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ABSTRACT To identify sequences with a role in microbial pathogenesis, we assessed
the adequacy of their annotation by existing controlled vocabularies and sequence
databases. Our goal was to regularize descriptions of microbial pathogenesis for
improved integration with bioinformatic applications. Here, we review the challenges
of annotating sequences for pathogenic activity. We relate the categorization of more
than 2,750 sequences of pathogenic microbes through a controlled vocabulary called
Functions of Sequences of Concern (FunSoCs). These allow for an ease of description
by both humans and machines. We provide a subset of 220 fully annotated sequences
in the supplemental material as examples. The use of this compact (;30 terms), con-
trolled vocabulary has potential benefits for research in microbial genomics, public
health, biosecurity, biosurveillance, and the characterization of new and emerging
pathogens.
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WHATMAKES “BAD BUGS” BAD?

The “worst” pathogens of humans cause severe disease in those possessing normal
immunity. Pathogens of other organisms indirectly affect our species by damaging

the livestock or crops on which we depend for sustenance. High-level biological phe-
notypes of microbes, such as pathogenicity, transmissibility, and environmental stabil-
ity, are complex (1), but they are products of specific microbial sequences encoded
within the parasite genomes. Pathogenicity toward one or more host organisms, trans-
missibility within a species of host organism or between that host organism and vec-
tors (or natural reservoirs), and stability within a specified environment will not be
retained if certain sequences are unexpressed.

Responsible parties have been concerned about engineered biothreats for years (1).
The increasing technical prowess of synthetic biologists and the burgeoning business
of nucleic acid providers have brought the limitations of existing guidance for assess-
ing risk and the adequacy of screening protocols into sharp relief (2). In the past, the
“bad microbe” model assessed threat based on pathogens that could pose a severe
threat to public health and safety. The “bad microbe” conception has waned, with the
“sequence of concern” (SoC) model taking its place (1).

In evaluating SoCs for their risk to public safety, we discovered a dichotomy in
sequence annotation. UniProt has a well-curated set of eukaryotic and bacterial toxins,
although the targets of those toxins are not always noted (3). Viral parasitism can also
be adequately related with the use of existing gene ontology (GO) terms. However,
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there are few terms for describing parasitism of hosts as practiced at the molecular
level by bacterial, fungal, and protozoal pathogens. What terms there are have few
annotations associated with them. Often, the only hint in UniProt that a sequence
might be involved in deleterious host-affecting activities was through the tag
“GO:0009405 (pathogenesis).” As of June 2021, this term was associated with over
277,000 UniProt accession numbers. Interestingly, the GO:0009405 pathogenesis term
has been scheduled for obsolescence, with the final notice given in March 2021
(https://github.com/geneontology/go-annotation/issues/3452).

SoCs are not limited to organisms and toxins on the select agent lists (1). Simply list-
ing the genes of those microbes and toxins would include tens of thousands of innocu-
ous sequences that these parasites share with their close, but nonpathogenic and even
nonsymbiotic, relatives (i.e., false positives). This also neglects sequences that cause
damage or enable infection from human-disease-causing microbes not deemed seri-
ous enough for inclusion on select agent lists (i.e., false negatives). This minireview
offers criteria to identify SoCs based on an analysis of more than 2,750 sequences
culled from the professional literature for more than 105 bacterial species, 85 viruses,
and 25 eukaryotic pathogens. We describe an approach to better characterize these
sequences for bioinformatic applications.

WHAT ORGANISMS ENCODE SEQUENCES OF CONCERN?

Of the hundreds of thousands of species of bacteria, fungi, protozoa, worms, and
viruses on the planet, only a small percentage have been documented to cause disease
in the primate Homo sapiens. It was estimated in 2007 that ;1,400 microbes and para-
sites can produce disease in humans. Of these, 541 were bacterial, 325 fungal, 285 hel-
minthic, 189 viral, and 57 protozoal (4). Further studies indicated that ;600 fungi can
cause disease in humans (5), and well over 200 RNA viruses can infect humans (6), so
the total number of human-disease-causing entities is greater than 1,750 and is prob-
ably closer to 2,000.

Parasites are distinguished from closely related symbionts by their expression of
specific molecules that, when deployed appropriately, can cause a loss of homeostasis
(i.e., disease), in a susceptible host. Particular environmental conditions can dispose a
host toward greater susceptibility and a parasite toward greater disease-generating
ability (7). While many sequences from human-disease-causing microbes have been
examined empirically, “the majority. . .from the microorganisms responsible for the
world's most prevalent diseases remain poorly defined and uncharacterized” (8).

MICROBIAL PATHOGENESIS AND VIRULENCE FACTORS

Practitioners of the biological subspecialty of microbial pathogenesis, a hybrid of
cellular biology, molecular biology, and microbiology, investigate the sequences by
which microbes exploit host organisms. Perhaps the earliest exploration occurred
50 years ago in swine by Williams Smith and Margaret Linggood. They showed that
nonpathogenic Escherichia coli could become an enterotoxigenic pathogen with the
introduction of plasmids encoding F4 fimbriae and enterotoxin (9).

Testing a mechanism that directly contributes to pathogenesis makes for the most
satisfying investigations. In 2007, experiments were conducted using mice of the same
genetic background, while the Citrobacter rodentium bacteria used to infect the mice
were varied in which set of up to seven effectors they expressed. The authors showed
how the set of sequences expressed rendered the pathogen capable, less capable, or
incapable of transmission to a new host and more or less proficient at causing lethal
damage (10). Unfortunately, there are more than a few papers declaring a gene prod-
uct a “virulence factor” after experiments show a “decrease in virulence” following de-
letion of the gene, though no mechanism can be inferred. In the absence of adequate
controls, the gene product in question may simply be necessary to the normal func-
tioning of the organism without necessarily affecting the host.
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(i) When “virulence factors” are not sequences of concern. The “virulence factor”
appellation is rife in the literature. “Factor” covers carbohydrates, lipids, proteins, and
combinations thereof, as well as small RNAs. Encoded virulence factors are prima facie
candidates for SoCs. However, molecules called virulence factors are not always a
threat to a host. Bacterial siderophores are called virulence factors, but most are scav-
enging molecules without which the bacterium would perish in any environment
where metal cofactors are rare. It makes more sense to designate these “virulence life-
style” sequences (11), or perhaps “proliferative factors.” The less-than-discriminating
use of “virulence factor” makes it difficult for investigators to discern what sequences
actually harm a host (12). Not all virulence factors are SoCs.

Researcher designations of virulence factors are critical for curators to recognize
them, but the less-than-thoughtful use of the nomenclature can create problems for bio-
informaticians. An analysis of 2,000 purported virulence factors from over 50 bacterial
pathogens found that just 620 were specific to pathogens while 1,368 were common to
both pathogens and nonpathogens. The 620 pathogen-specific virulence factors were
more likely to reside in pathogenicity islands and be secreted via a secretion system (13).
In contrast, the 1,368 “common” virulence factors are probably not SoCs. If put into a ref-
erence database of “virulence factors,” they would be false positives. An adequate sys-
tem for categorizing SoCs should recognize these differences.

(ii) Existing virulence factor data sets and the importance of manual curation
of function.Many databases of virulence factors do not curate their sequences accord-
ing to an established rubric that allows for the extraction of function. The Virulence
Factor Database (VFDB) is limited to bacteria pathogenic for humans. The developers
eschew manual curation (14). The data set associated with VFDB includes ;3,400
sequences from ;21 bacterial species. No justification is given for the presence of con-
stituent sequences. No curations keyed to individual sequences are provided. The
Pathogen-Host Interaction Database (PHI-Base) captures the genetics of pathogen-
host interactions from the primary literature along with some functional details, but it
principally notes changes in virulence that accompany genetic variants. The effect that
these parasite sequences have on the host are of secondary importance (15). The same
is true of the Victors database (16). A comparison of bacterium-related databases sug-
gests that functional annotation of SoCs is not a significant concern (17). We think that
manual curation is required to adequately annotate the consequences that SoCs have
on host processes and enable further advances in computational biology.

IDENTIFYING AND ASSESSING SEQUENCES OF CONCERN

There is a chicken-and-egg aspect to identifying SoCs. One must have some idea of
what microbial features might be threatening to know what to examine, but it is not
until “enough” sequences are perused that the important aspects can be recognized
categorically. By reviewing the literature, we discovered sequences that appear impor-
tant to pathogenesis for parasites of humans, as well as those of animals and plants
necessary to human well-being. We have documented over 2,750 of these, which we
hope is a fair sample to develop a conceptualization for understanding biothreats.
Assessing sequences of concern for their danger in a bioengineering, gain-of-function
(GoF) scenario required us to consider two parameters: (i) the effect on the host,
including which host processes are manipulated, and (ii) how directly the sequence
exerts its effects. For this minireview, we limit ourselves to reviewing functions of SoCs
(FunSoCs) from microbes targeting mammals. The FunSoCs are summarized in Fig. 1
and discussed below. Included as supplemental material is a table of short definitions
for the FunSoCs (Data Set S1) and a spreadsheet (Data Set S2) with 220 sequence types
from 60 pathogenic species (bacterial, fungal, protozoal, viral) annotated with UniProt
accession numbers, FunSoCs, and PubMed identifiers to illustrate our curation.

(i) What is the effect of the SoC on the host? (a) Host damage as the sine qua non
of pathogenicity. It is generally true that lethal infections are deadly because one or
more organs become disabled from cumulative damage. Ascertaining the proximal
cause of damage can be problematic. Host damage can be the direct result of the
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parasite’s action on the host, the host’s reaction to the parasite, or both. While infec-
tious disease theorists of the 20th century once credited the pathogen with unique dis-
ease-causing ability, this is no longer tenable (18–20).

Damage is the hallmark of pathogenicity (21). Since this is the case, “toxins” might
be said to occupy the preeminent place among virulence factors since they are among
the most damaging of molecules deployed by pathogens. In bacteria, toxins are distin-
guished from damaging effectors in that the former are capable of mediating their
own attachment and invasion into a cell, while effectors must be secreted (22).

The term “toxin” is notably nonspecific and amounts to little more than a verbal tag
that a molecule is inimical to the life of one or more taxa. But the taxa susceptible to
the toxin need to be understood. Alpha-amanitin, bicuculline, carbon monoxide, chlo-
rine gas, ciguatoxin, cyanide, MARTX from Vibrios, ricin, and sarin have disparate modes
of action and are all deadly to mammals if administered appropriately. In contrast, the
toxins of toxin/antitoxin (TA) systems are not hazardous for mammals; however, they
might be administered (23). Of course, toxins do not exhaust the range of damaging
biological sequences. The following paragraphs attempt to categorize host damage
caused by SoCs.

FIG 1 Overview of functions of sequences of concern (FunSoCs) acting directly and indirectly.
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1. Some SoCs lead to direct killing of a cell by enzymatically compromising a vital
process (like translation) or by perforating the membrane via a pore-forming
protein or a destabilizing enzymatic process. This includes disabling a cell, as with
Shiga toxin from Shigella/Escherichia coli (24), or membrane destabilization, as
with candidalysin from Candida albicans (25, 26). The tripartite HBL enterotoxin
from Bacillus cereus (27–29), beta toxin from Clostridium perfringens (30, 31),
leukotoxin from Aggregatibacter actinomycetemcomitans (32, 33), VCC from Vibrio
cholerae (34), VopT (35) and VopV (36) from Vibrio parahaemolyticus, and
phospholipase A2 from Vibrio vulnificus (37) are other such SoCs.

2. Degrading a tissue can be accomplished by proteolysis of the extracellular matrix,
loosening the attachments between cells, or liberating a cell from a tissue. The last is
sometimes called the “cytopathic effect.” SoCs that accomplish this include aerolysin
from Aeromonas hydrophila (38), InhA from Bacillus anthracis (39), fragilysin from
Bacteroides fragilis (40), HtrA from Campylobacter jejuni (41), candidalysin from C.
albicans (42), NS1 from dengue virus (43), secreted autotransporter toxin (44), the
plasmid-encoded toxin (45), cell cycle-inhibiting factor (46), cytolysin A (47), NleA, Map,
and EspF (48) from E. coli, CagA from Helicobacter pylori (49, 50), Mip from Legionella
pneumophila (51), collagenase A from Leptospira (52), Alp1 from Neosartorya fumigata
(53), MIF from Plasmodium berghei (54), exfoliative toxins A and B from S. aureus (55),
and VopF from V. cholerae (56).

3. Disabling an organ system is the severest type of damage. SoCs that accomplish
this include ExoU (57) and ExlA (58) from Pseudomonas aeruginosa, CARDS toxin
from Mycoplasma pneumoniae (59), epsilon toxin (60) and iota toxin (61) from C.
perfringens, edema toxin (62) and lethal toxin (63, 64) from B. anthracis, cholera
toxin from V. cholerae (65), pneumolysin from Streptococcus pneumoniae (66),
TcdA and TcdB from Clostridioides difficile (67), lethal toxin from Paeniclostridium
sordellii (68, 69), staphylococcal and streptococcal superantigens (70, 71), and
NSP4 from rotavirus, a rare example of a viral toxin for mammals (72, 73).

4. SoCs in the class that specifically instigate a damaging inflammatory response
appear to directly interact with host components to provoke an inflammatory
reaction. These include alpha-hemolysin from Staphylococcus aureus (74, 75),
PE11 (76) and PE_PGRS17 (77) from Mycobacterium tuberculosis, Loa22 from
Leptospira interrogans (78), pertussis toxin from Bordetella pertussis (79, 80), SipA
from Salmonella (81, 82), ExhC from Staphylococcus sciuri (83, 84), Nhha from
Neisseria meningitidis (85), GRA24 from Toxoplasma gondii (86), VvpM from Vibrio
vulnificus (87), and nucleocapsid protein (88, 89), spike glycoprotein (90, 91),
membrane protein (92), ORF3a (93), and Nsp1 (90) from SARS-CoV. Induction of
inflammation can be hard to differentiate from the host reaction to microbial
provocation that results in inflammasome activation (94). This class of effectors
may require splitting into microbially induced versus microbially provoked host
inflammation.

(b) Immune subversion as an essential condition for pathogenicity. Stanley Falkow
observed that the avoidance of host defense mechanisms was a feature of disease-
causing bacteria (95). Sequences that subvert innate immune pathways are also found
in fungal and protozoan parasites and are a universal feature of viruses. Immune sys-
tems embody the “wisdom” of hundreds of millions of years of adaptation over which
they have had to detect, deflect, and defeat micro- and macroparasites (96–98). More
than 6% of all human genes have a role in immunity (99). Immune systems impose
layers of molecular and cellular obstacles to thwart invaders that breach epidermal bar-
riers. Parasites survive these host stratagems by employing molecules that mask their
presence, mimic and/or misdirect host responses, or simply eliminate immune effec-
tors. Of the SoCs that we documented, ;60% of the viral sequences and ;20% of the
bacterial and eukaryotic sequences subvert host immune responses.

Deficits in immune detectors and effectors of a host can render commensal sym-
bionts pathogenic and infections with “nuisance” organisms lethal. Subtle changes in
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the sequence of a single host immune effector molecule can mean the difference
between life and death during challenge with a parasite (100). The study of human
immune deficiencies shows the critical importance of these components of innate im-
munity for defense against the specific, usually narrow, set of parasites against which
they defend (101–103). Many infections run their nonlethal course according to the life
cycle of the parasite when facing an average host immune response. These are some-
times called “self-limiting” infections, but a defect or deficit in a host immune compo-
nent can abolish the limitation and produce a life-threatening disease.

Of the ;2,000 parasites that can cause disease in humans, the majority are oppor-
tunistic: limited to infecting immunocompromised persons (4, 5). The “opportunity”
occurs when a proto-parasite encounters an individual whose immune defenses are
diminished from (i) loss of barrier function, (ii) congenital immune defects, (iii) infection
with HIV, (iv) immune-suppressing pharmacotherapy, or (v) other disease states that al-
ter the homeostasis of the host. These render the host susceptible to microbial para-
sites that could not successfully establish themselves otherwise. SoCs mediating
immune subversion essentially make a host susceptible in the absence of a compro-
mised immune system. Some immune-evading SoCs from Streptococcus are shown in
Fig. 2.

1. Suppression of host immune signaling. SoCs that subvert the immune system
by disrupting host immune signaling comprise a large set; some subdivisions
are listed below.
a. Disruption of host mitogen-activated protein kinase signaling. Some

SoCs work by directly interfering with a component of the host’s mitogen-
activated protein kinase signaling pathways (e.g., p38MAPK, JNK, ERK1/2) or a
molecule proximal to them. For example, NleD (104) and NleL (105) of E. coli,
SptP (106, 107) and SpvC (108, 109) from Salmonella, OspF from Shigella (108,

FIG 2 Examples of immune subversion by streptococcal effectors. Host phagocytes are debilitated by streptolysin O (SLO) (70), streptolysin S (SLS) (294,
295), and secreted phospholipase A2 (Sla) (296). Neutrophil extracellular traps (NETs) are countered by the Sda1 and SpnA nucleases (264, 265).
Antimicrobial peptides are inactivated by the secreted streptococcal inhibitor of complement (Sic) and SpeB proteases (200, 201). M-like proteins bind host
factor H and plasminogen/plasmin, which inactivate host complement components to protect the bacterium (297). Sic protects streptococci from
phagocytosis by neutrophils, resists the host complement membrane attack complex (MAC) (70), and counters the antibacterial actions of the host
secretory leukocyte proteinase inhibitor (SLPI) (200, 201). Host antibodies are destroyed by membrane-associated ZmpC (226) and the secreted IdeS
proteases (222) and inactivated by sugar-cleaving EndoS (223). The group B Streptococcus C5a peptidase ScpB is a serine protease and surface invasin (298)
that reduces the neutrophil response and bacterial clearance by cutting the chemoattractant C5a (299). The streptococcal complement protector ScpA
helps the bacterium resist phagocytosis (183) and also inactivates C5a (300). SpyCEP eliminates the neutrophil chemoattractant IL-8 (230) and other
chemokines (225). Note that this figure depicts SoCs found in both group A and group B streptococci for illustrative purposes, but they would not
naturally occur together.
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110), vaginolysin from Gardnerella vaginalis (111), GRA24 from Toxoplasma
gondii (86), YopJ from Yersinia (112), and M2L from vaccinia virus (113).

b. Inhibition of host NF-jB activation. Some SoCs affect IkappaB, RelA, p50,
IKK, NEMO, or a molecular constituent proximal to them, for example, AexU
from Aeromonas hydrophila (114), BopN from Bordetella (115, 116), TssM from
Burkholderia pseudomallei (117), AvrA (118) and GtgA (119) from Salmonella,
InlC from Listeria (120), IpaH1.4, IpaH2.5 (121), IpaH9.8 (122, 123), and OspG
from Shigella (124, 125), NleC (126, 127), NleE (128), and NleH1/2 (129, 130)
from E. coli, MavC from L. pneumophila (131), and BPLF1 from Epstein-Barr
virus (132).

c. Manipulation of host signaling through tumor necrosis factor (TNF) receptor-
associated factor (TRAF). SoCs can manipulate sequences downstream of the
TNF receptor and upstream of NF-kB, for example, TssM from B. pseudomallei
(117), NleB from Citrobacter rodentium (128, 133, 134), BPLF1 (132) and LMP1/
BNLF1 (135) from Epstein-Barr virus, NleB1 (128, 136) and Tir (137, 138) from E. coli,
SseK1 from Salmonella (128, 139), OspI from Shigella (140), GRA7 (141) and GRA15
(142) from T. gondii, K7R from vaccinia virus (143, 144), and YopJ from Yersinia
pestis (145).

d. Disruption of signaling from host Toll-like receptors. Disruption of
signaling from Toll-like receptors can occur through alteration of the
abundance of the host ligand or receptor, alteration of the ability of the
ligand to bind to the receptor, or direct agonism/antagonism of the host
receptor or cellular cofactors. SoCs engaging in these activities include PI-
PLC from B. anthracis (146), envelope glycoprotein from Ebola virus (147),
BGLF5 from Epstein-Barr virus (148), PE9-PE10 from M. tuberculosis (149), and
Ssl3 (150) and Ssl4 (151) from S. aureus.

e. Disruption of host JAK-STAT signaling. Many viral proteins, including NSP2
from Chikungunya virus (152) and ORF6 from severe acute respiratory
syndrome coronavirus (SARS-CoV) (153), target the JAK-STAT signaling pathway
for antiviral defense.

f. Disruption of host RIG-1 signaling. Keeping RIG-1 inactive through
sequestration or targeted destruction of RIG-I or proteins immediately proximal
to it via ubiquitination is a function of many viral proteins. The 3C proteinase of
human poliovirus cuts host RIG-1 to prevent interferon activation (154).

g. Disruption of host protein kinase R activity. The disruption of host protein
kinase R activity can occur by sequestering viral double-stranded RNA
(dsRNA), by manipulating the phosphorylation of host elongation factor 2-
alpha, and by directly binding host PKR. E3L of vaccinia virus binds viral
dsRNA to prevent it from activating of host protein kinase R and OAS (155).
NS1 from influenza virus (156) and VP35 from Marburg virus (157) also
attenuate antiviral signaling.

h. Inhibition of host STING activity. Both E1A from human adenovirus and E7
from papillomavirus inhibit the cGAS-STING pathway, along with many other
viral proteins (158).

2. Resistance to phagocytosis. SoCs interfering with host phagocytosis of
microparasites act through a variety of mechanisms, including inhibiting opsonization,
manipulating the cytoskeletal dynamics of host phagocytes, and antagonizing
phagocyte receptors. These SoCs include AexU from A. hydrophila (159), BadA from
Bartonella henselae (160), AC toxin (161) and BteA (162) from Bordetella, OspB from
Borrelia burgdorferi (163), Hgt1p from Candida albicans (164), App1 from Cryptococcus
(165, 166), GelE from Enterococcus faecium (167), EspJ (168) and Pic (169) from E. coli,
RodA from Neosartorya fumigata (170), ExoS (171) and ExoT (172, 173) from P.
aeruginosa, aureolysin (174), CHIPS (175), Efb (176, 177), Sbi (178), SCIN (179), and Spa
(179, 180) from S. aureus, BibA (181), M protein (182), ScpA (183), and Sic (70) from
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Streptococcus, RtxA from V. vulnificus (184), VopQ from V. parahaemolyticus (185), and
PsaA (186), YopE (187), YopH, YopO/YpkA, and YopT (188–190) from Yersinia.

3. Resistance to complement-mediated killing. Host complement effectors can
be directly proteolyzed, as by Vag8 of B. pertussis (191), or inactivated indirectly, as
by CipA from Acinetobacter baumannii, which recruits host plasminogen to the
bacterial surface (192). BclA of B. anthracis mediates serum resistance by recruiting
factor H, a host complement control protein, to the bacterial surface (193).

4. Resistance to antimicrobial peptides. Host antimicrobial proteins are cationic
peptides that interact with the negatively charged bacterial membrane. They can
be destroyed by bacterial proteases, including OmpA from Klebsiella (194), ClpX
from B. anthracis (195), CPAF from Chlamydia (196), staphylokinase from S. aureus
(179), SepA from Staphylococcus epidermidis (197), DRS (198), SspA, SspB (199),
SpeB, and Sic from Streptococcus (200, 201), and OmpU from V. cholerae (202).

5. Resistance to oxidative killing. Host oxidases can be neutralized by bacterial
effector molecules, including superoxide dismutase from B. anthracis (203),
SodC from Coxiella burnetii (204), KatN from E. coli (205), SodC from Francisella
tularensis (206), and SOK from S. aureus (207). The generation of reactive oxygen
(or nitrogen) species can also be countered by upstream legerdemain, as with
EtpE from Ehrlichia chaffeensis (208), Ndk (209), PPE2 (210), PE5, PE15 (211), and
PE_PGRS62 (212) from M. tuberculosis, SopB from Salmonella (213), VopL from V.
parahaemolyticus (214), and YopH from Y. pestis (188, 215).

6. Countering immunoglobulin. Parasite effectors can sequester, destroy, or
neutralize immunoglobulins by other means, as exemplified by BatB from Bordetella
(216), IgA1P from Haemophilus influenzae (217), IbpA from Histophilus somni (218,
219), Sbi (178), Ssl7 (220), Spa (180), and staphylokinase (221) from S. aureus, IdeS
(222), EndoS (223), SibA (224, 225), and ZmpC (226) from Streptococcus, and InvD
from Y. pseudotuberculosis (227).

7. Defeat of cytokines. Pertussis toxin from B. pertussis, Lpd from P. aeruginosa,
CHIPS, Eap, FPRL1 inhibitory protein, and Ssl5 (228) from S. aureus, PrpL (229) and
SpyCEP (230) from Streptococcus, BARF1 from human herpesvirus 4 (HHV-4) (231,
232), and a plethora of orthopoxviral receptors/binding proteins can form
associations with host TNF, interleukins, chemokines, and interferons to dysregulate
host immune signaling (233–243).

8. Inhibition of antigen presentation. Pertussis toxin from Bordetella (80), EsxG,
EsxH (244), Vpu from HIV-1 (245), ORF66 from HHV-3 (246), BILF1 (247, 248), BNLF2a
(249–251), and BZLF1 from HHV-4 (252), E1A and E3 from human adenovirus (253,
254), LpqH (255, 256), LprA (257), LprG (258), and PPE38 (259) from M. tuberculosis,
SteD from Salmonella (260), and IpaH4.5 from Shigella (261) inhibit host antigen
presentation by various mechanisms.

9. Resistance to other host immune effectors. As they are expiring, host
neutrophils process their nuclear DNA to create neutrophil extracellular traps
(NETs) capable of trapping and killing microparasites. Bacterial nucleases that
can counter these include Nuc from Neisseria gonorrhoeae (262) and EndA (263),
Sda1 (264), and SpnA (265) from Streptococcus.

10. Immunomodulation. Immunomodulation occurs when a parasite protein
directly affects aspects of the host immune system in a fashion that does not
suggest an obvious advantage for the parasite relative to the host. Sequences
include Hcp from A. hydrophila (266), AnkX (267) and LegC4 (268, 269) from
Legionella, EspC (270), Psts1 (256), PE9, and PE10 (149) from M. tuberculosis, and
SspH2 from Salmonella (271).

(c) Adherence to the host cell. To affect the host, symbionts need to either secrete
toxins that act while the microbe is at a distance from the host cell or contact host cells
or tissues directly. This requires specific adhesin molecules that anchor them, however
durably, to the host. Toxins also require adhesins to recognize target cells. Adherence
can be to specific host protein receptors, to carbohydrate moieties of glycoproteins or
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glycolipids, to membrane cholesterol, and/or to components of the host extracellular
matrix. Such proteins are abundant, and host attachment is often just one of their
functions (272, 273).

(d) Dissemination in the host. Dissemination factors enable the breaching of host
barriers. A breach can happen by proteolytic digestion of tissues or the release of junc-
tional adhesins to allow parasite passage. SoCs that degrade tissue can also be dissemi-
nation factors. Examples include ExoS and ExoU from P. aeruginosa (274), InhA from B.
anthracis (39, 275), and staphylococcal exfoliative toxins (50, 55, 276).

(e) Host cell invasion. A microsymbiont can “enter” a host cell easily when the host
cell is a professional phagocyte, but this happens under conditions unfavorable for
symbiont survival. Invasins mediate microbial entry into a range of host cells, including
nonphagocytic ones, in ways that allow the parasite a greater probability of reproduc-
tive success. Bacterial toxins also possess invasive subunits that enable their entry into
host cells; this distinguishes them from effectors, which require a secretion system (22).

(f) Movement in host cell. Movement within a host cell allows a parasite to circum-
vent host barriers and avoid programmed defenses. Some intracellular bacteria, as well
as vaccinia virions, hijack host actin polymerization to propel themselves into adjacent
cells. They thus avoid exposure to the hazards of the extracellular milieu (277).

(g) Niche creation in host cells. Some cellular microbial symbionts manipulate host
cell processes to create intracellular niches, where they are protected from host
destruction and in which they replicate. This has been investigated most thoroughly in
Brucella, Chlamydia, Coxiella, Ehrlichia, Legionella, Listeria, Mycobacteria, and Salmonella.
SoCs from these bacteria are generally secreted and subvert the normal endosomal
and cytoskeletal dynamics of the host cell. Sorting out the mechanisms for these effec-
tors—there are hundreds just in Legionella—is exceedingly complicated, as many are
redundant (278).

(ii) How directly does the sequence exert its effect? When considering the ease
with which the disease-causing capacity of a pathogen might be enhanced by
sequence addition/gain-of-function (GoF), it is important to consider how directly the
SoC acts on the host. SoCs that act independently without the need for extra (i.e., sec-
ondary or tertiary) sequences would affect virulence more parsimoniously. There are at
least four levels of SoC involvement in pathogenesis.

1. Type 1 sequences that directly interact with host molecules to contribute to
disease are the most concerning. The SoCs described above (i.e., damage,
immune evasion, adherence, invasion, movement, dissemination, niche creation)
act directly to produce a specific deleterious effect.

2. Type 2 sequences make or modify molecules that affect the host. These include toxin
synthases, enzymes that make capsules rendering bacteria resistant to phagocytosis,
and “passive immune evasion” enzymes which alter microbial molecules to protect
the possessor from host recognition and/or immune effectors. Examples of the latter
include AlmG, a peripheral membrane aminoacyl transferase from V. cholerae that
modifies lipopolysaccharide to resist host cationic antimicrobial peptides (279), and
Cbu0678 from C. burnetii, which changes the O antigen of lipopolysaccharide (LPS) to
decrease immune recognition (280).

3. Type 3 sequences are secretion system components that transport directly acting
SoCs to the correct location for function. These include chaperones for the
effector proteins.

4. Type 4 sequences are transcription factors regulating the expression of sequences
that produce effects directly. While they can be very important for the virulence of
a microbe and greatly influence how pathogenic a specific microorganism can be,
they might be replaced in a GoF scenario by similar factors.

(iii) What host cellular process is affected? We found it helpful to annotate SoCs
with the host processes that they modulate, as these can often be discerned before the
biochemical mechanisms are discovered. No fewer than nine aspects of eukaryotic host
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cell biology are targeted by parasite proteins for manipulation: (1) transcription, (2) trans-
lation, (3) the cell cycle, (4) apoptosis, (5) ubiquitination, (6) small GTPase dynamics, (7)
cytoskeleton dynamics, (8) endomembrane, dynamics, and (9) autophagy/xenophagy.
Viruses tend to manipulate the first five processes, while bacteria, particularly intracellu-
lar parasites, affect the final six, with overlap at apoptosis and ubiquitination.

DISCUSSION

Gauging the risks of an emerging pathogen strain or one created through microbial
engineering (accidental or otherwise) requires a good comprehension of the patho-
genic possibilities of SoCs from natural parasites of humans and livestock. An assess-
ment of existing controlled vocabularies revealed a gap for sequences from nonviral
parasites. We documented the role played in disease of over 2,750 parasite proteins
from thousands of papers. These were annotated with the FunSoC schema, which cate-
gorizes their host-affecting features. The 220 sequences mentioned in this text are pro-
vided with full annotations in Data Set S2 in the supplemental material, with defini-
tions provided in Data Set S1.

FunSoCs are tidy enough for human comprehension. For a given SoC, they provide
a quick assessment for ;30 host-affecting functions. However, they are insufficiently
granular for capturing the molecular details necessary for a comprehensive apprecia-
tion of function. We think that these details are better understood with a new adjunct
to GO, Pathogen Gene Ontology (PathGO). This resource is being developed by a
group at the Johns Hopkins University Applied Physics Laboratory and consists of
;180 terms (https://github.com/jhuapl-bio/pathogenesis-gene-ontology). These are
being rooted in biological process and molecular function terms of the Gene Ontology
resource (281, 282). We have been suggesting terms and contributing annotations dur-
ing development. Data Set S2 features a preview of PathGO terms in column F, along
with the relevant PubMed ID accession numbers as citations. PathGO will be described
in a future publication.

(i) The utility of gain-of-function experiments in microbial pathogenesis.
Sometimes eliminating a bacterial sequence suspected of involvement in pathogenic-
ity has no effect. Legionella pneumophila exhibits so much functional redundancy in its
effectors that the loss of one or two sequences of a certain type may not affect the
phenotype (283). Investigators of bacterial adhesion face a similar situation when the
suspected adhesin originates in a microbe with multiple ways of associating with a tar-
get cell. Researchers circumvent this by studying the adhesin in the background of a
specially selected “nonadherent” bacterium (284–289). Experiments in which a
sequence “adds” virulence to commensals or avirulent microbes is more interpretable
than attempts to ascertain virulence by subtraction from a pathogenic background.
The former involves a GoF for the avirulent microbe.

Only a few efforts to make bad bugs worse intentionally have been described (290).
However, there are hundreds of publications relating the expression of one or more
sequences from an infectious parasite in a heterologous organism. Two dozen of these
are noted in column E of Data Set S2. Altered organisms typically display a new prop-
erty consistent with the suspected pathogenic function of the sequence in the original
organism. These GoF experiments are illuminating but can also be problematic (291,
292). The role that a sequence plays in the pathogenicity of a microbe can depend
on other proteins and/or the timing of its expression. Simply expressing the sequence
in another microbe, even a similar one, is no guarantee that it will perform similarly.
The question can be settled only empirically within the limits of the model. The most
dramatic example of a GoF experiment with biothreat implications is the notorious
mouse interleukin-4 (IL-4) expression in Ectromelia virus that was astoundingly lethal
in even vaccinated animals (293). An intriguing bacterial example involves the secreted
protease SpyCEP of group A Streptococcus. When the nontoxic SpyCEP was expressed
in the nonpathogenic bacterium Lactococcus lactis, it rendered the cheese-making fir-
micute capable of infection in a mouse leg wound model. The SpyCEP protease
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degrades the chemokine interleukin-8, which host neutrophils use to coordinate their
defense, “sniffing out” bacteria within infected tissues. Interruption of this coordination
produced a systemic disease that had lethal consequences for the host within 24 h of
inoculation (230).

(ii) Recognized criteria for sequences of concern improve biosecurity. For those
worried about either the accidental engineering of pathogens via synthetic biology or
the production of bioweapons with enhanced efficacy, a concerning sequence is one
that, when transferred to a different microbe, increases the ability of that microbe to
damage a susceptible host, increasing the pathological consequences of infection. But,
as the cases of SpyCEP and murine IL-4 demonstrate, the disease-causing properties of
microbes have interesting dependencies that cannot be understood in the absence of
experiments. We think that the criterion of enhanced pathogenicity upon expression
in a heterologous nonpathogen is a good starting place for identifying SoCs, but most
will not be discovered through such GoF experiments. Our annotation project has
demonstrated that there are thousands of microbial sequences that can reasonably be
assumed to enhance the pathogenic ability of a heterologous microbe if transferred. In
such cases, the disease-causing properties of these sequences are described in the con-
text of the original pathogenic organism and not in a heterologous, nonpathogenic
microbe. We assume that these sequences may retain their properties if transferred to
a similar microbe. At the very least, it does not seem responsible to assume that they
would be innocuous. Documenting these sequences enables them to be recognized
via bioinformatics and thus improves biosecurity for those involved in the manufacture
of synthetic nucleic acids (2).

Toxins and microbial effectors that damage the human host are of greatest concern.
Among these, SoCs that provoke organ failure have the most severe consequences.
Next in importance are sequences that subvert host immunity. Noting the host cellular
process(es) with which a SoC interacts and how directly it affects host molecules allows
a better understanding of its role in microbial pathogenesis. Formalizing these criteria
improve recognition of SoCs from the literature, provide the means for distinguishing
them by function, and permit the reporting of these functions in bioinformatic applica-
tions. We think that the FunSoC vocabulary and data sets annotated with it can be a
resource for computational epidemiology, microbial genomics and forensics, DNA syn-
thesis screening, human disease modeling, and biosecurity assessment.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.3 MB.
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