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ABSTRACT

Algorithmic prediction of RNA secondary structure
has been an area of active inquiry since the 1970s.
Despite many innovations since then, our best tech-
niques are not yet perfect. The workhorses of the
RNA secondary structure prediction engine are re-
cursions first described by Zuker and Stiegler in
1981. These have well understood caveats; a no-
table flaw is the ad-hoc treatment of multi-loops, also
called helical-junctions, that persists today. While
several advanced models for multi-loops have been
proposed, it seems to have been assumed that in-
corporating them into the recursions would lead to
intractability, and so no algorithms for these mod-
els exist. Some of these models include the clas-
sical model based on Jacobson–Stockmayer poly-
mer theory, and another by Aalberts and Nadagopal
that incorporates two-length-scale polymer physics.
We have realized practical, tractable algorithms for
each of these models. However, after implementing
these algorithms, we found that no advanced model
was better than the original, ad-hoc model used for
multi-loops. While this is unexpected, it supports the
praxis of the current model.

INTRODUCTION

Ribonucleic acid (RNA) is an important molecule in biol-
ogy. We are only now beginning to understand the scope
of its role as new functional RNA sequences are discov-
ered (1–3). There has been an explosion of RNA sequence
data as technology progressed in recent years (4). A well ac-
cepted axiom in functional biology is that molecular struc-
ture is tantamount to biological function. This appears to
be true for RNA, as its structure is conserved during evo-

lution (5). This should come as no surprise in light of its
functional role. For example, eukaryote development has
been described as being driven by an ‘RNA machine’ (6).
Other examples include its action as a catalyst (7,8), its role
in gene silencing (9), and the RNA world hypothesis (10),
which posits that RNA had a fundamental role in the gen-
esis of life. As such, the determination of RNA structure is
an important problem.

Unfortunately, the most accurate approaches for deter-
mining RNA structure, such as nuclear magnetic resonance
and X-ray crystallography, are time consuming, expensive,
and require considerable technical expertise, as RNA is
more labile than DNA (11). Less involved approaches pro-
vide an attractive alternative. These comprise comparative
sequence analysis, and de novo prediction algorithms. Com-
parative analysis requires considerable manual effort and a
large set of related RNA sequences (5), which is often un-
available. As such, de novo computational approaches are
an area of intense interest. These methods typically predict
the structure of RNA from only the primary nucleotide se-
quence.

Most de novo secondary structure prediction algorithms
are derived from work by Zuker and Stiegler (12), who, in
1981, provided a set of recursions defining a dynamic pro-
gramming algorithm capable of efficiently finding a min-
imum free energy (MFE) structure. The import of this
follows from Anfinsen’s thermodynamic hypothesis (13),
which posits that biological molecules are likely to be in
their MFE state. Because of this, the Zuker and Stiegler al-
gorithm was able to predict RNA secondary structures with
reasonable accuracy.

The Zuker and Stiegler algorithm and its derivatives rely
on a model of RNA secondary structure folding free energy
change to define MFE structures. This model has since been
called the nearest neighbor model. The nascent form of the
model was defined by Tinoco et al. (14,15), and by Salser
(16). Later it was formalized and expanded by Turner and
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Figure 1. A tRNA secondary structure (Sprinzl ID RA1661 (43)) that is
perfectly predicted by the linear model (PPV = 1, sensitivity = 1), but not
by the logarithmic model (PPV = 0, sensitivity = 0). Panel (A) shows the
prediction from the linear model and panel (B) shows the prediction from
the logarithmic model. The logarithmic model computes the free energy of
the linear prediction to be –30.1 kcal/mol, while its own prediction has a
score of –30.2 kcal/mol. The linear model, on the other hand gives these
scores of –30.9 kcal/mol and –30.2 kcal/mol respectively.

coworkers (17–22), and is described in full in the Nearest
Neighbor Database (NNDB) (23).

The original algorithm described by Zuker and Stiegler
(12) gives multi-loops zero folding free energy, effectively ig-
noring their free energy contribution. Multi-loops are loops
from which three or more helices exit, and an example is
shown in Figure 1 of a four-way multi-loop. Later, a sim-
ple, ad-hoc, linear function of both the number of un-
paired nucleotides and the number of branches was used
to model multi-loop energy (22,24,25). It was stated that
using a more appropriate model, derived from Jacobson–
Stockmayer polymer theory (26), would require exponen-
tial computation time (27). Other reports have provided
only exponential time algorithms that could incorporate
the model, which implies that this statement is well ac-
cepted (25,28). We report a novel finding: the Jacobson–
Stockmayer based model can be incorporated without the
exponential time requirement, and we have an efficient,
polynomial time algorithm for this model. Using this algo-
rithm, we will compare the effectiveness of the linear model
against the Jacobson–Stockmayer based model. This is of
practical interest, as the linear function is used by mod-
ern software packages for MFE prediction (29–31). The
Jacobson–Stockmayer-based model is typically used by the
same software packages to evaluate the free energy change
of given RNA structures.

We shall refer to the Jacobson–Stockmayer model of
multi-loop folding free energy as the logarithmic model.
This is because it has a logarithmic dependence on the num-
ber of unpaired nucleotides in a multi-loop. Let us define the
number of unpaired nucleotides in a multi-loop as u, and
the number of branches as b, then the logarithmic model is

defined, in kcal/mol, by:

�G◦ =
{

10.1 − 0.3b − 0.3 u if u ≤ 6
10.1 − 0.3b − 0.3 × 6 + 1.1 × ln(u/6) otherwise

(1)

Supplementary Table S1 has reference free energy change
values under the logarithmic model for various combina-
tions of b and u. These were computed using the formula
exactly as presented here.

The logarithmic term and its coefficient are from
Jacobson-Stockmayer polymer theory (26), and appear to
have first been suggested by Salser (16). However, the
other terms come from the Turner 1999 parameters (17)
which were derived by optimizing performance on known
structures. For more information about this model and its
parametrization we refer the reader to the NNDB (23), and
to the derivation of the Turner 1999 parameters (17). For
comparison, the linear model parameters we used are taken
from work by Mathews et al. (32), and are based on linear
regression. They are as follows in kcal/mol.

�G◦ = 9.3 − 0.6b + 0 u (2)

Note that these parameters were later published as the
basis of different, optimized parameters for the Turner 2004
parameter set (18). However, in 2009, the parameters were
reverted to the unoptimized parameters we used (33), and
which are currently used in the modern version of RNAs-
tructure (29). The parameters were reverted so that there
was no training of the parameters to structure prediction ac-
curacy. This way, a fair comparison against CONTRAfold
(34) could be done.

After these multi-loop models were proposed, other more
advanced models were proposed. Aalberts and Nandagopal
(35) presented a model that applies two-length-scale poly-
mer physics to describe multi-loop free energies in terms
of chain entropy. This expands upon the Jacobson–
Stockmayer theory by explicitly accounting for the fact that
unpaired nucleotides and helix ends have different sizes, and
thus contribute differently to the entropy cost of closing the
loop. They did not provide a MFE prediction algorithm in-
corporating their model, but instead re-evaluated the fold-
ing free energies of a set of low free energy structures gen-
erated by the standard dynamic programming algorithm as
had been done previously for the logarithmic model (17).
They did find evidence that their model made accurate MFE
predictions, and thus was a realistic energy model. We were
also able to design a polynomial time MFE prediction al-
gorithm for this model. We here use it to comprehensively
test and analyze the performance of the model. The model
defines a multi-loop in terms of two different length scales:
length-a, and length-b, which represent the typical length
between consecutive nucleotides, and the length of crossing
a multi-loop branch respectively. The precise values of a and
b are defined in angstroms to be a = 6.2 and b = 15. If we
say that the number of length-a segments is N, and the num-
ber of length-b segments is M, then the model is defined, in
kcal/mol, as:

�G◦ = 59
36

kT ln(N
6
5 a2 + M

6
5 b2) + C (3)
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Note that k, T and C refer to the Boltzmann constant,
the absolute temperature, and a scaling factor respectively.
In practice, We fixed the temperature to 310.15 K, as in
the Turner rules (17,18) and as done by Aalberts and
Nandagopal (35), and C was set to zero as suggested by Aal-
berts and Nandagopal (35).

Supplementary Table S2 has reference free energy change
values under the Aalberts and Nandagopal model for var-
ious numbers of branches and unpaired nucleotides. These
were computed using the formula exactly as presented here.
We explain the correspondence of length-a and length-b
segments to the numbers of branches and unpaired nu-
cleotides later, in the section titled Aalberts and Nandagopal
Model.

In our structure prediction benchmarks of MFE al-
gorithms for the linear, logarithmic, and Aalberts and
Nandagopal models, the linear model had the best structure
prediction accuracy. This was surprising, and suggests that
the currently available packages are already using the best
available free energy change model for multi-loop folding,
in spite of the origin of the linear model as computationally
convenient alternative to the logarithmic model.

MATERIALS AND METHODS

Software

All algorithms were implemented using the C++11 pro-
gramming language standard. Our algorithms were pro-
grammed to avoid isolated base pairs (36), which is common
to most popular RNA structure prediction software pack-
ages (29,30). The algorithms also include the free energy
change contributions of coaxial stacking, dangling ends,
terminal mismatches, and end penalties (18,23) fully. The
algorithms were implemented de novo, but RNAstructure
5.8.1 (29) was used to provide the energy model functions
except for multi-loops. A repository containing our code
and results can be found at https://github.com/maxhwardg/
advanced multiloops.

Data set

The data set comprised 3948 known RNA primary se-
quence and structure pairs. These structures are available at
(http://rna.urmc.rochester.edu/archiveII.tar.gz), and com-
prise the ‘ArchiveII’ data set compiled by the Mathews lab.
The data set contains some information about which nu-
cleotides are single stranded for tRNAs. This information
was not used while running our algorithms. The full data
set was used for the logarithmic model. For the AN model,
a reduced data set of 2783 RNA sequences was used. It
comprises all RNA sequences from the full data set whose
lengths in nucleotides are fewer than or equal to 300 nts.
This limit was to ensure that we did not run out of mem-
ory while executing the algorithms. The number of RNA in
each family for these data sets is included in Supplementary
Tables S5 and S6.

Scoring

F-scores were calculated and used for comparison of accu-
racy. F-score is the harmonic mean of sensitivity and posi-

tive predictive value (also called precision, or PPV). Sensi-
tivity is the fraction of known pairs correctly predicted, and
positive predictive value is the fraction of predicted pairs
that are in the known structure. A summary of prediction
statistics including PPV and sensitivity scores for the var-
ious algorithms can be found in Supplementary Tables S5
and S6.

Paired t-tests were used to compare the F-scores of dif-
ferent algorithms predicting the same RNA sequences (37).
Every set of data used in a paired t-test comparison was
checked to see if the assumptions underlying a paired t-test
were satisfied. The data was visualized, then skewness and
kurtosis measurements were computed to ensure that the
data was normally distributed, or at least unimodal and not
extremely skewed.

Scoring of base pairs

Most of the known structures used for testing were de-
termined by comparative sequence analysis. At positions
where a base pair can have alternative pairing partners, for
example one of the two paired nucleotides could alterna-
tively pair with the nucleotide adjacent to its paring partner,
there is uncertainty in the true structure. This arises from
thermal fluctuations in pairing (38) and also from limita-
tions in the resolution of comparative analysis (39). To as-
certain that this did not introduce any problems during our
analysis, we reran all of our statistical tests while consider-
ing these possible alternative base pairings as correct pre-
dictions. No substantial differences were found.

Optimizing parameters

Some of the parameters for the logarithmic model and the
Aalberts and Nandagopal (AN) model are derived by op-
timization. We attempted to re-optimize them because the
parameter set we use, the Turner 2004 (18) parameters, dif-
fers slightly from the parameter set these models were orig-
inally derived for, the Turner 1999 (17,35) parameters. We
will provide results for our algorithms using their original
parameterization, and our optimized parameters.

Optimization was done by grid search over all parame-
ters near the original parameters for each model. A ran-
domly selected set of 20 tRNAs and 20 5S rRNAs was used
as the training set. Performance was judged to be the aver-
age F-score of a parameter set when used for prediction on
the training set. For the logarithmic model, the initiation,
branch, and unpaired costs (originally 10.1, –0.3 and -0.3
respectively in Equation 1) were optimized. Our choice of
parameters to be optimized is the same as in the Turner 1999
parameter set (17). For the AN model, the scaling value C
(originally set to zero) was optimized. The range of param-
eters searched, and the best parameters found, are summa-
rized in Table 1. Supplementary Tables S3 and S4 show ex-
ample free energy changes computed using our optimized
parameters.

RESULTS

Logarithmic model

We give a brief description of the algorithm we found for the
logarithmic model, then prove its theoretical time and space

https://github.com/maxhwardg/advanced_multiloops
http://rna.urmc.rochester.edu/archiveII.tar.gz
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Table 1. A summary of parameter optimization for the logarithmic and AN models. For the logarithmic model, we define a to be the initiation cost (10.1
in Equation 1), and b and c to be the branch and unpaired costs respectively (both –0.3 in Equation 1). The step size was chosen to be 0.1 as this is the
minimum free energy difference recognized in the RNAstructure energy functions by default. All values are in kcal/mol

Search Space Best Parameter Set

Logarithmic Model 8.1 ≤ a ≤ 12.1, −0.8 ≤ b, c ≤ 0.5 a = 11.0, b = −0.8, c = −0.5
AN Model −3.0 ≤ C ≤ 3.0 C = −0.5

requirements. Following these results, we provide the results
for the algorithm’s accuracy when used for MFE structure
prediction. Readers who seek only to understand the prac-
tical application of our findings may wish to skip to the ac-
curacy report.

The algorithm we devised for including the logarithmic
model is an extension of the typical Zuker and Stiegler for-
mulation, which uses the linear model. Since lucid descrip-
tions of this algorithm already exist (12,28,40,41) we do not
include our own in the interest of brevity. We shall define
Paired(i, j) to be the MFE substructure enclosed by the base
pair (i, j). In the case that (i, j) close a multi-loop, another
recurrence relation is usually invoked, which contains the
optimal internal part of a multi-loop. We modified this re-
cursion as follows. We define the MFE of any internal frag-
ment of a multi-loop between bases i and j inclusive that
has at least b branches, and exactly u unpaired nucleotides
to be MultiFragment(b, u, i, j). Now, the Paired(i, j) func-
tion can find the MFE multi-loop it could close by calling
MultiFragment(2, u, i + 1, j − 1) for all possible values of u,
i.e. all possible numbers of unpaired nucleotides. This works
because a multi-loop contains at least three branches, and
thus at least two branches not including the closing branch,
hence b = 2 is sufficient in the recursive call to MultiFrag-
ment. In addition, upon closing a multi-loop, the number of
unpaired nucleotides in that multi-loop is known ahead of
time. This allows the logarithmic dependence on the num-
ber of nucleotides to be computed in Paired when closing a
multi-loop. Note that the remaining terms in the model can
be computed the same way as in the linear model algorithm.

The definition of the MultiFragment recursion has some
subtleties. First, let us say that MultiFragment(0, 0, i, j) = 0
when i > j, since an empty fragment is valid if it contains at
least zero branches, and exactly zero unpaired nucleotides.
Similarly, let MultiFragment(b, u, i, j) = ∞ when i > j and b
�= 0 or u �= 0, since an empty fragment must have exactly zero
branches and unpaired nucleotides. With these base cases
in mind, the recursive cases become easier to understand.
MultiFragment(b, u, i, j) either has an unpaired nucleotide
at i followed by the rest of the multi-loop fragment, or some
branch with its left nucleotide at i followed by the rest of the
multi-loop fragment. The recursive definition is:

MultiFragment(b, u, i, j ) =

min

{
MultiFragment(b, u − 1, i + 1, j )
Decompose ∀k � i < k ≤ j

Decompose = Paired(i, k) − branch cost

+MultiFragment(max(0, b − 1), u, k + 1, j ) (4)

Coaxial stacking, dangling ends, terminal mismatches,
and end penalties are not included in the description we
have given of our algorithm. While their free energy contri-

butions are important, they obfuscate the core idea behind
the algorithm as they entail additional cases. These cases
have been left out since they follow from the core recursions
that we have provided, and can be re-derived.

The complexity analysis of our algorithm is interesting.
First, we assume utilization of dynamic programming on
the recurrence relations. The time requirement of comput-
ing Paired remains O(n3) where n is the number of nu-
cleotides in an RNA. This is because the non-multi-loop
cases require only O(n) time (42), trying all possible num-
bers of unpaired nucleotides requires only O(n) time, and
there are only O(n2) states. The number of states for the
MultiFragment table is O(n3) despite having four parame-
ters. This is because 0 ≤ b ≤ 2 and thus b contributes only
O(1) states. The time requirement for computing a single
state for MultiFragment is O(n), since k must iterate over all
split points. Thus the time requirement overall is O(n4). The
time and space requirement for MultiFragment dominate
the algorithm, and so the algorithm has O(n4) and O(n3)
complexities for time and space respectively. It is important
to realize that, while our algorithm is fast enough to be used
in practice, it has greater time and space requirements com-
pared to the typical algorithm that uses the linear model
and requires only O(n3) time and O(n2) space (25,42).

Logarithmic model results

The linear and logarithmic models were compared for MFE
prediction using a set of RNA sequences with known sec-
ondary structures (see Materials and Methods). A compar-
ison was made using both the original parameters for the
logarithmic model, and our optimized parameters. First we
consider the results using the original parameters.

A summary of prediction statistics can be found in Ta-
ble 2. The linear model was statistically significantly better
(P < 0.05) for three families of RNA, while the logarith-
mic model was superior for two. The results for the remain-
ing five families are not statistically significant, but favor the
linear model. These results constitute evidence that the lin-
ear model is better at predicting secondary structures com-
pared to the logarithmic model when using known param-
eters sets.

Figure 1 provides an example where the linear model pre-
diction is better than the logarithmic, using a typical tRNA
structure. It has a classical, four-way branching multi-loop
that is common to many tRNA. The linear model is able
to predict this structure perfectly. In contrast, the logarith-
mic model does not predict a multi-loop at all, as it gives
the correct multi-loop a higher energy penalty compared to
the linear model. This leads to a poor prediction. The log-
arithmic model failing to predict any multi-loop is a typi-
cal example when the structure prediction is worse than the
linear model. For some statistics that show this effect, see
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Table 2. A summary of the MFE prediction results comparing the linear model to the logarithmic model. F-score values for the predictions are reported.
Average scores grouped by RNA family are provided. Statistically significant differences are bold, denoting the better model. This data set comprises 3948
RNAs

5S rRNA
16S
rRNA

23S
rRNA

Group I
Introns

Group II
Introns

RNaseP
RNA

SRP
RNA

Telomerase
RNA tmRNA tRNA

Linear average
F-score

0.599 0.518 0.669 0.484 0.255 0.529 0.594 0.465 0.406 0.686

Logarithmic average
F-score

0.618 0.515 0.667 0.479 0.248 0.502 0.602 0.463 0.388 0.652

Paired t-test P-value
(two-tailed)

<0.001 0.518 0.952 0.524 0.120 <0.001 <0.001 0.876 <0.001 <0.001

Supplementary Table S7. In addition, for completeness we
provide an example where the logarithmic model makes a
better prediction than the linear model in Supplementary
Figure S1.

The linear model was also compared to the logarithmic
model using our optimized parameters for the logarithmic
model. A summary of these results can be found in Table
3. As before, the linear model has more families for which
it produced statistically significantly higher F-scores (P <
0.05). The linear model has two statistically significant ad-
vantages, while the optimized logarithmic model is only sig-
nificantly superior for tRNA in our data set, which were one
of the RNA families used to optimize parameters. These
results are different to those using the logarithmic model
with its original parameters. Specifically, performance on
tRNA has increased dramatically. In contrast, performance
on SRP RNA has decreased markedly. The average F-scores
on other families has changed too, but less dramatically.

We compared some of the predictions of the logarithmic
model using the original parameters to those obtained using
the optimized parameters. This is informative, if qualitative
rather than quantitative. The RNA described in Figure 1
represents a typical mistake for the logarithmic model using
the original parameters. The same tRNA is perfectly pre-
dicted using our optimized parameters. This is true of many
tRNA, and for some other RNA in which a multi-loop was
overlooked by the original parameters. In contrast, the op-
timized parameters seem to be overly stabilizing when pre-
dicting multi-loops in other RNA. For example, the SRP
RNA described in Figure 2, which is well predicted by the
original parameters, is predicted with a multi-loop by the
optimized parameters. Interestingly, the prediction made by
the optimized logarithmic parameters is exactly the same as
that made with the AN model. Again, we refer the reader
Supplementary Table S7 to see some illustrative statistics on
the types of errors the optimized parameters introduce.

Aalberts and Nandagopal model

As with the logarithmic model, we first discuss the algo-
rithm and its complexity, then accuracy results are pre-
sented.

The Aalberts and Nandagopal (AN) MFE structure pre-
diction algorithm is similar to that incorporating the loga-
rithmic model. As such, we use the logarithmic recursions
as our starting point. The free energy change of a multi-
loop in the AN model scales non-linearly with the num-
ber of length-a and length-b segments in the multi-loop

(see Equation 3), and cannot be computed like the linear
model, or parts of the logarithmic model. When a multi-
loop is closed in the AN model, the number of length-a and
length-b segments must be known to correctly score the free
energy change of that multi-loop. This is similar to the re-
quirements for logarithmic model algorithm in which the
number of unpaired nucleotides must be known when clos-
ing a multi-loop. In particular, without considering coax-
ial stacking, any unpaired nucleotide effectively contributes
one length-a segment, and a branch one length-a and one
length-b segment. For the sake of brevity, we refer the reader
to the original paper (35) for a description of how coaxial
stacking can be defined in terms of length-a and length-b
segments. So, for the AN model, we can define MultiFrag-
ment(N, M, i, j) to be the MFE multi-loop fragment between
nucleotides i and j inclusive that has exactly N length-a seg-
ments, and exactly M length-b segments. The modified re-
currence relation is:

MultiFragment(N, M, i, j ) =

min
{

MultiFragment(N − 1, M, i + 1, j )
Decompose ∀k � i < k ≤ j

Decompose = Paired(i, k)

+MultiFragment(N − 1, M − 1, k + 1, j ) (5)

Note that in the case of empty segments (for which i >
j), MultiFragment(N, M, i, j) = ∞ if N �= 0 or M �= 0, and
MultiFragment(N, M, i, j) = 0 otherwise. Having defined all
cases, the optimal multi-loop for some closing pair (i, j) can
be found by examining all combinations of N and M for
MultiFragment(N, M, i + 1, j − 1). Again, we have omitted
coaxial stacking, terminal mismatches, end penalties, and
dangling ends from our discussion of the algorithm. This is
to keep our description concise, and the addition of these
terms is straightforward once the core idea behind the algo-
rithm is understood.

The algorithm for AN model requires both more time
and space then the linear or logarithmic models. Observe
that, under the assumption of dynamic programming, the
MultiFragment table has O(n4) cells, since N, M = O(n).
Each cell also requires O(n) time to have its value computed
since k must iterate over all split points. This leads to a time
and space requirement of O(n5) and O(n4) respectively. Note
that the Paired table remains much the same as for the log-
arithmic model, except that O(n2) time is required per cell
to iterate through values for N and M, which entails a time
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Table 3. A summary of the MFE prediction results comparing the linear model to the logarithmic model with optimized parameters. F-score values for
the predictions are reported. Average scores grouped by RNA family are provided. Statistically significant differences are bold, denoting the better model.
This data set comprises 3948 RNAs

5S rRNA
16S
rRNA

23S
rRNA

Group I
Introns

Group II
Introns

RNaseP
RNA

SRP
RNA

Telomerase
RNA tmRNA tRNA

Linear average
F-score

0.599 0.518 0.669 0.484 0.255 0.529 0.594 0.465 0.406 0.686

Optimized
logarithmic average
F-score

0.595 0.518 0.662 0.474 0.257 0.526 0.556 0.441 0.395 0.733

Paired t-test P-value
(two-tailed)

0.361 0.906 0.691 0.107 0.651 0.493 <0.001 0.067 0.002 <0.001

A B C

Figure 2. An SRP RNA structure that is almost perfectly predicted by the linear model (PPV = 0.929, sensitivity = 0.963), and poorly predicted by the
AN model (PPV = 0, sensitivity = 0). Panel (A) is the accepted structure, panel (B) is the structure predicted by the linear model and panel (C) is the
structure predicted by the AN model (35). The AN model gives the linear prediction a score of –32.9 kcal/mol, while its own prediction gets a score of
–33.4 kcal/mol. The linear model gives scores of –32.9 kcal/mol and –32.3 kcal/mol respectively.

and space requirement of O(n4) and O(n2) respectively, and
so the computation of MultiFragment dominates.

Aalberts and Nandagopal model results

The linear and AN models were compared for MFE pre-
diction using a subset of the RNA sequences used to test
the logarithmic model. This is because the AN algorithm
requires a great deal of memory, 874 MBs for an RNA of
length 100 nts for example. As such, it was not possible for
us to run it for RNA sequences longer than about 300 nts.
We first present results for the AN model using its original
parameters, then with our optimized parameters.

A summary of results using the original parameters can
be found in Table 4. The linear model achieved a higher av-
erage F-score for every RNA family. Three of these results
appeared to be statistically significant (P < 0.05). These re-
sults provide strong evidence that the linear model is more
effective than the AN model for predicting RNA secondary
structures.

As with the logarithmic model, we wish to illustrate a
common class of prediction error that occurs when us-
ing the AN model. Consider the signal recognition parti-
cle (SRP) RNA secondary structure found in Figure 2. The
true structure contains no multi-loops, and is well predicted
by the linear model, which achieves an F-score of 0.945,
and predicts no spurious multi-loops. The AN model, how-
ever, predicts part of the SRP structure to be a small multi-
loop, thus poorly predicting the structure. This is an exam-
ple of a common class of error for the AN model in which

a small multi-loop is injected into a structure, or in which
small multi-loops are incorrectly favored over larger ones.
The reader can see this class of error quantified in Supple-
mentary Table S8. In contrast, Supplementary Figure S2
depicts a case where the AN models predictive propensity
toward multi-loops leads to a better prediction.

In addition to comparison against the linear model, we
also compared the AN model to the logarithmic model. A
summary our results can be found in Table 5. The logarith-
mic model appeared to yield more accurate predictions for
5S and SRP RNA with statistical significance (P < 0.05).
The logarithmic model was also better at predicting 16S
RNA structure, however, the AN model had an advantage
for tRNA. These differences were not statistically signifi-
cant.

The AN model with optimized parameters was also com-
pared to the linear model. These results are summarized in
Table 6. Again, the linear model has statistically significant
(P < 0.05) higher F-scores for more RNA. The AN model
appears to be significantly better for no RNA families, while
the linear model is superior for four. The results differ some-
what to those obtained with the original parameters. The
linear model is closer in performance for RNaseP RNA and
tRNA due to small accuracy increases for the AN model af-
ter optimization, though it remains statistically significantly
better. However, the linear model gains a significant lead on
5S rRNA.

Some qualitative analysis of the predictions of the AN
model with optimized parameters versus those obtained us-
ing the original parameters was also done. The SRP in Fig-
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Table 4. A summary of the MFE prediction results comparing the linear model to the AN model. F-score values for the predictions are reported. Average
scores grouped by RNA family are provided. Statistically significant differences are bold, denoting the better model. This data set comprises 2783 RNAs

5S rRNA 16S rRNA
Group I
Introns RNaseP SRP RNA tRNA

Linear average F-score 0.599 0.630 0.505 0.511 0.597 0.686
AN average F-score 0.599 0.611 0.492 0.480 0.580 0.662
Paired t-test P-value (two-tailed) 0.989 0.485 0.450 0.004 <0.001 <0.001

Table 5. A summary of the MFE prediction results comparing the logarithmic model to the AN model. F-score values for the predictions are reported.
Average scores grouped by RNA family are provided. Statistically significant differences are bold, denoting the better model. This data set comprises 2783
RNAs

5S rRNA 16S rRNA
Group I
Introns RNaseP SRP RNA tRNA

Logarithmic average F-score 0.618 0.634 0.492 0.484 0.604 0.652
AN average F-score 0.599 0.611 0.492 0.480 0.580 0.662
Paired t-test P-value (two-tailed) <0.001 0.396 0.990 0.708 <0.001 0.123

Table 6. A summary of the MFE prediction results comparing the linear model to the AN model with optimized parameters. F-score values for the
predictions are reported. Average scores grouped by RNA family are provided. Statistically significant differences are bold, denoting the better model.
This data set comprises 2783 RNAs

5S rRNA 16S rRNA
Group I
Introns RNaseP SRP RNA tRNA

Linear average F-score 0.599 0.630 0.505 0.511 0.597 0.686
Optimized AN average F-score 0.586 0.596 0.480 0.481 0.566 0.673
Paired t-test P-value (two-tailed) 0.001 0.189 0.218 0.007 <0.001 0.046

ure 2 is mis-predicted by both parameterizations with both
making the same prediction. This seems to be the case for
many RNA, and few of the RNAs we examined yielded dif-
ferent predictions. However, some notable examples include
tRNA for which no multi-loop is predicted using the orig-
inal parameters, but which are better predicted by the op-
timized parameters (examples include Sprinzl IDs RI1180
(43) presented in Supplementary Figure S3). In contrast,
and much like the optimized logarithmic parameters, the
optimized AN parameters seem to over predict multi-loops
in some RNA when compared to the original parameters
(see BX572093 from the SRPDB (44) in Supplementary
Figure S4 for an example). This over prediction is quantified
in Supplementary Table S8 (Table 7).

The AN model with optimized parameters was also com-
pared to the logarithmic model with optimized parameters.
This parallels the comparison we have already described in
Table 5. There is a statistically significant (P < 0.05) dif-
ference for tRNA. This difference favors the logarithmic
model. Additionally, the differences between 5S rRNA, and
SRP RNA are also significant (P < 0.05). These are wins
for the logarithmic model, and the AN model respectively.
Overall, the logarithmic model has greater statistically sig-
nificant advantages. The results appear to suggest that the
logarithmic model with optimized parameters makes more
accurate predictions compared to the AN model with opti-
mized parameters.

DISCUSSION

Our results provide evidence that the linear model leads
to better predictions than the logarithmic model using the
available thermodynamic parameter sets, and after our pa-

rameter optimization method. The linear model seems to
have a statistically significant advantage for a majority of
RNA families. The linear model also has an advantage for
many other families of RNA, although a benchmark of this
size cannot demonstrate statistical significance. As such,
it appears that the linear model leads to better MFE pre-
dictions than the logarithmic model. Anfinsen’s thermody-
namic hypothesis (13) suggests that this means the linear
model could also be a better model of RNA thermodynam-
ics than the logarithmic model.

The results we gathered for the AN model were more
pronounced. The AN model never achieved higher perfor-
mance than the linear model with statistical significance for
any RNA family even after parameter optimization. This
provides strong evidence that the linear model leads to bet-
ter MFE predictions compared to the AN model. Again
we invoke the thermodynamic hypothesis and suggest that
this implies that the linear model might again be the better
model of RNA thermodynamics than the AN model.

There are some challenges to our suggestion that these
models are poor models of RNA free energy because they
are ineffective for MFE prediction. A notable one is that
RNA sequences may exist in meta-stable configurations,
with several possible ‘true’ structures (45). This is not cap-
tured when using algorithms to find a single MFE structure.
However, our data set of sequences with known structures
represents a set of structured ncRNA, which are each likely
to have a single functional structure in vivo.

Another challenge is that our results contradict the find-
ings of Aalberts and Nandagopal (35). They compared their
model, the linear model, and the logarithmic model for
MFE prediction, much as we have done. They did not use an
algorithm to find a true MFE structure under each model,
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Table 7. A summary of the MFE prediction results comparing the logarithmic model with optimized parameters to the AN model with optimized param-
eters. F-score values for the predictions are reported. Average scores grouped by RNA family are provided. Statistically significant differences are bold,
denoting the better model. This data set comprises 2783 RNAs

5S rRNA 16S rRNA
Group I
Introns RNaseP SRP RNA tRNA

Optimized logarithmic average
F-score

0.595 0.592 0.472 0.498 0.557 0.733

Optimized AN average F-score 0.586 0.596 0.480 0.481 0.566 0.673
Paired t-test P-value (two-tailed) 0.013 0.747 0.645 0.097 0.027 <0.001

however. Instead, a set of RNA secondary structures was
generated by using the standard Zuker and Stiegler style al-
gorithm (using the linear model) to generate all structures
within a window of the MFE. Then, a given model was used
to re-evaluate the free energy change of each structure. A
model’s performance was thence judged to be its effective-
ness in labeling the most accurate structure as a MFE struc-
ture. They found that the models could be ranked by effec-
tiveness in ascending order as linear, logarithmic, then AN.
We found that the linear model appears better than both
other models. Having said this, we used different parameters
for the linear model. The parameters used in the Aalberts
and Nandagopal paper were published in 1999 (17), and
were updated later (18,32,33) to the parameters used by us.
The reasons for our choice of parameters is discussed below.
Thus, because different parameters were used for our in-
vestigation compared to that of Aalberts and Nandagopal,
comparing the corresponding results for the linear model
could lead to spurious conclusions. We can, however, con-
sider the logarithmic model compared to the AN model.

Our results comparing the AN model to the loga-
rithmic model partially contradict those of Aalberts and
Nandagopal. The RNA families common to both reports
are tRNA, SRP RNA and 5S rRNA. For tRNA, Aalberts
and Nandagopal found a notable difference in performance
in favor of the AN model. In contrast, we found only a
minor, not statistically significant difference in favor of the
AN model. In addition, we also report a statistically signif-
icant advantage for the logarithmic model when predicting
5S rRNA. In contrast, Aalberts and Nandagopal found lit-
tle difference in performance for 5S rRNA. We were able to
produce similar results for SRP RNA, however our results
are statically significant, while those reported by Aalberts
and Nandagopal are not. To reinforce this, our results using
optimized parameters contrast with the findings of Aalberts
and Nandagopal even more markedly. For tRNA, there is a
large, significant difference favoring the logarithmic model.
Further, a significant difference exists for 5S rRNA favor-
ing the logarithmic model, and a significant advantage for
SRP RNA appears to exist for the AN model. These find-
ings contradict the originally published results. We propose
three explanations for our inability to reproduce Aalberts
and Nandagopal’s results fully.

First, our method was different; the algorithms we used
examine the entire search space of possible structures. In
contrast, Aalberts and Nandagopal used a limited set of
structures near the MFE. Since the linear model was used
to generate the structures in this window, it is likely that the
true MFE structures under the models tested were filtered
out as not stable enough by the linear model. The second

reason is that different sets of RNA sequences were used
for testing. Our data set appears to be larger, containing
3948 RNA sequences compared to the 1354 in the set used
by Aalberts and Nandagopal. The third and final reason is
that different methods were used for comparison. We tested
complete MFE prediction algorithms and were able to com-
pare prediction results using F-scores. In contrast, Aalberts
and Nandagopal used the models to select a best estimate
from a set of RNA structures, and thus chose to use the fre-
quency of correct estimates as their accuracy statistic.

It is important to note that the parameters used for the
three models were derived differently. For the linear model,
the parameters we used came from regression on data from
optical melting experiments (32). Thus it should be a rea-
sonable model of free energy, but is grounded in empirical
evidence rather than theory. There exist prior sets of param-
eters for the linear model, but they are entirely optimized
for structure prediction accuracy on known RNA sequence
and structure pairs (17,18,46), and so we felt it would be
disingenuous to use them for comparison. Furthermore, the
parameters we chose are those used in the current version
of RNA structure (29). For the logarithmic model, some pa-
rameters are optimized (17), but the logarithmic term comes
from theory (16). The AN model is also largely theoretical,
however the C term can be used to adjust the model (35).

To ensure that our findings were robust after re-
parameterization, we re-optimized the relevant parameters
in the logarithmic and AN models. The parameter opti-
mization technique we used was quite simplistic. Better re-
sults might be realized using regression to derive parame-
ters, as has been done for many of the other parameters in
the Turner parameter sets (17,18). In addition, a constraint
programming based approach, like that of Andronescu (46),
might be used to derive better parameters for these mod-
els. A straightforward improvement would be to train on a
larger data set. We used only 40 randomly selected RNA
from two families. This was due to limitations in computa-
tional resources and time. Since our algorithms scale poly-
nomially, it should be feasible to train on a larger set of
RNA with more resources. To be sure our findings are valid,
deeper investigation of the parameter space of these models
is important, and this is a clear direction for future research.
Determining why the linear model with current parameters
appears to be so effective is a similar open question.

Interestingly, the optimized parameters for both the AN
model, and the logarithmic model, improve performance
for tRNA, but not for 5S rRNA. This is unexpected, as an
equal number of tRNA and 5S rRNA were used for train-
ing. Looking at the performance of the parameters on a per
RNA basis in the training set suggests that either the perfor-
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mance on tRNA could be increased, or the performance on
5S rRNA could be increased, but not both. We hypothesize
that this means that the models themselves are insufficient
to describe the space of multi-loop free energies completely.

We conclude that, using existing parameters sets, the lin-
ear model appears to be superior to the logarithmic and
AN models for both structure prediction, and as an energy
model. This justifies the persistent use of the linear model
in RNA algorithms. Further, it suggests that the logarith-
mic model should not be used as a standard for judging
the free energy of RNA structures. Instead the linear model
should be used both to predict and to evaluate RNA sec-
ondary structures. Our findings using optimized parameters
for these models also supports this claim.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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