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Many factors influence biomolecule binding, and its assessment constitutes an
elusive challenge in computational structural biology. In this aspect, the
evaluation of shape complementarity at molecular interfaces is one of the main
factors to be considered. We focus on the particular case of antibody–antigen
complexes to quantify the complementarities occurring at molecular interfaces. We
relied on a method we recently developed, which employs the 2D Zernike
descriptors, to characterize the investigated regions with an ordered set of
numbers summarizing the local shape properties. Collecting a structural dataset
of antibody–antigen complexes, we applied this method and we statistically
distinguished, in terms of shape complementarity, pairs of the interacting regions
from the non-interacting ones. Thus, we set up a novel computational strategy based
on in silico mutagenesis of antibody-binding site residues. We developed a Monte
Carlo procedure to increase the shape complementarity between the antibody
paratope and a given epitope on a target protein surface. We applied our
protocol against several molecular targets in SARS-CoV-2 spike protein, known
to be indispensable for viral cell invasion. We, therefore, optimized the shape of
template antibodies for the interaction with such regions. As the last step of our
procedure, we performed an independent molecular docking validation of the results
of our Monte Carlo simulations.
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1 INTRODUCTION

Cellular functioning is widely dependent on processes occurring when biological molecules
recognize each other and bind (Jones and Thornton, 1996; Gromiha et al., 2017). In particular,
the non-covalent protein–protein pairing proved to be essential in several biochemical pathways,
ranging from biocatalysis to organism immunity or cell regulatory network construction (Gavin
et al., 2002; Han et al., 2004). Not surprisingly, in the last few decades, a very high amount of effort
has been devoted to developing computational tools for the structural characterization of
protein–protein complexes. The aim of these methods are various, varying from binding site
identification (Gainza et al., 2020; Milanetti et al., 2021a) to binding affinity prediction (Vangone and
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Bonvin, 2015; Siebenmorgen and Zacharias, 2020) or
protein–protein docking guide (Vakser, 2014; Kozakov et al.,
2017; Geng et al., 2020; Yan et al., 2020).

In this scenario, the shape complementarity at the molecular
interface is one of the most basic tasks to take into account
(Katchalski-Katzir et al., 1992; Lawrence and Colman, 1993; and
Jones and Thornton, 1996). Indeed, the evaluation of shape
complementarity is essential for docking, both in terms of
searching and evaluating the binding poses (Chen and Weng,
2003; Nicola and Vakser, 2007; Kuroda and Gray, 2016; Gromiha
et al., 2017; and Yan and Huang, 2019), and represents one of the
factors to take into account for binding site recognition (Gainza
et al., 2020; Milanetti et al., 2021a) or to assess the binding affinity
(Erijman et al., 2014).

Among the wide variety of methods developed in the last few
years to describe the geometrical properties of a molecular region
and to evaluate the complementarity with a putative binding
partner region, using the Zernike polynomials is an effective and
promising strategy (Venkatraman et al., 2009a; Di Rienzo et al.,
2017; Daberdaku and Ferrari, 2019; and Di Rienzo et al., 2021a).
Indeed, once extracted, the molecular surface region and its
geometrical properties are summarized through a set of
numerical descriptors, namely, the Zernike descriptors. The
accuracy of the description is increased by enlarging the
number of descriptors considered (Zernike and Stratton, 1934;
Canterakis, 1999; and Novotni and Klein, 2004).

The main advantage of the Zernike formalism is that the
molecular surface representation is invariant under protein
rotation, constituting an absolute morphological
characterization of the examined protein region. Therefore, the
complementarity between two molecular regions is computed by
comparing their Zernike descriptors, without the need for any
preliminary superposition step (Daberdaku and Ferrari, 2018; Di
Rienzo et al., 2020a).

In the last decade, the Zernike approach, in its 3D version, has
been widely applied for the analysis of biomolecules
(Venkatraman et al., 2009a; Venkatraman et al., 2009b; Kihara
et al., 2011; Di Rienzo et al., 2017; Daberdaku and Ferrari, 2018;
Daberdaku and Ferrari, 2019; Han et al., 2019; Di Rienzo et al.,
2020a; Alba et al., 2020; and Di Rienzo et al., 2020b), proving its
efficacy in characterizing both global and local protein properties.

We recently developed a computational protocol that allows
us to employ the 2D Zernike formalism to assess the shape
complementarity observed in protein–protein interfaces
(Milanetti et al., 2021a). The utilization of the 2D formalism
allows to sensibly decrease the computational time needed to
compute the shape descriptors without a significant loss in
description accuracy (Di Rienzo et al., 2021b).

In this work, we focused on antibody–antigen interactions,
since these complexes represent a critical case of molecular
recognition where the interface shape complementarity level is
similar to the typical protein–protein interfaces (Li et al., 2003;
Kuroda and Gray, 2016).

Moreover, antibodies have been the object of extensive
biomedical studies since their modular architecture facilitates
the engineering of novel binding sites (Gotwals et al., 2017; Saeed
et al., 2017; and Singh et al., 2018). Indeed, the recognition of

virtually any foreign antigen is due to high sequence variability in
the antigen-binding site, while the overall architecture is largely
conserved (Chothia and Lesk, 1987; Chothia et al., 1989; and
Tramontano et al., 1990). The antigen-binding site is structurally
composed of three loops of both the heavy and light chains,
forming the Complementary Determining Regions (CDRs).
Notwithstanding the variability of the CDR sequences, these
loops (at least five out of six) can acquire only a limited
number of structural conformations, called canonical
structures. Moreover, studying the growing number of
experimentally determined antibody structures, the
relationship between the presence of given residues in certain
sequence positions and the canonical structure adopted by the
antibody has been demonstrated (Tramontano et al., 1990;
Chothia et al., 1992; Foote and Winter, 1992; Decanniere
et al., 2000; Chailyan et al., 2011; and North et al., 2011).

In this framework, thanks to the public availability of an
increasing number of experimental antibody structures
(Dunbar et al., 2013), several effective computational
approaches—for predicting the structure of antibodies from
their sequences—have been produced, often based on machine
learning approaches (Dunbar et al., 2016; Lepore et al., 2017;
Weitzner et al., 2017; and Abanades et al., 2022). Moreover,
obtaining structural information about antibody–antigen
complexes has been the object of extensive studies and it is
still elusive. Many computational protocols focus on the
prediction of the residues involved in partner interaction, both
on the antibody and antigen side of the interface (Olimpieri et al.,
2013; Potocnakova et al., 2016; Liberis et al., 2018).

All these kinds of computational tools can be used for antibody
design, that is, the development of a novel molecule able to bind a
given antigen (Norman et al., 2020). In particular, ab initio
protocols are able to design paratopes integrating antibody
structure prediction, molecular docking, and binding energy
assessment (Pantazes and Maranas, 2010; Li et al., 2014;
Lapidoth et al., 2015; and Adolf-Bryfogle et al., 2018).

Here, we collected a structural dataset of antibody–protein
complexes solved in x-ray crystallography. In this work, we apply,
for the first time, our recently developed method based on 2D
Zernike descriptors to study the antibody–antigen interfaces.
Concerning this specific kind of interaction, we demonstrate
that such a fast and compact description can recognize with
satisfying success the specific interaction from non-specific ones.
Indeed, paratopes show a shape complementarity statistically
higher toward their corresponding epitopes than toward
epitopes belonging to unrelated antigens.

Based on these results, we propose here, for the first time, a
new computational protocol employing 2D Zernike descriptors
that, for a given target protein region, optimizes the shape
complementarity of an antibody toward that region. Indeed,
once a target region belonging to a protein antigen is
identified and characterized with its Zernike descriptors, we
compared such a region with the paratope of the antibodies in
our dataset. Selecting as the starting template the antibody that
has the most complementary patch, we perform a Monte Carlo
(MC) simulation for the optimization of the paratope’s structural
conformation. Through extensive computational mutagenesis,

Frontiers in Molecular Biosciences | www.frontiersin.org May 2022 | Volume 9 | Article 8742962

De Lauro et al. Antibody–Antigen Interface Shape Optimization

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


substituting in each step an interacting antibody residue with a
different random one, we accept or reject each mutation
according to the gain in shape complementarity, as evaluated
by the Zernike method (Di Rienzo et al., 2020b; Di Rienzo et al.,
2021b). In this work, the combined application of both the 2D
Zernike formalism and a Monte Carlo simulation allows a
computationally fast and effective exploration of the space of
the possible mutants.

In the current pandemic situation, the interactions between
SARS-CoV-2 spike protein and human cellular receptors have
been extensively studied through the 2D Zernike polynomials
formalism (Milanetti et al., 2021b; Bò et al., 2021; Miotto et al.,
2021; and Miotto et al., 2022). Therefore, despite the generality of
such an approach, we selected as a target for the optimization
protocol some surface regions of the SARS-CoV-2 spike protein.
We discuss here the results we got. Indeed, elucidating the
interaction mechanism between antibodies and viral proteins
represents a fundamental element for developing new therapies.

2 RESULTS AND DISCUSSION

2.1 Description of the Antibody–Antigen
Interface Through Zernike Descriptors
In the present section, we discuss the results we obtained applying
our recently developed computational protocol (Milanetti et al.,
2021a) on a structural dataset composed of 229 antibody–antigen
complexes (see Methods).

In particular, we firstly identified for each complex the
paratope (epitope) as the set of residues with at least one atom
closer than 4 �A to an antigen (antibody) atom. Therefore, after
separately computing the molecular surface (Richards, 1977) for
both the proteins in interaction, we extracted the portions of the
molecular surfaces relating to the binding site residues to properly
characterize the shape of the interacting regions of antibodies and
antigens (see Figure 1A).

Once we identified the interacting regions, we characterized
them through the 2D Zernike polynomials, summarizing their

FIGURE 1 | Application of the 2D Zernike polynomials approach to antibody–antigen complexes. (A) Representation of a molecular antibody–antigen complex: the
antibody heavy chain, antibody light chain, and the antigen are in red, yellow, and purple, respectively. The interacting regions, defined as the portion of the molecular
surfaces belonging to residues closer than 4 �A to any atoms of the molecular partner, are extracted from the whole surface. (B) Boxplot comparing the specific
complementarity, i.e., the complementarity between regions actually found in interaction (green), and the non-specific complementarity, i.e., the complementarity
observed between paratopes and epitopes of different complexes (red). It is worth remarking that when the numerical value is low, the complementarity is high. (C)
Z-score distribution of the specific complementarity. When the Z-score is lower than 0, the specific interaction is characterized by a complementarity higher than the
mean of the non-specific interaction.
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geometrical properties in an ordered set of numerical descriptors
(see Materials and Methods). By definition, two perfectly fitting
surfaces are characterized by the same shape, meaning that, in
principle, the difference between their Zernike descriptors is zero.
Therefore, the shape complementarity between two molecular
regions is compactly evaluated by such formalism. The lower is
the distance between the Zernike descriptors and the higher is the
shape complementarity between the corresponding protein
regions (Milanetti et al., 2021a; Di Rienzo et al., 2021b).

We described all the paratopes and epitopes in the dataset with
the Zernike formalism. In summary, we deal with 229 (the
number of structures in our dataset) sets of 121 (the number
of invariant descriptors when the order of expansion is set to 20)
numerical descriptors for the paratopes and 229 for the epitopes.
We thus defined the specific complementarities as the Euclidean
distance between the descriptors of the 229 pairs of interacting
(extracted from the same structure) paratope and epitope.
Diversely, Non-Specific complementarity is the Euclidean
distance between all the pairs of unrelated paratopes and
epitopes (i.e. a paratope extracted from one structure and an
epitope extracted from another one). In the end, we deal with 229
specific complementarities (one for each complex) and a high
number (25,000) of non-specific complementarities (all the
possible paratope–epitope pairs given a dataset of 229 items).
In other words, in dealing with N antibody–antigen complexes,
the specific complementarity, Cs, is defined as

D pi, ej( )|i�j � �����������∑121
k�1

pk
i − ekj( )2√√

|i�j, (1)

where D is the Euclidean distance between the vectors of the
paratope (pi) and epitope (ei) Zernike descriptors. Since we
expanded all the paratopes and epitopes to the order 20, we
dealt with 121 descriptors for each binding region. On the other
hand, the non-specific complementarities, Cns, can be
computed as

D pi, ej( )|i≠j � �����������∑121
k�1

pk
i − ekj( )2√√

|i≠j. (2)

In Figure 1B, we reported a boxplot highlighting the
differences between Cs and Cns distributions. As expected, the
distribution of Cs is statistically lower than the distribution of Cns

(Kolmogorov–Smirnov test p value < 2.2e − 16), testifying the
sensitivity of Zernike in recognizing regions actually in contact
from the non-interacting ones. In the second step, we normalized
the Zernike complementarities with the Z-score. In particular, for
each paratope we have 1 Cs and 228 Cns complementarity values,
each of which is related to a specific patch pair. Normalizing over
this set of numbers and looking at the Z-score regarding the
specific one, we assessed the propensity that characterizes each
antibody toward its specific antigen. In Figure 1C, we report the
distribution of such specific Z-scores. As evident, they are mostly
negatives (86% of the cases have a Z-score lower than 0, and 28%
have a Z-score lower than -1), providing evidence that specific

interactions are characterized by lower distances (higher
complementarity) than non-specific ones.

Taken together, these results confirm the ability of our method
to correctly capture the main determinant of molecular shape
complementarity.

2.2 Zernike-Based Monte Carlo Simulation
for Molecular Interface Optimization
The Zernike formalism enjoys several advantageous features in
representing the molecular surface: mainly, the invariance under
rotation that makes such descriptors an “absolute”
characterization of local protein morphology and the low
computational cost of its calculation. Indeed, in this section,
we present our algorithm that exploiting these advantages aims to
optimize the shape complementarity of an antibody toward a
given molecular target region. A similar procedure has already
been presented and tested in our previous work (Di Rienzo et al.,
2020b), and here for the first time, it is applied to
antibody–antigen interaction systems.

Figure 2A illustrates the main steps of the algorithm. We
defined the target region as the portion of the antigen surface
toward which an antibody will be optimized. It is thus necessary
to identify the antibody chosen as a starting point of the
algorithm. Summarized with the Zernike descriptors of the
target region we compute the shape complementarity with all
the paratopes of our dataset; here, the template, i.e., the antibody
selected as the starting point for the mutagenesis process, can be
chosen among the paratopes characterized by a high initial
complementarity.

After establishing the template, we perform a Monte Carlo
simulation employing computational mutagenesis on the
paratope residues. In each step, we randomly selected a
residue mutating it into another one of the 19 possible
ones. The mutation generates a different paratope,
characterized by a different shape of its molecular surface.
Consequently, re-computing the Zernike descriptors, we can
evaluate the effect of the mutation on the complementarity
with the target region; indeed we can define the
complementarity balance as

ΔC � Cmut − Cwt � D pmut, etar( ) −D porig, etar( ), (3)
where porig and pmut are the Zernike descriptors of the original
and the mutated paratopes, respectively, while the etar represent
the Zernike descriptors of the target epitope and D represent the
distance between 2 sets of descriptors. Since, as said, a high
complementarity is reached when D is low, ΔC < 0 means a
higher complementary surface, and ΔC > 0 is obtained when the
mutation is deleterious since it causes a worsening of the shape
complementarity.

The number of combinations of possible mutations in an
interacting region, composed usually of tens of residues, is huge.
Therefore, to effectively sample the space of the possible mutants,
we perform a Monte Carlo Metropolis simulation, iterating the
procedure described previously, where the mutation in each step
is accepted according to the following rules:
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P � 1 if ΔC< 0
e−βΔC if ΔC≥ 0{ , (4)

where β ~ 1
T is the temperature factor that determines the

probability of acceptance of a step worsening
complementarity. Note that this aspect is crucial to properly
exploring a large number of different mutants: β is thus
progressively increased during the Monte Carlo simulation,
progressively confining the system to minimum energy in a
simulated annealing process (Kirkpatrick et al., 1983).

To observe how many steps are necessary to reach the
equilibrium for each β, we preliminary ran several fixed-
temperature Monte Carlo simulations. We selected the epitope
of an antigen structure in our dataset (PDB id: 1AR1) and,
excluding its one, we choose as the starting template, the most
complementary paratope in the structural dataset. We thus
performed six different Monte Carlo simulations, each for a
different β, where the acceptation probability in each
mutagenesis step is given by Eq. 4. Performing 10
independent simulations of M = 2,000 steps for each β, the
averaged results we obtained are summarized in Figure 2B. In
the top panel, we reported the energy (i.e., the complementarity)
as a function of the Monte Carlo steps. In the low panel, we
reported the standard deviation of the energy of the remaining

part of the Monte Carlo simulations as a function of the number
of steps (i.e., σ(E) for m = 1,000 means standard deviations of the
energy obtained in steps 1,001–2,000). As expected, for low values
of β (i.e., high temperature) the system lives in a condition of
indifferent equilibrium, where whatever mutation has an equal
likelihood to be accepted, independently from its effect on
complementarity. When, on the contrary, β is high (low
temperature), the energy of the system rapidly decreases to a
stationary local minimum. This trend is confirmed by looking at
the stationary value of energies or, equivalently, noting that
standard deviation tends progressively to zero. In the light of
these results, in our protocol, we set N = 700 for each
temperature. In this way, we preliminary allow the system to
move away from the starting local conformation, thus freezing it
in a new energy minimum, characterized by an increased shape
complementarity with the target region.

2.3 A Case of Study: Application to the
SARS-CoV-2 Spike Protein
The approach described here is general and can be applied to
whatever protein. This notwithstanding that we applied it to the
SARS-CoV-2 spike protein is a very relevant case of
macromolecular interaction. Indeed, the severe acute

FIGURE 2 |Development of a Monte Carlo simulation for shape complementarity optimization against a target region. (A) Flowchart depicting the main steps of the
computational protocol we developed. (B) Results of the mutagenesis Monte Carlo procedures performed at fixed β (β = 1, 10, 30, 50, 80, and 100). The top panels
represent the energy (i.e., the shape complementarity) as a function of the Monte Carlo steps. The low panels show the standard deviation of energy of the remaining part
of the Monte Carlo simulations as a function of the Monte Carlo steps (i.e., σ(E) for n = 1,000 means standard deviations of the energy obtained in the steps
1,001–2,000).
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respiratory syndrome Corona virus 2 infection is still a very
serious danger for public health (Huang et al., 2020; Zhu et al.,
2020).

Many therapeutic strategies are devoted to the SARS-CoV-2
spike protein, protruding from the viral envelope and responsible
for the cell entry mechanism (Walls et al., 2020; Wan et al., 2020;
and Zhou et al., 2020). Thus, we obtained, using the dedicated
section of Cov-AbDab (Raybould et al., 2021), a structural dataset
of 145 spike–antibody complexes (we will call it the “Spike
dataset”). We thus characterized the paratopes (antibody
binding residues region) and the epitopes (various regions on
the Spike) with the Zernike formalism. This allows us to compute,
also for the Spike dataset, the specific complementarities and the
non-specific complementarities, defined in Eqs 1, 2. The result of
this analysis is shown in the following Figure 3A. These
complementarities are reported as boxplots (light green for
specific complementarities, light red for non-specific ones),
even showing the boxplots regarding the general dataset (dark
green and dark red, already shown in Figure 1B). Its results are
evident that, also in the Spike dataset, specific interactions are
characterized by a complementarity much higher than non-
specific interactions (k.s. test p-value < 2.2 e-16). As expected,
the non-specific interactions are represented by very similar
distributions, since in both datasets they would represent an
ensemble of non-interactions. Looking at these results, we noticed
that the population of spike–antibody complexes showed the
same behavior as the general population of the protein–antibody
complexes.

In this framework, we selected on spike molecular surfaces,
three different regions as targets for the optimization protocol.

On one hand, we targeted two different molecular regions
involved in the interaction between spike and angiotensin-
converting enzyme 2 (ACE-2), the well-known cellular
receptor responsible for viral cell invasion. Moreover, we also
optimized an antibody toward a very exposed region in the
N-terminal spike domain, responsible for contacting sialic acid
molecules. Indeed, such an interaction can confer to the virus, as
occurred for the Middle East respiratory syndrome coronavirus
(MERS-CoV) (Li et al., 2017), an additional molecular
mechanism for cell intrusion. The responsible spike region
represents a promising therapeutic target (Baker et al., 2020;
Milanetti et al., 2021b).

We selected the residues constituting such epitopes and we
characterized their molecular surfaces through Zernike
formalism. Thus, we calculated the complementarity between
these regions and all the antibody binding sites in our original
dataset. To begin the optimization from a favorite starting point,
we selected as templates antibody-binding sites characterized by
the highest complementarity with each identified target.

We applied the procedure described in the previous section
obtaining optimized paratopes whose molecular images are
shown in Figure 3B, where we reported both the optimized
antibodies and antigen interacting surfaces. In Figure 3C, we
reported, for each of the Monte Carlo simulations performed, the
shape complementarity as a function of the steps of the
simulation, where the dashed lines enclose ranges with
different β values. Each simulation significantly optimizes
shape complementarity, obtaining a Zernike distance decrease
of 43% on average. Significantly, all the designed binding sites are
characterized by a very high final shape complementarity, in

FIGURE 3 | Application of the optimization protocol to the SARS-CoV-2 spike protein. (A) Boxplots comparing the specific complementarity and the non-specific
complementarity in generic protein–antibody or in spike–antibody complexes. It is worth remarking that when the numerical value is low, the complementarity is high. (B)
Molecular representation of the optimized antibodies binding epitopes on the spike protein. The antibody light and heavy chains are shown in yellow and red respectively,
while the antigen is in purple. (C) Shape complementarity as a function of the Monte Carlo steps for all the antibodies we optimized. Dashed lines separate different
temperature intervals of the simulations. (D) Probability density function of specific complementarities in the Spike dataset. The dashed lines represent the shape
complementarity levels reached after the optimization protocols.
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terms of Zernike descriptors. Indeed, it is worth noting that the
values obtained by all the three designed binding sites are lower
than all the specific complementarities obtained in our structural
dataset.

Moreover, in Figure 3D, we reported the probability density
function of specific interactions in the Spike dataset. The vertical
dashed lines represent the final complementarity values we get
after the optimization procedures. It has to be noted that our
protocol can effectively optimize the shape complementarity,
obtaining final shape complementarity similar to the best cases
observed in the Spike dataset.

The computational protocol we developed does not take into
account several properties, known to be important in molecular
recognition, such as electrostatics or hydrophobicity. In
particular, our working hypothesis is that the shape
complementarity plays a primary role as a perfect match
between molecular surfaces due to an optimal structural
rearrangement, which is probably caused by the compatibility
of amino acid compositions of the interacting patches. However,

the relationship between shape complementarity and
chemical–physical properties is not always trivial, requiring a
further test for the patches proposed as interacting, to also analyze
the compatibility of a chemical nature. This means that a residue
substitution can, in principle, worsen the chemical compatibility
between molecules, even if the shape complementarity is
enhanced. For this reason, as a further step of our
optimization protocol, we performed a molecular docking
analysis using HDOCK (Yan et al., 2020). More specifically,
we docked the spike protein and the antibodies, both in the
original and in the optimized versions, to study the effects our
computational protocol has produced. We constrained docking
to interact with the residues composing the spike target epitopes
and the antibodies’ optimized regions. We summarized in
Figure 4 the results we obtained.

Thus, we selected the 10 best docking poses regarding both the
original and the optimized antibodies. To assess whether the
optimization protocol has been effective, some estimators of
binding compatibility have been calculated. In particular, the

FIGURE 4 | Results of the docking analysis. (A) Each bar represents the relative gaining (in terms of the number of residue–residue inter-molecular contacts, the
surface buried in the complex, the mean inter-molecular distance of the closest atoms, the inter-molecular Coulomb energy, the inter-molecular Lennard–Jones energy,
and the HDock binding score) between the 10 best docking poses obtained with the original and the optimized antibodies. A positive value means an increase in binding
compatibility. (B) The gaining in terms of the number of inter-molecular contacts, Coulomb energy, and Lennard–Jones energy each residue registered before and
after the optimization. (C) The network of residue–residue interactions at the interface when the original (upper figure) or the optimized (lower figure) antibody is docked to
the spike B region. The color, from cyan to dark blue, and the width of the edges reflect the occurrences in the docking poses of a given contact.
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number of residue–residue inter-molecular contacts, the surface
buried in the complex, the mean distance of the closest atoms
between the two interfaces, the Coulomb inter-molecular energy,
the Lennard–Jones inter-molecular energy, and the HDock
binding score. For each of these observables, we computed the
relative percentage of gaining after optimization so that the
positive values indicate an increased binding tightness (See
Materials and Methods). As shown in Figure 4A, even if in
two applications we note a worsening, in one case, the
optimization procedure has produced an antibody with better
values of all such estimators, indicating the importance of
including the molecular docking approach as a filter of
selected patches based on geometric compatibility.

We focused therefore on this case and we analyzed how the
introduced residue substitutions were responsible for this better
compatibility. Analyzing the best docking poses, in Figure 4B, we
reported the gaining in terms of the number of inter-molecular
contacts and inter-molecular energy each residue registered
before and after the optimization. Each residue is represented
by a blue bar, while the residues mutated in the protocol are
depicted in orange. As evident from the main effect regarding the
residues “H 31” and “H 32” indeed, to increase the shape
complementarity, the optimization protocol preferred to
switch the exposition of these residues. It can be noted that
the “H 31” residue, characterized by a high increase in the number
of contacts, gains a very high amount of favorable (negative)
Coulomb energy. Moreover, even if the number of inter-
molecular contacts gained by H 54 is negligible, such a residue
(and its neighborhood) acquired in the docking poses an
increment of favorable Lennard–Jones energies.

Lastly, we assessed the difference in residue–residue inter-
molecular interaction networks. In Figure 4C we reported the
contacts between the main couples of residues, where a higher
number of occurrences in the docking poses is testified by the
thickness and the color of the edge. The spike residues are shown
in green, and the antibody ones are in red. As further proof of the
goodness of the proposed mutants, it can be noted that the
interface of the optimized antibody (lower figure) is much
more interconnected than the one of the original antibody
(upper figure), indicating a possible effect on binding stability.

3 CONCLUSION

The binding affinity between biomolecules depends on a complex
balance of several effects, including enthalpic and entropic
contributions. Indeed, the substitution of even one residue at
the interface could produce dramatic changes. Although many
efforts were spent in this direction, predicting such effects has
proven to be a difficult task and is still an open problem in
computational biology.

In this scenario, the evaluation of shape complementarity
between molecular regions is undoubtedly a central aspect. In
this work, we focused on antibody–antigen interaction, a relevant
case of molecular recognition. We applied our recently developed
formalism based on the 2D Zernike polynomials to evaluate the
shape complementarity with a quantitative approach. Once

summarized the topological properties of interacting regions
with a set of numerical descriptors, we demonstrated that such
formalism assigns to pairs of interacting region
complementarities statistically higher than the ones assigned to
regions not in interaction.

We thus developed a Monte Carlo-based approach for the
shape optimization of an antibody towards a molecular target
region. We proposed a new strategy that, potentially, could
modify an antibody in order to acquire a very high shape
complementarity for a given epitope of any antigen–protein.

Because of the emergence of viral variants that can eventually
escape antibodies maturated in vaccinated or recovered patients,
the interactions between antibodies and SARS-CoV-2 spike
protein are being extensively studied and still need further
investigation.

For this reason, we selected three molecular regions on the
spike protein as the target epitopes for our procedure. We,
therefore, devised a set of antibodies characterized by a high
shape complementarity toward their cognate epitopes.

However, even without considering therapeutically important
elements such as immunogenicity and solubility, some other
aspects have to be properly considered in our algorithm to
increase the probability of identifying actually binding
antibodies. Firstly, to produce more reliable mutant structures,
the residue substitutions’ procedure has to account for the
hypervariable loops canonical structure modeling. Moreover,
we worked on antibody-bound structures: a structural
conformational exploration can allow the antibodies to
energetically rearrange their side chains, and to find the
proper conformation able to bind the studied antigen. Finally,
the binding compatibility does not depend only on shape
complementarity, and thus the inclusion of terms accounting
for the residues’ chemical characteristics will surely improve the
method’s performance.

In conclusion, this procedure can represent a promising
strategy for interface region molecular optimization, where the
inclusion of the aspects discussed previously represents the
necessary improvement steps. In the present work, we
highlighted, with an independent molecular docking
evaluation, the case when the optimization procedure has
increased molecular complex compactness.

4 MATERIALS AND METHODS

4.1 Dataset
We selected 229 protein-binding antibodies with a sequence
identity lower than 90% and resolution < 3.0 Å using the
SabDab database (Dunbar et al., 2013). The Spike dataset,
i.e., the structural dataset of the spike–antibody complexes
was built using CoV-AbDab (Raybould et al., 2021). It
results in 145 complex structures with a sequence identity
lower than 90%, as calculated using CD-HIT (Huang et al.,
2010).

The sequence of each antibody was renumbered according to
the Chothia numbering scheme (Chothia and Lesk, 1987; Chothia
et al., 1989) using an in-house python script.
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The structure of the SARS-CoV-2 spike protein used for the
identification of the ACE-2 interacting region has the PDB code
6vw1. When we investigated the N-terminal domain, we used the
structure 7jji.

We identified on the spike protein two epitopes in the ACE-2
binding region: spike A and spike B. spike A epitope is constituted
by the residues: “TYR 453, LEU 455, PHE 456, ALA 475, GLY
476, PHE 486, ASN 487, TYR 489, and GLN 493.” Spike B epitope
is constituted by the residues: “TYR 449, GLY 496, GLN 498,
THR 500, ASN 501, GLY 502, and TYR 505.” We identified
another epitope in the N-terminal domain, in the region involved
in sialic acid binding. That region is defined as the set of residues
whose CA atoms are closer than 8�A to the TRP 258 CA (Milanetti
et al., 2021b). Such an epitope is constituted by these residues:
“LEU 244, HIS 245, ARG 246, SER 247, TYR 248, LEU 249, THR
250, PRO 251, GLY 252, ASP 253, SER 254, SER 255, SER 256,
GLY 257, TRP 258, THR 259, and ALA 260”.

4.2 Surface Construction
Using as reference the experimental structures, computational
mutagenesis has been performed using SCWRL4 (Krivov et al.,
2009).

For each protein structure, solvent accessible surface is
computed using DMS software with the standard option
(Richards, 1977). The interacting surface is constituted by the
surface points belonging to interacting residues, defined as the set

of residues having at least one atom closer than 4�A to any atoms
of the molecular partner.

4.3 Zernike Descriptors
Given a 2D function f (r, ϕ) in the unitary circle (region r < 1),
it can be expanded in the Zernike polynomials basis.
Therefore,

f r, ϕ( ) � ∑∞
n�0

∑m�n

m�0
cnmZnm, (5)

where

cnm � n + 1( )
π

〈Znm|f〉 �

� n + 1( )
π

∫1
0

drr∫2π
0

dϕZnm* r,ϕ( )f r,ϕ( ) (6)

are the expansion coefficients (Zernike moments). The complex
functions Znm (r, ϕ) are the Zernike polynomials, each composed
of a radial and an angular part:

Znm � Rnm r( )eimϕ. (7)
The radial dependence, given n and m, can be written as

follows:

Rnm r( ) � ∑n−m2
k�0

−1( )k n − k( )!
k! n+m

2 − k( )! n−m
2 − k( )!rn−2k. (8)

For each couple of polynomials, the following rule holds:

〈Znm|Zn′m′〉 � π

n + 1( )δnn′δmm′. (9)

Therefore, the set of polynomials forms a basis. Knowing the
coefficients, {cnm} allows the reconstruction of the original
function. The level of the detail can be modified by
modulating the order of expansion, N = max (n).

The norm of each coefficient (znm = |cnm|) does not depend on
the phase; therefore, it is invariant under rotations around the
origin.

The shape complementarity between two regions can be
evaluated by comparing their Zernike invariants. In
particular, we measured the complementarity between
regions i and j as the Euclidean distance between the
invariant vectors, i.e.,

dij �

�������������∑M�121

k�1
zki − zkj( )2√√

. (10)

We adopted N = 20, therefore, dealing with 121 invariant
descriptors for each patch.

4.4 Analysis of Docking Poses
In Table 1, we report the mutations proposed as a result of the
three Monte Carlo simulations.

TABLE 1 | The residue substitutions performed during the shape optimization
procedure. The template structures for the sialic acid binding site, spike A, and
spike B were 3bdy, 1yjd, and 1kb5, respectively. We adopted the Chotia
numbering scheme.

Epitope Chain ID Res no. Insert Original res Inserted res

Sialic acid BS H 33 S TYR TRP
Sialic acid BS H 52 TYR TRP
Sialic acid BS H 95 TRP GLN
Sialic acid BS H 100 PHE ARG
Sialic acid BS L 30 B SER ALA
Sialic acid BS L 30 C ILE PHE
Sialic acid BS L 30 D SER ILE
Sialic acid BS L 31 TYR ALA
Sialic acid BS L 50 TRP GLY
Sialic acid BS L 91 HIS SER
Sialic acid BS L 92 TYR GLY
Sialic acid BS L 93 THR HIS
Sialic acid BS L 94 THR VAL
Spike A H 31 SER LYS
Spike A H 96 HIS MET
Spike A H 97 TYR PHE
Spike A H 98 GLY LEU
Spike A H 99 LEU PRO
Spike A H 100 S ASP HIS
Spike A H 100 T TRP LYS
Spike A L 30 TYR ILE
Spike A L 32 TRP VAL
Spike A L 91 GLY ARG
Spike A L 92 GLN ARG
Spike B H 31 GLY GLU
Spike B H 32 TYR CYS
Spike B H 53 TYR PHE
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We docked the three original and the three optimized
antibody structures with spike using HDOCK (Yan et al.,
2020), indicating as interacting residues the one written in the
Dataset section.

We selected, for all the 6 docking simulations, the best 10
poses according to the Hdock binding score, an iterative
knowledge-based scoring function. For each pose we get the
following:

• The number of inter-molecular residue–residue contacts.
Two residues are in contact if the minimum distance
between their atoms is less than 4 �A.

• The surface is buried in the complex. The surface buried is
defined as the difference between the sum of the monomers’
area and the complex area. For this calculation, we use DMS
software (Richards, 1977).

• The mean of the lowest 100 atom–atom inter-molecular
distances.

• The sum of the Coulomb energy of the interactions
occurring between antibody and spike atoms. We used
the CHARMM27 force field (MacKerell et al., 2002).

• The sum of the Lennard–Jones energy of the interactions
occurring between antibody and spike atoms. We used the
CHARMM27 force field (MacKerell et al., 2002).

• The pose Hdock binding score.

The comparisons between the results regarding original and
optimized antibodies are performed so as a positive value means
an increase in binding compatibility after optimization.
Therefore, the relative percentage of gaining is defined as follows:

• Number of contacts:<Cont> opt−<Cont> orig

<Cont> orig

• Buried area:< Surf> opt−< Surf> orig

< Surf> orig

• Distance:<Dist> orig−<Dist> opt

< dist> orig

• Coulomb energy:<Ec > orig−<Ec > opt

<Ec > orig

• Lennard–Jones energy: <Elj > orig−<Elj> opt

<Elj> orig

• HDock score:< Score> orig−< Scorec > opt

< Score> orig

where the subscripts “orig” and “opt” refer to the poses
obtained with antibodies before and after the optimization,
respectively.
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