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Cerebrospinal fluid (CSF) biomarkers can enhance the early and accurate etiologic
detection of Alzheimer’s disease (AD) even when symptoms are very mild, but are not yet
widely available for clinical testing. There are a number of reasons for this, including the
need for an experienced operator, the use of instruments mostly reserved for research,
and low cost-effectiveness when patient samples do not completely fill each assay plate.
Newer technology can overcome some of these issues through automated assays of a
single patient sample on existing clinical laboratory platforms, but it is not known how
these newer automated assays compare with previous research-based measurements.
This is a critical issue in the clinical translation of CSF AD biomarkers because most
cohort and clinicopathologic studies have been analyzed on older assays. To determine
the correlation of CSF beta-amyloid 1–42 (Aβ42) measures derived from the automated
chemiluminescent enzyme immunoassay (CLEIA, on Lumipulse R© G1200), a bead-based
Luminex immunoassay, and a plate-based enzyme-linked immunoassay enzyme-linked
immunosorbent assay (ELISA), we analyzed 30 CSF samples weekly on each platforms
over 3 weeks. We found that, while CSF Aβ42 levels were numerically closer between
CLEIA and ELISA measurements, levels differed between all three assays. CLEIA-based
measures correlated linearly with the two other assays in the low and intermediate Aβ42
concentrations, while there was a linear correlation between Luminex assay and ELISA
throughout all concentrations. For repeatability, the average intra-assay coefficient of
variation (CV) was 2.0%. For intermediate precision, the inter-assay CV was lower in
CLEIA (7.1%) than Luminex (10.7%, p = 0.009) and ELISA (10.8%, p = 0.009), primarily
due to improved intermediate precision in the higher CSF Aβ42 concentrations. We
conclude that the automated CLEIA generated reproducible CSF Aβ42 measures with
improved intermediate precision over experienced operators using Luminex assays and
ELISA, and are highly correlated with the manual Aβ42 measures.

Keywords: Alzheimer’s disease, biomarkers, cerebrospinal fluid, mild cognitive impairment, intermediate
precision

INTRODUCTION

Cerebrospinal fluid (CSF) levels of proteins and peptides associated with neuritic plaques and
neurofibrillary tangles can enhance the accurate etiologic diagnosis of Alzheimer’s disease (AD)
(Shaw et al., 2009; Jack et al., 2010, 2018). These markers –beta-amyloid peptides (Aβ38, Aβ40,
Aβ42), (Adamczuk et al., 2015; Olsson et al., 2016; Howell et al., 2017) total and phosphorylated
tau (Arai et al., 2000; Hampel et al., 2004; Fagan et al., 2009) – are measured in research
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and commercial laboratories around the world, but there
remain key obstacles in their broader application. These include
the need to purchase a research-based assay platform, pre-
analytical and analytical variability, (Fourier et al., 2015; Leitao
et al., 2015) and the need for experienced operators. While
international quality control programs (Toledo et al., 2012;
Kang et al., 2013; Pannee et al., 2016) aim to optimize
measurement variability across assays, reagents, platforms,
standards, operators, and algorithms, technological solutions
including process engineering and assay automation can
potentially reduce variability introduced by human operators that
influence assay performance.

Immunoassays targeting Aβ42, t-Tau, and p-Tau181 have
predominated the landscape of CSF AD biomarker analysis
to date, although mass spectrometry-based assays are under
development (Pannee et al., 2016). Compared to solid-phase
enzyme linked immunosorbent assays (ELISA) and fluid-phase
Luminex assays which require manual reagent addition and
removal on multi-well plates, automated analyzers are proposed
to have better repeatability (variability within the same assay)
and intermediate precision (variability between different assays).
The Fujirebio Lumipulse R© system and the Roche Elecsys R©

have shown consistent inter-assay measures in the serum,
with coefficient of variation (CV) in the range of 1.2–10%
for hepatitis B antigens, (Yang et al., 2016) tumor markers,
(Marlet and Bernard, 2016) cortisol, (Vogeser et al., 2017) and
interleukin-13 (Palme et al., 2017). In the CSF, a recent multi-
center study using synthetic Aβ42 peptides in artificial CSF
reported inter-assay CV of <5% on the Elecys R© system, (Bittner
et al., 2016) but the intermediate precision of endogenous Aβ42
in human-derived CSF samples in these automated analyzers
remains unknown. Because most cohort, (Ellis et al., 2009;
Shaw et al., 2009; Bendlin et al., 2012) clinicopathologic, (Roher
et al., 2009; Hu et al., 2010; Li et al., 2015) and pharmacological
(Blennow et al., 2012; Kennedy et al., 2016) studies to-date
have relied on one of the non-automated assays, it is also
important to determine the measurement correlation between
the three assay formats. Here we selected 30 human CSF samples
representing a range of physiologic Aβ42 levels, characterized
the correlation between CSF Aβ42 measurements from different
assay types, and assessed the repeatability and intermediate
precision of each assay.

MATERIALS AND METHODS

Standard Protocol Approvals and Patient
Consents
This study was carried out in accordance to US Code of Federal
Regulations Title 45 Part 46 Protection of Human Subjects, and
Emory University and Emory School of Medicine policies. The
protocols were approved by the Emory University Institutional
Review Board. Banked CSF samples were used for this study,
and all subjects had previously given written informed consent
according to the Declaration of Helsinki for long-term sample
storage and future analysis.

CSF Pooling and Aliquotting
Cerebrospinal fluid samples were all previously collected using a
modified AD Neuroimaging Initiative protocol (Hu et al., 2013).
Briefly, CSF was collected into 15 mL polypropylene tubes via
a 24-gauge atraumatic needle and syringe aspiration without
overnight fasting. Polypropylene tubes were inverted several
times, and CSF was aliquotted (500 µL), labeled, and frozen at
−80◦C until analysis.

Cerebrospinal fluid samples from 30 subjects were selected
for the study (Table 1). Subjects were chosen to represent a
wide range of Aβ42 concentrations (previously measured using
Luminex): nine had normal cognition, 12 had mild cognitive
impairment, six had AD dementia, and three had other non-AD
dementias (one each for corticobasal syndrome, dementia with
Lewy bodies, and progressive supranuclear palsy).

Because we wished to compare the platforms’ performance
over three weekly runs, we first generated identical CSF aliquots
for all runs (Figure 1). For each subjects, four 500 µL CSF
aliquots were thawed at room temperature, vortexed, and pooled
into a 5 mL polypropylene tube. The pooled 2 mL aliquot was
then vortexed and separated into three 250 µL aliquots and three
370 µL aliquots. All aliquots were then re-frozen to ensure the
same freeze-thaw cycles in addition to the same number of tube
transfers.

CSF Analysis
On the first day of each study week, every sample was analyzed
in triplicates (three wells) on the automated Lumipulse R© Aβ42
chemiluminescent enzyme immunoassay (CLEIA), INNO-Bia
Alzbio3 Luminex assay, and INNOTEST R© Aβ42 ELISA. In the
morning, one 370 µL aliquot was thawed at room temperature
for each subject and analyzed using the ELISA according to the

TABLE 1 | Characteristics of subjects and assays according to CSF Aβ42
concentrations.

Low
(n = 10)

Intermediate
(n = 10)

High
(n = 10)

Female (%) 3 (30%) 7 (70%) 3 (30%)

Age, yr (SD) 72.7 (7.9) 65.5 (8.5) 72.5 (8.4)

Diagnosis
Normal cognition
Mild cognitive impairment
AD dementia
Other dementia

3
4
2
1

2
2
4
2

4
6
0
0

Aβ42CLEIA, pg/mL (SD)
Aβ42Luminex, pg/mL (SD)
Aβ42ELISA, pg/mL (SD)

219.5 (50.2)
105.7 (29.3)
265.9 (56.6)

327.7 (51.0)
173.3 (42.4)
363.3 (66.1)

821.5 (194.4)
400.9 (68.6)
698.0 (97.6)

t-TauLuminex, pg/mL (SD) 51.2 (50.9) 64.3 (62.1) 33.5 (7.8)

p-TauLuminex, pg/mL (SD) 22.9 (24.7) 42.2 (48.8) 7.1 (6.9)

Intra-assay CV (repeatability)
CLEIA
Luminex
ELISA

2.4%
12.0%
3.3%

2.1%
13.3%
3.6%

1.4%
9.4%
3.1%

Inter-assay CV (intermediate precision)

CLEIA
Luminex
ELISA

10.1%
11.8%
14.6%

7.1%
11.5%
9.8%

4.0%
8.8%
7.8%
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FIGURE 1 | Assessment of correlation between CSF Aβ42 levels measured in CLEIA, Luminex, and ELISA across three weekly runs. For each subject, four frozen
500 µL aliquots were thawed, pooled, and realiquoted. On the first day of each week, aliquots were thawed for analysis on the three platforms. In the correlational
figures, CLEIA measures are presented on the X-axis, and the ELISA and Luminex measures are presented on the Y-axis.

manufacturer’s protocol on two separate 96-well plates. A full
set of kit standards and two kit controls were included in each
plate. The inter-plate CV for the kit controls were 4.7 and 18.0%
on Week 1, 2.9, and 4.8% on Week 2, and 21.6 and 13.4% on
Week 3. The remaining CSF from each 370 µL aliquot was
transferred to the CLEIA sample cups for Aβ42 analysis following
the manufacturer’s protocol.

In the afternoon, one 250 µL aliquot was thawed at
room temperature for Luminex assays according to a modified
manufacturer’s protocol: all samples were vortexed vigorously
for exactly 15 s immediately prior to plate loading, (Hu
et al., 2015) and the bead count (performed the next day)
was reduced to 75 to minimize fluorescence loss. As with the

ELISA, samples were divided between two plates, with a full
set of kit standards and two kit controls on each plate. The
inter-plate CVs for the two kit controls were 0.2 and 0.9%
on Week 1, 6.1 and 2.8% on Week 2, and 4.7 and 1.9% on
Week 3.

Statistical Analysis
Statistical analyses were performed using IBM SPSS version
24.0 (Armonk, NY, United States). Aβ42 concentrations
measured by CLEIA, Luminex, and ELISA were all log-
transformed prior to Pearson’s correlation analysis due to
their non-normal distribution, with p < 0.01 to account
for multiple comparisons. Repeatability for each assay was
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assessed by averaging CV for the triplicate concentration
values within the same run, and intermediate precision for
each assay was assessed by calculating CV for the three
weekly concentrations. Analysis of variance (ANOVA) and
analysis of co-variance (ANCOVA) were used to determine
whether intermediate precision differed between the three
assays before and after adjusting for Log10-transformed
concentrations.

Data Availability
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

RESULTS

Aβ42 Levels Were Highly Correlated
Between the Three Assays
There was a very high degree of correlation between
concentrations from all three platforms (R = 0.964–0.973
between CLEIA and Luminex, 0.961–0.967 between CLEIA
and ELISA, and 0.932–0.969 between Luminex and ELISA).
Regression analysis showed that a quadratic – rather than
linear – relationship better converted measures from ELISA and
Luminex to CLEIA due to relatively higher CLEIA measures
than ELISA/Luminex measures in the high concentration
range [Figure 1, Aβ42CLEIA = 63.32 + 0.32Aβ42ELISA +

0.001Aβ42ELISA2 , Aβ42CLEIA = 100 + 0.92Aβ42Luminex +

0.002Aβ42Luminex2 ]. In contrast, the relationship between
Luminex and ELISA was linear in all concentrations
(Aβ42Luminex = 0.66Aβ42ELISA −66.35).

Repeatability
The average intra-assay CV for Aβ42CLEIA was <2.5% for all
Aβ42 levels (Table 1). These were comparable to values for
Aβ42ELISA, but lower than values for Aβ42Luminex as expected
from the reduced bead count per well. Among 90 triplicates, two
samples (2%, from the same subject) on CLEIA and five samples
from ELISA had intra-assay CV greater than 5%.

Intermediate Precision
The average inter-assay (within laboratory) CV for Aβ42CLEIA
ranged from 4.0% for high concentrations to 10.1% for
low concentrations (Table 1). When all concentrations were
analyzed together, ANOVA showed that Aβ42CLEIA (7.1%) had
lower inter-assay CV than the other platforms [Figure 2A,
10.7% for Aβ42Luminex (p = 0.0090), 10.8% for Aβ42ELISA
(p = 0.009)]. ANCOVA adjusting for Aβ42CLEIA concentrations
(Figure 2B) showed that, in addition to an inverse relationship
between CV and concentration (p < 0.001), CLEIA had greater
intermediate precision than Luminex at higher concentrations
(p = 0.001 for assay X concentration), and greater intermediate
precision over ELISA at all concentrations (p < 0.001 for
assay).

FIGURE 2 | Intermediate precision of CLEIA-, Luminex-, and ELISA-based
CSF Aβ42 measures. Across all concentrations, Aβ42CLEIA measures had
lower CV than Aβ42Luminex or Aβ42ELISA (A). Further examination of the
differences in CV (B) showed that Aβ42CLEIA had lower inter-assay CV than
Aβ42Luminex at higher concentrations (∗), and Aβ42ELISA at all concentrations
(∗∗).

DISCUSSION

While CSF biomarkers have shown great promise in the
ante-mortem prediction of AD pathology, pre-analytical and
analytical processes need to be standardized and simplified
for inclusion into existing clinical workflows. Because every
step – pre-analytical or analytical – affords an opportunity for
within-operator and between-operator variability, automation
of the analytical portion of Aβ42 measurements likely reduced
the within-operator, inter-assay imprecision (Bittner et al., 2016;
Chiasserini et al., 2016). Operator-associated imprecision in
the busy clinical laboratories is likely much greater, as
published inter-assay CV values generally come from experienced
biomarker laboratories (5.3–14% for Luminex and 6.4–25% for
ELISA) with experienced staff dedicated to these specialized
assays (Kang et al., 2013). At the same time, inconsistent
reporting of intermediate precision – particularly related to
source material [e.g., synthetic peptides, (Bittner et al., 2016)
pooled CSF (Chiasserini et al., 2016)] – prevents comparison
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across manual and automated platforms, as well as across
different automated platforms. While the study design here
required a modest amount of CSF from each subject, involving
banked samples from multiple centers or recruiting study
volunteers specifically for the purpose of assay standardization
can streamline future studies for new assays or analyzers.

The strong correlation between Aβ42CLEIA and the other Aβ42
measures also permits comparison between legacy and new data.
The correlation observed here is stronger than that reported
between another automated analyzer and the same ELISA we
used (Chiasserini et al., 2016). The difference likely resulted from
our use of CLEIA and ELISA from the same manufacturer.
Our observation of non-linear relationship in higher Aβ42
concentrations also warrants follow-up, as this observation was
not specifically examined with the other analyzers. Nevertheless,
we report good repeatability, intermediate precision, and strong
correlation with established Aβ42 assays. Because the automated
analyzer already has FDA clearance in the United States, CSF
Aβ42 measurement will likely not be limited to specialized
centers in the near future. At the same time, because CSF

collection and handling are still manual in nature, there is an
ever more urgent need to standardize these pre-analytical steps
through processing engineering and possibly automation.
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