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connective tissue and also interacts with the TGFb
family of proteins. Studies performed in the last sev-
eral years have emphasised the concept that abnormal
secretion of fibrillin-1 leads to activation of TGFb-1
by freeing it from microfibril-bound large latent com-
plex (LLC) [83]. Cell contraction following stimula-
tion with different agonists such as angiotensin II,
thrombin and endothelin-1 increase the release of
TGFb-1 from the extracellular matrix (ECM) [84]. It
has been proposed that expression of a-smooth mus-
cle actin (a-SMA) promotes cell contraction, which
is transmitted to integrin bound to the RGD site of
latency associated protein (LAP) leading to allosteric
modification and liberation of TGFb-1 (Figure 2).
Also, TGFb-1 induced expression of splice variant
EDA of fibronectin is reduced in VSMCs from BAV
aortic tissues, suggesting dysregulation of the TGFb
pathway in BAV compared to TAV aorta [85].
Recently, in thoracic aortic aneurysms (TAAs) of dif-
ferent aetiologies, including aortic dilatation associ-
ated with BAV, it was shown that expression and
activation of Smad2 was independent of TGF-b1
activity [86]. Instead, increased histone methylation
and acetylation of the Smad2 promoter of VSMCs
from these aortas was associated with the overexpres-
sion of Smad2, indicating an epigenetic contribution
to dysregulation of the TGFb/Smad pathway. TGFb
levels and signalling are inhibited by the angiotensin

II type 1 receptor blockers (ARBs), such as losartan,
and in a mice model of Marfan syndrome administra-
tion of losartan reduced TGFb-1 signalling and con-
comitantly prevented the development of aneurysm
[87]. These promising findings have fuelled the
development of several randomised trials to evaluate
the effect of losartan upon aortic morbidity and mor-
tality in patients with Marfan syndrome [88]. How-
ever, a randomised study has recently shown in 608
patients (children and young adults) with Marfan syn-
drome that losartan did not alter the rate of aortic
root dilatation [89]. Whether angiotensin II type 1
receptors play a significant role in BAV-associated
aortopathy remains to be investigated.

One key observation in BAV-associated aortopathy
is the asymmetrical pattern of histological abnormal-
ities, which is also linked to the expression of genes
involved in tissue remodelling. Several studies have
shown that elastic fibre fragmentation and apoptosis of
VSMCs were mostly observed at the convexity of the
aorta, but attenuated at the concavity of the aorta [90].
In addition, expression of collagen types I and III was
reduced in the convexity when compared to the con-
cavity [91]. Taken together, these findings suggest that
mechanical stress could contribute to specific spatial
alteration of the ECM in BAV. Of particular impor-
tance, the opening of BAVs is asymmetrical and alters
flow, resulting in uneven wall stress distribution in the

Figure 3. Signaling between cardiac neural crest cells (CNCCs) and the second heart field (SHF) is necessary for proper development
of the aortic valve. Crosstalk between neural crest cells and the SHF ensures the production of fibroblast growth factor 8 (Fgf8) in a
Notch-dependent manner. This step is essential as it contributes to the production of BMP2-4 and allows tissue reorganisation and
loss of cellular components through apoptosis. Disruption of Notch signaling in the SHF leads to defective neural crest cell patterning
and the formation of leaflets with a bicuspid-like morphology in mice.
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aorta. The R-L type of fusion has been associated with
a right anterior jet, whereas R-N fusion is related to an
abnormal and eccentric left posterior jet. The specific
flow patterns of different cusp configurations may
explain the observation that L-R fusion is associated
with asymmetrical enlargement of aorta at the convex-
ity, whereas the R-N fusion is sometimes associated
with tubular enlargement of the aorta, with extension
into the aortic arch [92]. Hence, considering the non-
homogeneous distribution of biomolecular changes
within the BAV aorta it is likely that haemodynamic
factors may contribute along with the genotype to the
development of different phenotypes associated with
BAV.

Unresolved questions and research perspectives

The morbidity of BAV is likely determined by genetic
susceptibility, abnormal solid and fluid mechanical
forces imposed on the aortic valve/aorta, and perhaps
environmental risk factors [93]. BAV and its associ-
ated phenotypes have underlying genetic defects,
which promote abnormal expression of proteins regu-
lating ECM organisation and alter different signal
transduction cascades, including NOTCH, Wnt/LRP5
and TGFb pathways. In addition, BAV creates abnor-
mal blood flow patterns, which may also contribute to
the modification of cell signalling and tissue remodel-
ling. Investigations in the last decade have shown that

Figure 4. Schematic of the pathophysiological processes involved in the dilated aorta of BAV patients. Fragmentation of extracellular
matrix components and decreased cross-linking between collagen fibres modify the biomechanical properties. Increased production of
MMPs and lower expression of TIMPs contribute to remodelling of the arterial wall. Though it remains to be investigated in the con-
text of BAV, it is possible that increased arterial wall tension is transmitted to VSMCs through integrin interactions. In turn, binding
of integrin with the latency associated protein (LAP) may promote allosteric modifications that increased the bioavailability of TGFb-
1. VSMC: vascular smooth muscle cell, SMA: smooth muscle actin, LAP: latency associated peptide, LTBP: latent TGF-b binding pro-
tein, MMP2: matrix metalloproteinase 2, TIMP-2: tissue inhibitor of metalloproteinase 2.
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key events during valvulogenesis are critical to under-
standing the pathobiology of BAV and its related
complications. For instance, during valvulogenesis,
including endocardial cushion development and cusp
remodelling, several genes known for their role in
osteogenesis are transiently expressed in the develop-
ing valves [94]. Hence, an altered pattern of gene
expression during embryogenesis may have a lasting
effect and may promote, amongst other mechanisms,
maladaption to mechanical stimuli and premature
mineralisation of the aortic valve. Thus, BAV-
associated morbidity represents an exquisite example
of complex gene–environment interactions. It also fol-
lows that elucidating the mechanisms underlying
BAV complications poses several challenges. The
development of animal models in which these com-
plex gene–environment interactions can be manipu-
lated, together with advances in human genetics, bio
banking, cell and systems biology will be critical in
providing much needed mechanistic insight. Hence,
basic research related to the pathobiology of BAV
should be integrated using a multidisciplinary team
approach. We thus propose a list of key points for a
research agenda which, although neither extensive nor
exclusive, may help elucidate critical issues in BAV
pathobiology: (1) Establish tissue banks of consis-
tently and appropriately prepared and well-annotated
specimens of aortic valves and aortas along with DNA
of well-phenotyped patients undergoing surgery for
BAV-related complications (and from autopsies of
non-complicated patients who die of other causes); (2)
Correlate key findings obtained from DNA studies
(GWAS or candidate gene approach) with transcrip-
tomics and functional assays in VICs and VSMCs; (3)
Translate human investigations to animal models rele-
vant to BAV embryology; (4) Develop animal models
(including genetically modified mice) of BAV, which
can recapitulate human morbidity; (5) Investigate the
interrelationships between mechanical stress, gene
expression and VIC/VSMC biology and (6) Identify
novel key and pharmacologically approachable tar-
get(s) in early BAV and different BAV pathologies
(e.g. CAVD, TAA). Creation of the International
Bicuspid Aortic Valve Consortium (BAVCon) and
large-scale collaborations between investigators of
different but complementary expertise will help
resolve underlying pathobiological processes in BAV,
and may result in novel therapies for patients.
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