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Abstract: Butorphanol and dexmedetomidine (DXM) can produce analgesia in birds. Intranasal (IN)
route of drug administration is easier, and free of risks such as pain and tissue damage compared
with intravenous, intramuscular or subcutaneous routes in bird species, including wild birds. Al-
though previous studies have demonstrated the use of IN route for producing sedation, no studies
are available on the pharmacokinetics and pharmacodynamics of IN drugs in birds. This study
analyzed the pharmacokinetics and sedative–analgesic efficacy of intranasal butorphanol (2 mg/kg),
dexmedetomidine (80 µg/kg) and their combination (butorphanol, 2 mg/kg; DXM, 80 µg/kg) in
healthy, male, Ross broiler chickens (n = 6/group) aged between 6 and 8 weeks. Maximum plasma
concentration (Cmax, p = 0.01), area under the plasma concentration-time curve from time zero to
120 min (AUC0 to 120, p = 0.02) and apparent volume of distribution at steady state (Vss, p = 0.02) of
DXM were significantly higher than that of DXM co-administered with butorphanol. The mechanical
nociceptive thresholds and the sedation scores of DXM group were significantly higher than the
baseline value. Dexmedetomidine (80 µg/kg, IN) was effective in chickens, and the drug absorption
was more rapid than that of DXM with butorphanol. However, the duration of action of DXM
was short. Lower value of Cmax and nociceptive thresholds showed the nonsignificant efficacy of
butorphanol at a dose of 2 mg/kg after IN administration in broiler chickens.
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1. Introduction

Sedation and analgesia may be advantageous in birds to avoid stress, anxiety and
struggling during diagnostic investigations, therapeutic manipulations and painful con-
ditions [1,2]. Intramuscular (IM) injections into the pectoral muscles may incur the risk
of pain and muscle necrosis [3]. Inappropriate injections into thigh muscles could cause
nerve damage, and there is a risk of excretion of the injected drug before its absorption
due to activation renal portal system controlled by autonomic nervous system in birds [4].
The absorption of drugs after subcutaneous (SC) injection can be slower as compared to
intravenous (IV) administration, resulting in slower onset of action [5]. Previous studies in
birds demonstrated that several classes of sedative–analgesics, such as benzodiazepines,
opioids and alpha 2 agonists, are effective when administered intranasally [6–8]. The highly
vascular and large absorptive nasal mucosal surface favor rapid drug uptake [9]. It can be
used to produce sedation and analgesia, which is suitable to restrain the bird for diagnostic
and therapeutic manipulations [10]. Advantages of the IN route also include higher client
satisfaction as it is non-invasive and not painful compared to the IM route [10]. Rapid onset
of sedative–analgesic (SA) drug effects is observed following IN administration [6,10].

Vet. Sci. 2022, 9, 212. https://doi.org/10.3390/vetsci9050212 https://www.mdpi.com/journal/vetsci

https://doi.org/10.3390/vetsci9050212
https://doi.org/10.3390/vetsci9050212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com
https://orcid.org/0000-0002-2952-409X
https://orcid.org/0000-0003-2323-3336
https://doi.org/10.3390/vetsci9050212
https://www.mdpi.com/journal/vetsci
https://www.mdpi.com/article/10.3390/vetsci9050212?type=check_update&version=2


Vet. Sci. 2022, 9, 212 2 of 13

Butorphanol is a SA opioid which has higher affinity for kappa receptors than µ- opioid
receptors in birds [11]. It has been shown to be a more effective analgesic than morphine in
chickens [12]. The effects of butorphanol can be augmented by concurrent administration
of other SA drugs, such as dexmedetomidine (DXM) [13]. The injectable forms of both
drugs can be administered intranasally in birds [7,10]. The recommended sedation and
analgesic doses for IN administration range from 1 to 3 mg/kg for butorphanol [10], and
80–100 µg/kg for DXM [7] in birds. Pharmacokinetic (PK) data coupled with data on
pharmacodynamics (PD) can provide a comprehensive estimate of drug effects in the given
dose and route. No studies are available on PK and analgesic effects of IN butorphanol and
DXM in birds, but sedative efficacy studies on IN midazolam and butorphanol in cockatiels
are available [6]. Behavior-based sedation scales have been used to evaluate sedation in
birds [14] and mechanical nociceptive threshold testing can be used to evaluate the efficacy
of analgesics in birds [15].

The aim of the current study was to determine the pharmacokinetics and pharmaco-
dynamics of intranasal butorphanol, dexmedetomidine and their combination in broiler
chickens (Gallus gallus domesticus). The pharmacodynamic effect was assessed by evaluation
of the sedation and analgesia.

2. Materials and Methods

The study was approved by the Massey University Animal Ethics Committee (MUAEC,
protocol number 18/31, dated 15 June 2018).

2.1. Pharmacokinetic Study
2.1.1. Experimental Animals

Eighteen healthy male Ross broiler chickens, aged between 6 and 8 weeks, were
randomly selected from a flock of 200 raised at Massey University Poultry Research Unit.
The health condition of the birds was screened by a veterinarian who regularly visits the
poultry unit. Birds were weighed by the poultry unit personnel the day prior to testing.
The mean (±SD) body weight of the chickens was 2.05 (±0.03) kg.

The experiment was conducted over a three-day period. On each day of the trial,
the study chickens were transferred to individual cages in a room adjacent to their usual
housing 30 min prior to the start of the experiment. The study chickens were always in
visual contact with other chickens.

2.1.2. Drug Administration and Blood Sampling

The chickens were randomly divided into three groups of six each. Group 1 (n = 6)
received IN butorphanol (10 mg/mL, Ilium Butorgesic, Injection Troy Animal Health
care, Sydney, AU, at a dose of 2 mg/kg, group 2 (n = 6) received IN DXM (0.5 mg/mL,
Dexdomitor, Injection, Orion Corporation, Espoo, Finland) at a dose of 80 µg/kg, and
group 3 (n = 6) received a combination of IN butorphanol (2 mg/kg) and DXM (80 µg/kg).
The dose of the test drugs was chosen based on their use in birds in previous studies [7,12].

The chickens were restrained by hand for drug administration. Tuberculin syringes
(1 mL) without the needle that replaced by a catheter sleeve (20 G, 5/8”) were used for
accurate delivery of the test drugs. The tip of the catheter sleeve was cut about half of its
length and the beveled end was introduced into the nostril. The total dose of the test drugs
was divided between both nostrils and administered over 3–5 s. A medial metatarsal vein
was catheterized (22 G, 5/8” catheter) aseptically, to sample blood (1 mL each time) at 0
(before drug administration), 2, 5, 10, 20, 30, 45, 60, 90 and 120 min after drug administration.
The catheters remained in place for the entire blood collection period. The blood samples
were kept on ice immediately after collection and centrifuged at 1000 rpm for 10 min.
Plasma was harvested and stored at −80 ◦C until analysis.
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2.1.3. Drug Determination in Plasma

The plasma concentrations of the test drugs were analyzed using a liquid chromatog-
raphy and mass spectrometry (LCMS) method. The Ultra-High-Performance Liquid Chro-
matography system (Dionex UltiMate 3000 System; Thermo Scientific, Waltham, CA, USA)
comprises a vacuum degasser, a tertiary loading pump, a column oven and an autosampler.
A 100 × 2.1 mm column with 2.6 µm particle size (Accucore 150 C18 Column; Thermo Scien-
tific, Waltham, CA, USA) was applied with an identically packed guard column (Accucore
Defender Guard Column; Thermo Scientific, Waltham, CA, USA). A hybrid quadrupole
orbitrap mass spectrometer (Q Exactive Focus; Thermo Scientific, Waltham, CA, USA) was
used in mass spectrometry detection.

2.1.4. Sample Preparation

For DXM, a 100 µL plasma sample was vortex mixed with 600 µL methanol for 5 min.
After that, the mixture was centrifuged at 12,000 rpm for 10 min. The supernatant was pipet-
ted to a clean glass tube and eluted in a phospholipid removal tube (Phree Phospholipid
removal; Phenomenex, Torrence, CA, USA). The eluate from the phospholipid removal
tube was collected in a clean glass tube and dried in a vacuum evaporator (SpeedVac,
Thermo Fisher Scientific, Auckland, New Zealand). The LCMS water (100 µL) was used to
reconstitute the dried residue, and 10 µL of the mixture was injected into the LCMS column.

For butorphanol, a 100 µL plasma sample and 400 µL methanol was vortexed mixed
for 10 min. Then, the mixture was centrifuged at 12,500 rpm for 10 min. The supernatant
was transferred to a phospholipid removal tube (Phree Phospholipid removal; Phenomenex,
Torrence, CA, USA). The eluate from the phospholipid removal tube was collected in a
clean glass tube and dried in a vacuum evaporator (SpeedVac, Thermo Fisher scientific,
Auckland, New Zealand). The methanol (100 µL) was used to reconstitute the dried residue,
and the mixture was centrifuged at 12,000 rpm for 5 min. After centrifuging, 10 µL of the
mixture was injected into the LCMS column.

2.1.5. Liquid Chromatography and Mass Spectrometry (LCMS) Conditions

For DXM, the mobile phase was composed of 0.1% formic acid in H2O and 0.1% formic
acid in acetonitrile at a ratio of 90:10. The isocratic flow rate was 0.3 mL/min and the run
time was six minutes. The temperature of the column and the capillary tube was 25 ◦C and
320 ◦C, respectively. The heated electrospray ionization probe was maintained at 3.30 KV
and all analyses were performed in the positive ionization mode. Nitrogen drying gas was
used in LCMS. The sheath liquid flow was 30 arbitrary units, the auxiliary gas flow was
5 arbitrary units and the ion sweep gas flow was 1 arbitrary unit.

For butorphanol, the mobile phase was composed of 0.1% formic acid in H2O and
0.1% formic acid in acetonitrile at a ratio of 75:25. The isocratic flow rate was 0.3 mL/min
and the run time was 10 min. Other LCMS conditions of butorphanol were the same as
those of DXM (as described above).

2.1.6. LCMS Validation

The blank plasma was spiked with stock solution of drugs which were the same as
that used for the treatment of chickens in the research. The validation for both of the
drugs was performed separately. Six standards of DXM for the calibration curve were
from 0.25–16.6 ng/mL, and six standards of butorphanol for the calibration curve were
from 4.1–83.8 ng/mL. The lower limits of quantification (LLQ) in the mobile phase were
measured by the signal-to-noise ratio of 10:1. The intra-day variation was determined
at five different concentrations of independently prepared spiked plasma on the same
day. The inter-day variation was determined at the concentrations for three consecutive
days. Recoveries of DXM and butorphanol were determined by comparing the mean area
response of unextracted samples (spiked after extraction) with the area of control standards
following the same sample preparation.
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2.1.7. Pharmacokinetic Analysis

PKsolver add-in program for excel 2010 was used to analyse concentration-time data
with non-compartmental method [16]. The maximum plasma concentration (Cmax, ng/mL)
of the drugs and time to reach Cmax (Tmax, min) were determined as direct observation
from the plasma drug concentration results. The other parameters such as elimination
half-life (t1/2el, min), area under the concentration–time curve (AUC, ng·min/mL), mean
residence time (MRT, min), apparent volume of distribution at steady-state (Vss, L/kg) and
clearance (Cl, L/min/kg) were calculated by the linear trapezoidal rule in the PKsolver
add-in program.

2.2. Evaluation of Sedation and Analgesia
2.2.1. Experimental Animals and Drug Administration

Twenty-four healthy, male Ross broiler chickens, aged between 6 and 8 weeks, were
selected from the same unit as those selected for the pharmacokinetics study. The health
condition of the birds was screened by a veterinarian who regularly visits the poultry unit.
The mean (±SD) body weight of the chickens was 2.15 kg (±0.08). The chickens were
randomly divided into four groups. Group 1 (n = 6) received butorphanol (2 mg/kg, IN),
group 2 (n = 6) received DXM (80 µg/kg, IN), group 3 (n = 6) received a combination of
butorphanol (2 mg/kg) and DXM (80 µg/kg) and group 4 (n = 6) received normal saline
(about 1 mL as control). The chickens were restrained by hand for drug administration.
Tuberculin syringes (1 mL) were used for accurate delivery of the test drugs. The total dose
of the test drugs was divided between both nostrils and administered over 3–5 s.

2.2.2. Sedation Assessment

Sedation was assessed at 10 min prior to, and 5, 10, 20, 30, 45, 60, 90 and 120 min after
drug administration. Level of sedation achieved was scored using the subjective scoring
method described by Pollock et al (2001) [14].

2.2.3. Mechanical Nociceptive Threshold (Analgesia) Testing

Nociceptive thresholds of the chickens were tested after scoring the sedation at 0
(before drug administration), 5, 10, 20, 30, 45, 60, 90 and 120 min. A handheld algometer
(Wagner Instruments, Greenwich, CT, USA) was used; a 2 mm diameter tip of the algometer
was pressed against the skin on the dorso-lateral aspect of the proximal half of the metatarsal
area on the left leg of all chickens. Behavioral responses such as opening the eyes (if closed
due to sedation), stretching of the leg, leg withdrawal, sudden shuffling (moving feet
without standing) and body twitching [17] were considered as the end point for threshold
recording (Figure 1A,B). The cut-off threshold was 9 N to avoid tissue damage. The baseline
nociceptive thresholds were measured three times at approximately 30–45 s interval in
each chicken. As there were no significant changes in the baseline values over time, the
post-treatment nociceptive thresholds of all groups were measured once in each chicken.
The investigator assessing the sedation and analgesia was blinded to the treatment groups.

2.2.4. Statistical Analysis

Normal distribution of plasma concentration data was assessed by the Kolmogorov–
Smirnov test. The significant difference between the parameters of butorphanol and
butorphanol combined with DXM was analyzed by paired t-test in Excel. The parameters
of DXM and DXM combined with butorphanol were also analyzed by paired t-test for the
significant difference. Values were considered significant at p < 0.05. The differences of the
parameters between butorphanol group and DXM group were not considered because of
the different drugs and doses.
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Figure 1. (A) The condition of the broiler chickens after administration of dexmedetomidine
(80 µg/kg) intranasally (the tip of the algometer probe on the chicken’s leg indicated by the white
arrow); (B) one of the behavioral responses of the chickens to the algometer used (the end point for
threshold recording).

Mechanical nociceptive threshold data were tested for normality using a Kolmogorov–
Smirnov test. A generalized linear mixed model (multivariate ANOVA) with repeated
measures was used to analyse the normally distributed nociceptive thresholds followed
by post hoc test (Fisher’s least significant difference comparison). The measurements
of nociceptive thresholds were expressed as the mean and standard deviation (SD). The
distribution of sedation score data was non-normal and hence, the raw scores were first
rank-transformed using ‘proc rank’ procedure in SAS® 9.4. to test differences between-
group and between time-points, within a group. A mixed model analysis of the transformed
sedation scores was carried out using ‘proc mixed’ procedure in SAS® 9.4. The model
included the fixed effects of group, time and their interaction, and random effects of
chickens. Sedation scores were presented in Table 1 as least square mean ± standard error
(LSM ± SE), in the original scale. Values were considered significant at p < 0.05.

Table 1. Sedation scores (least square mean ± standard error) of broiler chickens (n = 6 per group)
after intranasal administration of saline (about 1 mL), butorphanol (But, 2 mg/kg), dexmedetomidine
(DXM, 80 µg/kg) or the combination of butorphanol (But, 2 mg/kg) and dexmedetomidine (DXM,
80 µg/kg).

Time (min)
Sedation Score § (Least Square Mean † ± Standard Error) in Different Groups

Saline But DXM But + DXM

0 0 ± 0.22 0 ± 0.27 0 ± 0.22 0 ± 0.26
5 0.50 a ± 0.22 0.50 a ± 0.27 1.50 *b ± 0.22 0.33 a ± 0.26
10 0.17 a ± 0.22 0.50 ac ± 0.27 1.67 *b ± 0.22 0.83 c ± 0.26
20 0.17 a ± 0.22 0.67 ac ± 0.27 2.17 *b ± 0.22 0.83 c ± 0.26
30 0.50 a ± 0.22 0.50 a ± 0.27 2.17 *b ± 0.22 0.83 a ± 0.26
45 0.17 a ± 0.22 0.50 ac ± 0.27 2.17 *b ± 0.22 0.83 c ± 0.26
60 0.50 a ± 0.22 0.50 a ± 0.27 2.17 *b ± 0.22 1.00 a ± 0.26
90 0.33 a ± 0.22 0.83 a ± 0.27 1.33 *b ± 0.22 0.83 ab ± 0.26

120 0.33 a ± 0.22 0.67 a ± 0.27 0.83 a ± 0.22 0.83 a ± 0.26
§ Sedation scores were not distributed normally. Hence, they were rank-transformed and analyses using a mixed
model analysis for testing the significant differences between groups and time-points. The least square mean
presented in this table are in original scale. † Least square mean values with an asterisk (*) differ significantly
(p < 0.01) with respective baseline (time 0 min) value. Least square mean values, within each time-point, with at
least one common alphabet as superscript do not differ significantly (p > 0.05).
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3. Results
3.1. LCMS Validation and Pharmacokinetic Analysis

The inter-day variation of DXM in plasma ranged 4.5–7.5% and the intra-day variation
was below 5%. The correlation coefficient was 0.9983 for the standard curves of DXM. The
recovery of DXM ranged 65–78% and the LLQ was 0.25 ng/mL. The inter-day variation
of butorphanol in plasma ranged 3.9–10.2% and the intra-day variation ranged 1.8–4.4%.
The correlation coefficient was 1 for the standard curves of butorphanol. The recovery of
butorphanol ranged 82−85% and the LLQ was 4 ng/mL.

The chromatograms of butorphanol at concentrations of 8.3 and 16.6 ng/mL, including
blank plasma, and at 20 and 60 min after intranasal administration in chickens are shown in
Figure 2. Figure 3 shows the chromatograms of DXM at concentrations of 4 and 8 ng/mL,
including blank plasma, and at 2 and 45 min after intranasal administration in chickens.
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Figure 2. Chromatograph showing butorphanol peak at concentrations of 8.3 and 16.6 ng/mL, after
20 and 60 min of intranasal administration at the dose of 2 mg/kg in broiler chickens.

The pharmacokinetic data are shown in Table 2. Both the Cmax and AUC0 to 120 values
of DXM were significantly higher than DXM with butorphanol (p = 0.01, 0.02, respectively).
The MRT value of DXM was lower than that of DXM with butorphanol.
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Table 2. Pharmacokinetic parameters (mean ± SD) of butorphanol (But, 2 mg/kg; n = 6/group),
dexmedetomidine (DXM, 80 µg/kg; n = 6/group), and their combination at same doses (n = 6/group)
in broiler chickens, analyzed by a non-compartmental model.

PK Parameter (Unit) But But with DXM DXM DXM with But

T1/2 elim (min) 69.81 ± 20.26 77.07 ± 13.96 55.08 ± 11.62 152.23 ± 74.87
Tmax (min) 30.00 ± 5.00 29.17 ± 8.21 25.83 ± 4.17 20.83 ± 3.75

Cmax (ng/mL) 23.05 ± 6.21 34.54 ± 6.92 2.31 ± 0.19 * 1.43 ± 0.20
AUC0 to 120 (ng min/mL) 1626.58 ± 389.94 2443.78 ± 481.71 144.53 ± 13.40 * 92.94 ± 12.05
AUC0 to inf (ng min/mL) 2637.03 ± 864.16 3716.11 ± 776.85 193.46 ± 29.79 192.69 ± 49.68

MRT (min) 110.40 ± 29.11 116.48 ± 17.41 82.76 ± 16.65 218.48 ± 104.46
Vss/F (L/kg) 107.80 ± 31.91 68.66 ± 13.91 33.19 ± 5.84 * 76.11 ± 16.29

Cl/F (L/min/kg) 2.55 ± 0.77 1.27 ± 0.2 0.95 ± 013 1.03 ± 0.7

* Denotes significant difference from DXM with butorphanol value for DXM (p < 0.05). T1/2 elim, elimination
half-life; Cmax, maximum plasma concentration; Tmax, time of Cmax; AUC0 to 120, area under the plasma
concentration-time curve from time zero to 120 min; AUC0 to inf, area under the concentration time curve from
time zero to infinity; MRT, mean resident time; Vss/F, apparent volume of distribution at steady state after
non-intravenous administration; Cl/F, apparent total clearance of the drug from plasma after non-intravenous
administration; But, butorphanol; DEX, dexmedetomidine; But with DXM, butorphanol combined with DXM;
DXM with butorphanol, DXM combined with butorphanol.

The semi log plot of concentration–time profiles of butorphanol and butorphanol
combined with DXM in chickens after intranasal administration are shown in Figure 4, and
that of DXM and DXM combined with butorphanol are shown in Figure 5.
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Figure 5. Semi-log plot of mean (±SD) plasma concentration-time profiles of dexmedetomidine
(DXM; blue line) and dexmedetomidine with butorphanol (DXM But; pink line) after intranasal
administration in broiler chickens at 80 µg/kg and 2 mg/kg, respectively (n = 6/group).

3.2. Sedation Score

The sedation scores did not show significant difference between butorphanol and
saline groups. The sedation scores of DXM group were significantly higher than that of
saline group at 5, 10, 20, 30, 45, 60 and 90 min (p = 0.02, 0.004, 0.003, 0.01, 0.002, 0.01,
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0.01, respectively). There was no significant difference in the sedation scores between the
butorphanol and DXM combination and saline groups (Table 1).

Within groups, the sedation scores at 90 min were significantly higher than that of
baseline in butorphanol group (p = 0.02). The sedation scores of DXM group at 5, 10, 20, 30,
45, 60, 90 and 120 min were significantly higher than that of the baseline (p = 0.002, 0.002,
0.002, 0.002, 0.001, 0.002, 0.002, 0.005, respectively). The sedation scores of the combination
of butorphanol and DXM group at 10, 20, 30, 45, 60, 90 and 120 min were significantly
higher than that at the baseline (p = 0.02, 0.02, 0.01, 0.02, 0.006, 0.02, 0.02, respectively).

3.3. Mechanical Nociceptive Thresholds

There were several within-group differences as compared to their respective baseline
values (Table 3). The nociceptive thresholds of DXM group were significantly higher than
their baseline values at all time-points after the drug administration. The mean (±SD)
threshold values were lowest at 5 min, reached a peak at 30 min and started dropping
after 90 min post-drug administration. No significant differences were found between the
baseline and post-treatment thresholds in the butorphanol group. However, the thresholds
at 30 and 45 min were significantly lower than that at 120 min in this group (p = 0.03 and
0.03, respectively). The nociceptive thresholds of the combination group were significantly
higher than the baseline value at 30 (p = 0.04), 45 (p = 0.03) and 120 (p = 0.005) minutes after
the drug administration but the trend was fluctuant (Figure 6).

Table 3. Mean (±SD) mechanical nociceptive thresholds (Newtons, N) of broiler chickens after
intranasal administration of saline (about 1 mL; n = 6), butorphanol (But, 2 mg/kg; n = 6), dexmedeto-
midine (DXM, 80 µg/kg; n = 6) or both drugs at same doses (n = 6).

Time (Minute)
Mechanical Nociceptive Threshold (N; Mean ± SD)

Saline But d DXM ac But + DXM b

0 (baseline) 4.67 ± 0.26 5.28 ± 0.58 4.52 ± 0.21 5.18 ± 0.13
5 4.37 ± 0.37 3.78 ± 0.81 6.88 ± 0.69 * 5.96 ± 0.84

10 4.8 ± 0.24 5.23 ± 0.77 8.47 ± 0.53 * 5.52 ± 0.53
20 4.95 ± 0.32 5.27 ± 0.78 8.93 ± 0.07 * 6.12 ± 0.52
30 4.57 ± 0.21 4.78 ± 0.88 9 ± 0 * 7.12 ± 0.65 †

45 4.17 ± 0.41 4.77 ± 0.45 9 ± 0 * 7.36 ± 0.53 †

60 4.33 ± 0.41 6 ± 1.05 8.92 ± 0.08 * 5.98 ± 0.32
90 4.43 ± 0.38 5.37 ± 0.74 8.55 ± 0.31 * 6.06 ± 0.58
120 4.45 ± 0.39 6.32 ± 0.65 6.62 ± 0.59 * 6.98 ± 0.45 †

* denotes significant difference from baseline value for the time point in DXM group, † denotes significant
difference from baseline value for the time point in the combination of butorphanol and DXM group. a denotes
significant difference from saline group for DXM group. b denotes significant difference from saline group for
the combination of butorphanol and DXM group. c denotes significant difference from DXM group for the
combination of butorphanol and DXM group. d denotes significant difference from butorphanol group for the
combination of butorphanol and DXM group (p < 0.05).

The baseline thresholds did not differ significantly between the treatment groups. Post-
treatment thresholds of the DXM group were significantly higher than the saline group
at all time points and except at 120 min in the butorphanol group (Table 3 and Figure 6).
There was no significant difference in the post-treatment thresholds between butorphanol
and saline groups except at 120 min. The nociceptive thresholds were significantly different
between the saline group and the combination group (p = 0.01).
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Figure 6. Mechanical nociceptive thresholds (Newton, mean ± SD) of broiler chickens (n = 6/group)
following intranasal administration of saline (about 1 mL), butorphanol (But, 2 mg/kg), dexmedetomi-
dine (DXM, 80 µg/kg) or a combination of both drugs in same doses. * denotes significant difference
from baseline value for DXM, † denotes significant difference from baseline value for the combination
of butorphanol and DXM (p < 0.05). but, butorphanol; DXM, dexmedetomidine; but + DXM, the
combination of butorphanol and dexmedetomidine.

4. Discussion

Sedative–analgesic drugs such as butorphanol or DXM were shown to be effective
in birds [18,19]. Although parenteral route (IV, IM or SC) has been the common method
for drug administration in birds, the IN route is preferred [10,20] due to the drawbacks
associated with the former.

Previous studies have shown that the combination of midazolam and butorphanol
after IN administration produced a better sedative effect in cockatiels (Nymphicus hollandi-
cus) than IN midazolam alone [6], and a combination of midazolam and DXM after IN
administration caused a more obvious sedative effect than IN midazolam alone in pigeons
(Columba livia) [7]. In mice, the combination of butorphanol and DXM could produce better
sedation and antinociception resulting from synergistic interaction between the opioid and
alpha2 receptors [21]. No studies are available on the effect of IN burorphanol or DXM or a
combination of DXM and butorphanol in birds.

This is the first study reporting the pharmacokinetics of butorphanol and DXM in any
avian species after intranasal administration. The Cmax achieved after IN administration
of butorphanol at 2 mg/kg in this study was much lower than the Cmax after its IV
administration in broiler chickens at the same dose [22]. The lower plasma concentration
profile of butorphanol in the current study could be due to absorption of some of the total
dose through the mouth as the total volume of drug administered could be more than the
volume of the nasal cavity. Also, the secondary palate is incomplete in chickens [23] and
drugs can pass into the oral cavity through the choanal cleft. Since oral bioavailability of
butorphanol is poor [19], much of the drug absorbed orally must have gone through the
extensive hepatic metabolism resulting in lower plasma concentrations as compared to
other routes of administration.

Dexmedetomidine, when given IN, was rapidly absorbed to achieve a Cmax of
2.31 ± 0.19 ng/mL, which was significantly higher than DXM administered in combi-
nation with butorphanol (1.43 ± 0.20 ng/mL). Similarly, AUC0 to 120 was significantly
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higher in DXM alone group as compared to DXM with the butorphanol group. In con-
trast, the Cmax and AUC0 to 120 of butorphanol were higher in the combination group as
compared to the butorphanol alone group. However, these differences did not achieve
significance. The sample size of the treatment groups (n = 6 per group) in this preliminary
study was based on a similar study that used intranasal midazolam singly (n = 6 per
group) or combined DXM (n = 6 per group) in pigeons [7]. Differences in cardiovascular
variables and sedation scores between the treatment groups were found in that study. In
the current study, a post-hoc power analysis pertaining to the pharmacokinetic data of
butorphanol with DXM and butorphanol alone groups showed a low power (65–70%) to
detect between-group differences. Increasing the sample size could increase the power to
find significant differences between these groups. Small sample size is one of the limitations
of the current study.

Both butorphanol and DXM are metabolized in mammals by hepatic hydroxylation
and glucuronidation [24,25], and a study has reported synergism in their effect in mice [21].
There are no reports of pharmacokinetic interactions of butorphanol and DXM in any
avian species. In this study, metabolic study was not undertaken, thus it cannot be con-
firmed whether either of these drugs influence their pharmacokinetics when given in
combination. Intranasal administration of drugs is designed to bypass hepatic first pass
metabolism. Butorphanol at a low dose (given in current study) could achieve analgesic
plasma concentrations after IV administration [25]. In the current study, it was not achieved
which could be due to variable absorption of the drug through the oral route. The vari-
able absorption of drugs could also result in higher standard deviation for calculation of
pharmacokinetic parameters.

One of the limitations of this study was it did not investigate dose–response curve both
for pharmacokinetic and pharmacodynamic experiments. The dose–response curve would
help us in evaluating the best dosing regimen to provide analgesia for these drugs alone or
in combination. In the pharmacodynamics study, there was no significant difference in the
nociceptive thresholds and sedation scores before and after treatment in the butorphanol
group overtime, which indicated that there was no significant analgesic and sedative
efficacy of IN butorphanol (2 mg/kg) in chickens. The nociceptive thresholds of DXM
alone group were significantly higher at all time points compared to its baseline values
and saline group. The maximum drug effect, in terms of nociceptive thresholds, of DXM
reached at 30 min after the drug administration, but the Tmax of DXM was about 25 min.
This could be due to a hysteresis of the drug effect or threshold recording after 25 min.

The mechanical nociceptive thresholds of the combination of butorphanol and DXM
were significantly lower than that of DXM alone. This could be due to the dilution of DXM
concentration when mixed with butorphanol solution as only DXM produced significant
analgesia compared to nonsignificant analgesic effects of butorphanol in this study. In
addition, the larger volume of the solution of combination of butorphanol and DXM
(around 0.72 mL for an around 2 kg bird) might cause a leak of the drugs as compared to
that of butorphanol and DXM alone.

Although the nociceptive thresholds of the combination group showed significant in-
creases compared to the saline group at a few time points, this rise in nociceptive thresholds
was not consistent. The fluctuations in thresholds could be due to the weak effect of diluted
DXM or due to the interaction of the two drugs. Post-treatment sedation scores of the
combination group significantly differed compared to the pre-treatment values but there
was no significant difference between the combination and saline groups. This indicates a
weak and nonsignificant sedative efficacy of the combination.

Sedation may be required for common clinical procedures (radiography, blood col-
lection, physical examination, etc.) to reduce vocalization and stress response caused by
manual restraint [10]. In the present study, DXM, administered singly at a dose of 80 µg/kg,
had both sedative and analgesic effects from 5 to 120 min after the drug administration.
Absence of analgesia and sedation observed in the butorphanol group could be due to a
low Cmax of the drug at a dose of 2 mg/kg in the current study.
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The doses of butorphanol and DXM used in this study were 2 mg/kg and 80 µg/kg,
respectively. Intravenous butorphanol, and intranasal DXM combined with midazolam at
these doses were shown to be effective in other studies in birds [7,12]. However, the results
of this study indicated that butorphanol at a dose of 2 mg/kg administered by the IN route
was not high enough to provoke satisfactory sedation and anti-nociception in chickens.
Although a higher dose of IN butorphanol (3 mg/kg) combined with midazolam has been
reported to be effective in producing rapid sedation in cockatiels [6], none of the previous
studies has shown the effect of butorphanol alone after IN administration in birds.

The data generated from the present study can be used for extrapolation of dosing
regimen for both the drugs in other bird species in which it is impossible to conduct such
experiments. The extrapolation of data from one bird species to another bird species is more
accurate as compared to extrapolation from mammals [26], but these data extrapolations
should be made with caution.

5. Conclusions

Dexmedetomidine (80 µg/kg) after IN administration was effective in producing
sedation and antinociception in broiler chickens, and the drug absorption was more rapid
than that of DXM co-administered with butorphanol. However, the duration of the efficacy
of DXM was short. Although the dosing interval of DXM appears to be about 2 h in chickens,
it cannot be concluded as this preliminary study did not conduct the pharmacokinetic–
pharmacodynamic modelling of the drug. The efficacy of butorphanol and butorphanol
combined with DXM after IN administration need to be studied further probably with a
dose higher than 2 mg/kg.
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