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ABSTRACT 
Background: Acute promyelocytic leukemia (APL) is a unique subtype of acute leukemia. APL is a curable 
disease; however, drug resistance, early mortality, disease relapse and treatment-related complications 
remain challenges in APL patient management. One issue underlying these challenges is that the molecular 
mechanisms of the disease are not sufficiently understood. 
Materials and Methods: In this study, we performed a meta-analysis of gene expression profiles derived 

from microarray experiments and explored the background of disease by functional and pathway analysis. 

Results: Our analysis revealed a gene signature with 406 genes that are up or down-regulated in APL. The 
pathway analysis determined that MAPK pathway and its involved elements such as JUN gene and AP-1 play 
important roles in APL pathogenesis along with insulin-like growth factor–binding protein-7. 
Conclusion: The results of this meta-analysis could be useful for developing more effective therapy strategies 
and new targets for diagnosis and drugs. 
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INTRODUCTION 

   Acute promyelocytic leukemia (APL), classified as 
M3 in French-American-British (FAB) subtype 
classification system, is a bone marrow malignancy 
involving an excess of immature cells called 
promyelocytes. The cause of APL is a translocation 
between chromosomes 15 and 17, which 
consistently leads to breakage of the retinoic acid 
receptor-alpha (RARα) gene on chromosome 17. 
APL has unique clinical features, different responses 
to chemotherapy agents and a different molecular 
biology than other acute myeloid leukemias (AML). 
The incidence of APL accounts for 5–8% of all AML 
patients. APL is a treatable disease and currently 
around 90% of newly diagnosed patients achieve 
complete remission.1 In addition, trials and clinical  

 

efforts are continuing to improve treatment 
results.2 There are few treatment options for APL, 
including all-transretinoic acid (ATRA), as a single-
agent therapy or combined with arsenic trioxide 
and/or other conventional chemotherapy drugs. 
The main challenges in treatment of APL currently 
include early mortality and relapse, refractory after 
induction of therapy3 and drug resistance to ATRA 
and Arsenic trioxide (ATO).1 The genetic and 
molecular aspects of APL are investigated more 
often than other human cancers4 but try to increase 
knowledge of APL at molecular level is a key 
challenge that could lead to more effective 
treatment options. One area of focus is common 
fusion of RARα, which occurs in more than 98% of 
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patients,5 but there are six alternative fusion genes 
with different chromosomal translocations, which 
have been observed in rare cases and often lead to 
resistance to the most common therapies.6,7 Based 
on the research cited above, the molecular and 
genetic mechanisms involved in APL pathogenesis 
and drug responses remain largely unknown. 
Detailed genomic analyses of functional and 
signaling pathways using clinical samples harvested 
from patients with APL may help with predicting 
prognosis, selecting effective targeting drugs, 
understanding molecular disease etiology and 
designing sophisticated new therapeutic strategies. 

In recent years, biological studies have focused on 
holistic approaches such as using high-throughput 
and integrated multi-omics data and employing 
related tools such as graph theory and network 
analysis for biological investigations.8,9 The 
integration of multi-omics data is a promising 
approach, which could resolve complexities in 
human biological systems as expected in systems 
biology.10 

There are two main methods for integration of 
omics data. In horizontal integration, the same data 
type such as multiple microarray gene profiles are 
combined, while in vertical integration data from 
different types such as microarray gene profiles and 
protein–protein interaction (PPI) are integrated. In 
first approach, the power of study is increased, 
particularly if the sample in each study is small. This 
method in microarray field is known as a meta-
analysis. The meta-analysis can facilitate more 
reliable and valid results while decreasing individual 
and study-specific biases.11 

In this study, we performed a meta-analysis of 
available microarray gene profiles of human APL 
and normal samples and carried out functional 
analysis to create a list of differentially expressed 
genes (DEGs) as a biomarker signature for APL to 
determine functional features of this disease. 
Previous studies that used a reductionist approach 
have provided heterogenic results, whereas this 
study adopts a systematic and holistic approach. 
The results of this study may lead to novel pathways 
and/or drug targets in diagnosis and treatment of 
APL. 

 

MATERIALS AND METHODS 
   Ramasamy et al.12 developed a step by step 
approach for meta-analysis of microarray datasets. 
The outline of our study, according to this stepwise 
approach, is summarized in Table 1 in S2 Tables. 
 
APL Microarray Datasets 
The inclusion criteria comprised any human studies 
with at least two newly diagnosed APL patients and 
two corresponding normal human samples. Any 
surveys of cell lines, studies with patients who had 
other PML-RARA translocations, chromosomal 
aberrations except t (15;17) or treatments with any 
chemotherapy agents were excluded. For increased 
homogeneity of samples, only samples derived from 
bone marrow were selected because in accordance 
with the findings by Cheung et al.13 myeloblasts 
derived from bone marrow or from peripheral 
blood are different. 
 
Data Preprocessing and Quality Assessment 
The Affymetrix datasets raw data were loaded using 
Affy Bioconductor R package14 and probe 
expression levels were extracted after quantile 
normalization and log base 2 scale transformation 
by rma function. For Illumina datasets, expression 
levels were obtained by get GEO function of 
GEOquery Bioconductor R package15 and quantile 
normalization and log 2 transformation were also 
performed. Quality assessment for each dataset 
was performed to increase comparability and 
statistical power. In this study, we used array 
Quality Metrics,16 a Bioconductor R package. 
Because actual probe sequence information of chips 
was unavailable, it was not possible to ensure that 
the matched probes on the different platforms 
quantified the same mRNA transcript.17 However, 
before cross-platform comparison, the probe sets 
must be mapped across various platforms to 
identify subsets of common genes. One probe-
matching strategy is based on gene identifiers such 
as Unigene ID or Entrez Gene ID. Using Entrez Gene 
ID (previously Locus Link) may be a better approach 
compared Unigene ID because Entrez can map 
more genes between different platforms.18 In this 
study, due to reasons mentioned, we used the 
Entrez Gene ID to match probes between different 
microarrays. 
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Meta-analysis 
There are several methods for meta-analysis that 
have been described and compared in 
comprehensive review papers.19-21 The technique 
selection for a meta-analysis depends on the 
objectives of the study and types of responses. 
There are four main methods for combining 
microarray information including vote counting, 
combining ranks, combining p-values, and 
combining effect sizes. More details about these 
methods and their variants have been described in 
the cited reviews and in valuable guidelines 
developed by Ramasamy et al.12 Most statistics 
used for deferentially expressed gene analysis have 
been derived from pure mathematics and without 
biological consideration or certainty among 
biologists. However, rank product, which is a non-
parametric statistical test, is more closely 
associated with biological reasoning. In fact, the 
rank product has helped discover genes that are 
consistently highly ranked in a genetic list.22 As 
Hong et al.23 discussed, this statistic has some 
advantages over others such as having more 
biological reasoning, fewer assumptions, high 
tolerance with noisy data and high performance 
when the number of replicates are low. The most 
important and applicable advantage of ranking is an 
increase in the results of sensitivity and reliability, 
especially when the data are heterogeneous. 
The data in our study come from different platforms 
and different generations of the same platforms. 
The present study, therefore, uses the rank product 
statistic for its cross-platform, cross-generation 
meta-analysis. 
 
Functional and Gene Set Analysis 
Functional enrichment analysis is usually performed 
for the interpretation of genome-scale data via 
biologically relevant enriched labels in a gene list 
and comparisons to the corresponding distribution 
of other labels, using the rest of the genes as the 
background.24 
In this study, we performed several functional 
analyses for better interpretation of DEGs list, 
which was derived from meta-analysis. Gene 
ontology (GO)25 is a commonly accepted and widely 
used method for functional studies, which organizes 
structured biological information for molecular 

function, biological processes and cellular 
components. The Reactome pathway database26 is a 
manually curated and peer-reviewed human 
pathway and reactions resource. In this study, 
discovery of enriched functional-related gene 
groups (up-regulated and down-regulated genes) 
was performed using the Database for Annotation, 
Visualization and Integrated Discovery (DAVID)24 
tool, which is an integrated biological knowledge 
base and analytic tool. 
For gene set enrichment analysis, GSEA Preranked27 
was used. It identified statistically significant, a 
priori–defined sets of genes by enriched sets and 
found correlations with the user-supplied ranking 
gene list. All genes that were used in the meta-
analysis were rated according to a rank product 
analysis and used to create a ranked gene list. The 
Java GSEA Desktop Application version 2.2.1 was 
used and the enrichment statistic parameter set to 
basic but other parameters remained at their 
default values. Enrichment analysis was performed 
and scores were calculated based on the all gene 
set databases version 5.0 (c2.all.v5.0.symbols.gmt 
[curated]). Gene sets were considered significantly 
enriched at FDR q-values<0.01. For identifying up-
stream regulators among significantly altered genes 
derived from meta-analysis, data were analyzed 
through use of QIAGEN’s Ingenuity Pathway 
Analysis (IPA, QIAGEN, Redwood City, CA, USA). The 
default setting was used and z-score was used for 
inferring a significant activation state (z-score>2) or 
inhibition state (z-score<−2). 
 
PPI Network Construction and Analysis 
Proteins control all internal and external activities 
of a cell and interactions among these proteins, 
which were studied via PPI networks, playing 
important roles for biological interpretation.28 
STRING29 version 10 was used for the construction 
and analysis of the PPI network using up and down-
regulated genes obtained from the meta-analysis as 
input. Only interactions with experimental and 
knowledge evidences with high confidence scores 
(0.7) were selected. The constructed network was 
visualized and topologically analyzed using 
Cytoscape version 3.2.1 and Network Analyzer 
Plugin30 version 2.7. 
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For more evaluation of deregulated genes, a 
network enrichment analysis (SNOW)31 was done. 
The SNOW program extracts a sub-network from 
the interactome that was prepared from different 
public PPI repositories using a given set of genes. 
SNOW first maps all given genes onto the 
interactome and calculates a minimum connected 
network (MCN) defined as the shortest network 
that connects all interacting nodes within a given 
gene list. SNOW calculates several relevant network 
parameters and conducts corresponding tests to 
assess their significance for the interactome and 
topological parameters against a set of created 
MCNs by random proteins. The filtered scaffold 
interactome, proteins whose interactions were 
detected by at least two different experimental 
methods, was selected and allowed to add external 
intermediate nodes which are not present in our 
list. For revealing the related functional features of 
MCN members, we used EnrichNET,32 a network-
based enrichment analysis tool, to calculate 
association scores between our MCN proteins and 
protein sets of Reactome database pathways. 
 
RESULTS 
   After applying inclusion criteria, four datasets 
from 4 different studies were collected and 
analyzed. These datasets included 63 untreated and 
newly diagnosed APL patient samples, t (15;17) 
(q22;q12) without any additional cytogenetic 
abnormalities and 28 normal human controls. 
Detailed dataset information is shown in Table 1. 
The quality assessment of all datasets was 
performed using array Quality Metrics Bioconductor 
package and described in the S1 Methods in detail. 
 
 
Table 1: Datasets includes in the meta-analysis (See also S1 Methods) 

Data set 
Patient Normal 

Reported After QA* Reported After QA* 

GSE1159 21 18 5 4 

GSE12662 11 10 10 4 

GSE34823 25 22 8 8 

GSE43176 6 3 5 2 

*: Quality assessment 
 

All APL or normal sample profiles that did not meet 
sufficient quality standards were marked as poor 

and removed from our final analysis. In total, 53 of 
63 APL disease gene profiles and 18 of 28 normal 
samples were selected for analysis. The goal of the 
gene mapping step was to provide a probe or gene 
list that comprised all selected gene expression 
datasets. Because our datasets included different 
platforms, obtaining a common probe list was not 
possible due to differences in designs of platform 
probe sequences. Therefore, we created a list of 
common genes among the datasets according to 
their Entrez gene IDs. One-to-many and many-to-
many gene mapping were done according to the 
methods described in the S1 Methods. As a result of 
this step, we had an Entrez gene ID list with 12710 
rows, where Entrez gene IDs were mapped to 
official gene symbols using the Bioconductor 
annotation packages. 
Meta-analysis was performed on 4 datasets with 
12710 genes that were available on all datasets. The 
product rank statistics was used for meta-analysis 
and the analytical results identified 647 up-
regulated genes and 465 down-regulated genes in 
APL patients compared to normal human controls. 
In order to increase robustness and reduce the 
number of deregulated genes, an additional leave-
one-out analysis was performed as described in the 
S1 Methods. Top gene selection criteria consisted of 
FDR<0.01 and a fold change ratio ≥1.5. Finally, a 
gene signature of 247 up-regulated and 159 down-
regulated genes was selected after the leave-one-
out analysis for future functional analyses. Tables 2 
and 3 display the top 20 up and down-regulated 
genes and the complete list displayed in Tables 2 
and 3 in S2 Tables. As expected, a large number of 
genes were deregulated due to the systemic nature 
of APL. To further investigate the top deregulated 
genes, functional analyses including GO analysis, 
pathway analysis and pre-ranked gene set 
enrichment analysis were carried out. The results of 
the over-representation analysis performed using 
DAVID tools displayed in Table 4 in S2 Tables. 
All 12710 genes involved in meta-analysis were 
ordered according to up or down-regulation. These 
genes were then used to create a pre-ranked, 
ordered gene list and a pre-ranked gene set 
enrichment analysis was performed by Broad GSEA 
Preranked using all pathways’ gene sets. The GSEA 
analysis resulted in a large number of gene sets that 
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enriched positively and negatively in the ranked 
gene list. The top 10 gene sets are displayed in 
Table 4 and full list are found in S3 File. The 
Ingenuity Upstream Regulator Analysis was 
performed and significantly activated and inhibited 
regulators identified. The activated or inhibited 
regulators are displayed in Table 5 and in Table 5 in 
S2 Tables. 
To determine the biological network among 
selected up and down-regulated genes, all 
deregulated genes were mapped to the STRING PPI 
network by employing high confidence scores (0.7) 
on experiments and databases as active prediction 
methods (Figure 1). The mapped network contained 
217 interactions among 146 proteins. All other 
proteins showed no interactions and were removed 
from the network. 
 
 

Table 2: List of top 20 up-regulated genes (FDR<0.01 and Fold change 
>1.5) 

No Entrez 

gene ID 

Gene 

symbol 

Gene name 

1 1359 CPA3 carboxypeptidase A3 (mast cell) 

2 8900 CCNA1 cyclin A1 

3 23166 STAB1 stabilin 1 

4 3485 IGFBP2 insulin-like growth factor binding protein 2, 

36kDa 

5 3082 HGF hepatocyte growth factor (hepapoietin A; 

scatter factor) 

6 1675 CFD complement factor D (adipsin) 

7 54360 CYTL1 cytokine-like 1 

8 7177 TPSAB1 tryptase alpha/beta 1 

9 481 ATP1B1 ATPase, Na+/K+ transporting, beta 1 

polypeptide 

10 710 SERPING1 serpin peptidase inhibitor, clade G (C1 

inhibitor), member 1 

11 6320 CLEC11A C-type lectin domain family 11, member A 

12 6624 FSCN1 fascin actin-bundling protein 1 

13 445 ASS1 argininosuccinate synthase 1 

14 10765 KDM5B lysine (K)-specific demethylase 5B 

15 5954 RCN1 reticulocalbin 1, EF-hand calcium binding 

domain 

16 10225 CD96 CD96 molecule 

17 2322 FLT3 fms-related tyrosine kinase 3 

18 9452 ITM2A integral membrane protein 2A 

19 1287 COL4A5 collagen, type IV, alpha 5 

20 2769 GNA15 guanine nucleotide binding protein (G 

protein), alpha 15 (Gq class) 

A topological analysis of the protein interaction 
network revealed a diameter of 9 and network 
density of 0.021. Analysis displayed a hub role for 
JUN (jun proto-oncogene) with 17 interactions. The 
JUN gene was up-regulated. This gene is a 
transcription factor that binds to the enhancer 
heptamer motif 5′-TGA [CG] TCA-3′ and also 
activates the NR5A1 when phosphorylated by 
HIPK3. This cascade increases steroidogenic gene 
expression via cAMP signaling pathway. Other high-
degree nodes included MYB (v-myb avian 
myeloblastosis viral oncogene homolog, up-
regulated), CEBPA (CCAAT/enhancer binding protein 
(C/EBP), alpha, up-regulated), CXCL8 or IL8 
(interleukin-8, down-regulated), LYN (LYN proto-
oncogene, Src family tyrosine kinase, down-
regulated) and IRF8 (interferon regulatory factor 8, 
down-regulated). 
 

Table 3: List of top 20 down-regulated genes (FDR<0.01 and Fold 
change> 1.5) 

NO Entrez 

gene ID 

Gene 

symbol 

Gene name 

1 6283 S100A12 S100 calcium binding protein A12 

2 50486 G0S2 G0/G1 switch 2 

3 79887 PLBD1 phospholipase B domain containing 1 

4 728 C5AR1 complement component 5a receptor 1 

5 6280 S100A9 S100 calcium binding protein A9 

6 929 CD14 CD14 molecule 

7 2357 FPR1 formyl peptide receptor 1 

8 10288 LILRB2 leukocyte immunoglobulin-like receptor, 

subfamily B (with TM and ITIM 

domains), member 2 

9 2219 FCN1 ficolin (collagen/fibrinogen domain 

containing) 1 

10 25797 QPCT glutaminyl-peptide cyclotransferase 

11 6279 S100A8 S100 calcium binding protein A8 

12 11031 RAB31 RAB31, member RAS oncogene family 

13 115207 KCTD12 potassium channel tetramerization 

domain containing 12 

14 2268 FGR FGR proto-oncogene, Src family tyrosine 

kinase 

15 50856 CLEC4A C-type lectin domain family 4, member A 

16 8870 IER3 immediate early response 3 

17 3101 HK3 hexokinase 3 (white cell) 

18 4082 MARCKS myristoylated alanine-rich protein kinase 

C substrate 

19 653361 NCF1 neutrophil cytosolic factor 1 

20 1520 CTSS cathepsin S 
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Table 4: Result of gene set enrichment analysis (GSEA Preranked) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 
 

Figure 1: Protein-protein interaction network constructed by up and 
down-regulated genes derived from meta-analysis of APL gene 

expression profiles. All disconnected nodes were removed. Network 
analysis displayed a hub role for JUN (jun proto-oncogene) which was 

up-regulated. The size of nods indicates the degree of nodes and 
weight of edges indicate the combination of STRING experimental and 
knowledge evidence score. The network is enriched in interactions (p-

value=1.75e-2) 

 

 
 
 
 

 
 

Table 5: Ingenuity Upstream Analysis result 

Up-stream 

Regulator 

Molecule Type 

 

Predicted 

Activation 

State 

Activation 

z-score 

MAPK1 kinase Activated 2.625 

IRF4 

transcription 

regulator Activated 2.621 

MAPK9 kinase Activated 2.219 

TREM1 

transmembrane 

receptor Activated 2.019 

TGM2 enzyme Inhibited -5.386 

IFNG cytokine Inhibited -3.229 

NFkB 

(complex) complex Inhibited -3.142 

TNF cytokine Inhibited -2.743 

 
 
For increased robustness of PPI network 
construction and analysis, If PPI network analysis is 
SNOW network enrichment, this is correct. All 
deregulated genes were used along with an MCN 
obtained by Babelomics 5 suite. The MCN 
comprised 368 proteins, which included 192 
(52.2%) genes that were differentially expressed, 
and 176 (47.8%) genes from external nodes. The 
MCN was compared with random networks 
obtained from given genes with the same size, more 

Top of the ranked gene sets name (FDR q-val<0.01) SIZE NES FDR q-val 

ROSS-AML-WITH-PML-RARA-FUSION 70 7.968 0.000 

JAATINEN-HEMATOPOIETIC-STEM-CELL-UP 218 5.853 0.000 

CASORELLI-ACUTE-PROMYELOCYTIC-LEUKEMIA-UP 159 5.550 0.000 

MULLIGHAN-MLL-SIGNATURE-2-DN 269 5.394 0.000 

IVANOVA-HEMATOPOIESIS-EARLY-PROGENITOR 365 5.265 0.000 

CAIRO-HEPATOBLASTOMA-UP 203 5.027 0.000 

VERHAAK-AML-WITH-NPM1-MUTATED-DN 237 4.962 0.000 

PENG-GLUTAMINE-DEPRIVATION-DN 327 4.920 0.000 

SHEN-SMARCA2-TARGETS-UP 415 4.764 0.000 

VALK-AML-CLUSTER-12 29 4.741 0.000 

Bottom of the ranked gene sets name (FDR q-val<0.01) SIZE NES FDR q-val 

JAATINEN-HEMATOPOIETIC-STEM-CELL-DN 196 -11.905 0.000 

MCLACHLAN-DENTAL-CARIES-UP 235 -8.740 0.000 

GOLDRATH-ANTIGEN-RESPONSE 302 -8.515 0.000 

MULLIGHAN-MLL-SIGNATURE-2-UP 397 -8.440 0.000 

VERHAAK-AML-WITH-NPM1-MUTATED-UP 179 -7.729 0.000 

POOLA-INVASIVE-BREAST-CANCER-UP 268 -7.695 0.000 

MCLACHLAN-DENTAL-CARIES-DN 226 -7.656 0.000 

MULLIGHAN-MLL-SIGNATURE-1-UP 361 -7.588 0.000 

SMID-BREAST-CANCER-NORMAL-LIKE-UP 451 -7.512 0.000 

ROSTY-CERVICAL-CANCER-PROLIFERATION-CLUSTER 137 -7.486 0.000 
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connections (connectivity degree p-value=0.05), 
higher connectivity (clustering coefficient p-value= 
0.01) and more hub nodes (betweenness centrality 
p-value=0.05). To detect any possible associations 
between the MCN proteins and cellular pathways, 
we used EnrichNet,32 a network-based protein set 
enrichment analysis tool. The Reactome pathways 
were selected for pathway-representing reference 
gene sets and used a modified STRING PPI network 
by Bossi and Lehner for PPI network, which solely 
included experimentally verified and direct physical 
interactions. Gene set network similarity ranking 
(gene set vs. pathways) was performed and 
pathways which had XD-scores greater than the 
significance threshold (1.03) are displayed in Table 6 
in S2 Tables. 
 
DISCUSSION 
   APL is one of a few diseases that have an effective 
drug for targeted therapy and it has been studied in 
more depth than other acute leukemia subtypes. In 
addition to its unique genetic profile, several 
biological and molecular features contribute to 
establishment of APL as a distinct unit within the 
acute myeloid leukemias. Some of these 
characteristics are relevant because of their impact 
on disease clinical presentation and use of targeted 
treatment but the roles of others in pathogenesis 
and responses to therapy are more controversial. 
Large clinical trials such as AML17 study2 have 
continued to achieve higher survival rates, reduced 
side effects and prevention of early mortality and 
disease recurrence. 
Few studies have investigated APL using high-
throughput data with human samples. Casorelli et 
al.33 obtained eight denovo APL patient samples, 
eight secondary APL samples and compared them 
to eiaght normal CD34+ samples. According to their 
report, 1020 genes were differentially expressed. 
The authors focused on DNA repair genes and 
showed that inefficient base excision repair and 
recombinational repair have roles in APL molecular 
processes. The results of the present meta-analysis 
and Casorelli et al. showed 68 overlapping genes 
(Figure 2). 
We performed a meta-analysis of high-throughput 
gene expression data of APL patients followed by a 
set of functional analyses. As was expected in DEG  

 
Figure 2: Venn diagram of deregulated genes of Casorelli et al.33 study 
and our meta-analysis which showed 68 common genes among two 

studies. Casorelli et al. study curated genes list obtained from 
Molecular Signatures Database (MSigDB) version 5.0. The common 

genes include ANKS1A, CD44, STT3A, DHCR24, PFKP, CCNA1, COL4A5, 
ELOVL5, AP1S2, ATP1B1, SERPING1, ALCAM, QPRT, CTSW, NRIP1, 

IGFBP7, PRDX4, JAG1, SPRY2, GFI1, SKAP2, SLA, HLA-DPA1, SCRN1, 
MYH10, FDFT1, GABRE, TPM1, ACOT9, TRIB1, TIMP1, RGS2, IVNS1ABP, 

CITED2, PTGDS, DMXL2, BLVRA, FLT3, STAB1, MXRA7, SERPINB6, SAP30, 
HTATIP2, THBS1, ALDH1A1, SLC16A3, KRT18, ID2, XBP1, NRIP3, ZNF185, 

VCL, CD96, FGF13, HLA-DRB1, SLC38A1, FLOT1, GATA2, N4BP2L1, 
VNN2, JUN, AUTS2, HDC, AAK1, HGF, CFD, CKAP4 and PDE3B. 

 
 

analysis, a vast number of deregulated genes were 
found to be involved in APL and extensive 
alterations in various processes of APL were also 
revealed. The PPI network analysis of altered genes 
confirmed that some genes play significant roles in 
this network (Figure 1) and among them, JUN (jun 
proto-oncogene) gene has a hub role in the PPI 
network. Mitogen-activated protein kinase (MAPK1 
and MAPK9) regulators were activated with high 
scores according to the Upstream Regulator 
Analysis prediction program. In addition, pathway 
analysis showed that the activator protein-1 (AP-1) 
family of transcription factors was activated in our 
study. The AP-1 family belongs to the class of basic 
leucine zipper (bZIP) transcription factors, which are 
necessary for dimerization and DNA binding. It 
binds to promoters of its target genes in a 
sequence-specific manner and transactivates or 
suppresses them. The Jun (c-Jun, Jun-B and Jun-D) 
and Fos (c-Fos, FosB, Fra1 and Fra2) subfamilies are 
the major AP-1 proteins. The AP-1 proteins are 
involved in the regulation of a variety of cellular 
processes, including proliferation and survival, 
differentiation, growth, apoptosis, cell migration, 
and transformation.34 The regulation of AP-1 
activity is critical for cell fate and occurs at various 
levels including through dimer-composition, 
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transcriptional and posttranslational events and 
through interaction with accessory proteins. 
Frequently, increased AP-1 levels lead to enhanced 
transactivation of target gene expression.35,36 C-Jun 
is at the center stage of molecular network with 
mysterious functional properties and is the most 
broadly studied protein of AP-1 complex. Recent 
research has divulged multiple layers of a complex 
regulatory scheme in which c-Jun is able to 
crosstalk, amplify and integrate different signals for 
tissue development and disease.37 Jun-B 
transcriptionally regulates the expression of cyclin A 
and was remarkably the first AP-1 protein found to 
do so.38 
Molecular mechanisms have elucidated the ability 
of Jun-B to function as a cell cycle inhibitor and 
tumor suppressor gene via down-regulation of 
cyclin D expression and up-regulation of p16INK4A 
expression as a tumor suppressor inhibiting CDK4 
and CDK6 genes.39,40 CDK6 was enriched in PPI 
network in the present study. Moreover, research 
using a knock-in strategy and a transgenic 
complementation approach has verified that Jun-B 
is required for cell cycle re-entry after quiescence.41 
AP-1 activity can also be regulated by post-
translational modification including 
phosphorylation by MAPKs. The MAPK family 
includes extracellular signal regulated kinase (ERK), 
p38 MAPK and c-Jun N-terminal kinase (JNK). The 
exact mechanisms of specific conditions and 
treatments on AP-1 activation and the relative roles 
of different MAPKs in these processes are diverse.42 
AP-1 is known to be involved in TNF-α receptor 
signaling pathway, allowing TNF-α to influence the 
expression of many genes.43 TNF-α is also important 
for development and progression of a number of 
types of cancer. The up-regulation of TNF-α is 
involved in cell growth and proliferation via NF-κB-
dependent or -independent pathways in tumors. 
Positive feedback between NF-κB and TNF-α 
promotes leukemia-initiating cell capabilities.44 
The p38 MAPK signaling pathway is also activated 
by cellular stimuli that exert negative regulatory 
effects on hematopoiesis. P38 MAPK appears to be 
activated by myelo suppressive cytokines such as 
TGF-β and TNF-α.45,46 Additionally, p38 MAPKs also 
perform posttranscriptional regulation of cytokines 
such as TNF-α and IL-1. Therefore, p38 MAPK 

signaling has been implicated in processes ranging 
from apoptosis to cell cycles, induction of 
expression of cytokine genes and differentiation.47-

50 
All forms of MAPK cascades have been found to 
take part in the regulation of AP-1. Recently, MAPK 
signaling has been demonstrated to play a key role 
in the maintenance of hematopoietic stem cell 
(HSC) quiescence.51 Examination of normal HSCs has 
shown that a significant fraction of stem cells were 
quiescent because they remained in the G0 phase 
of the cell cycle, whereas ROS-mediated activation 
of p38 resulted in abolition of quiescence in HSCs. 
The connection between oxidants and stem cell 
aging has been further supported by a study 
reporting that ROS-related oxidative stress 
abrogates the reconstructing capacity of HSCs, 
leading to defective self-renewal of HSCs.52 Jang et 
al. showed that the ROSlow HSC population has a 
higher self-renewal potential, whereas significant 
HSC exhaustion was observed in the ROShigh 
population following serial transplantation, which 
agrees with our findings in APL. The p38 MAPK 
activity was higher in the ROShigh compared to the 
ROSlow population.52 
Alsayed et al.53 reported that the p38 MAPK 
pathway plays a negative role in the induction of 
ATRA responses in APL and raises the possibility 
that combined use of ATRA with pharmacological 
inhibitors of p38 might be more effective than the 
use ATRA alone. Similarly, treatment of NB-4 acute 
promyelocytic leukemia cells with arsenic trioxide 
resulted in the activation of the p38 MAPK, which 
activated the protein kinase 2 pathway, whereas 
pharmacological inhibition of p38 further enhanced 
arsenic trioxide-induced apoptosis and growth 
inhibition of APL which have not been well 
specified.54 
Our findings were comparable to the results of Geh 
et al.55 with regard to the MAPK cascade in APL. 
They observed that the enzyme activities of 
MAP3K1 were required to activate the JNK-c-Jun 
cascade. Thus, MAP3K1 and c-Jun form an intracrine 
regulatory loop in which c-Jun controls MAP3K1 
expression, while MAP3K1 in turn controls c-Jun N-
terminal phosphorylation and AP-1 activity. 
IGF-1R are membrane receptors and their ligand 
binding by the insulin-like growth factor-1 (IGF-1) 
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leads to receptor phosphorylation and activation of 
MAPK and PI3K/Akt signaling.56 In our study, the 
GAB1 signalosome pathway was significantly 
enriched (Table 6 in S2 Tables). GAB1 is engaged to 
the activated EGFR indirectly through GRB2. GAB1 
acts as an adaptor protein that enables formation of 
an active PIK3 via recruitment of PIK3 regulatory 
subunit, which leads to the activation of the AKT 
signaling. 
The activity of IGF-1R is closely controlled by its 
ligands. Ligand bioavailability is partly controlled by 
the family of secreted insulin-like growth factor-
binding proteins (IGFBP1 to IGFBP6),57 (IGFB-related 
protein 1, also known as insulin-like growth factor-
binding protein-7 (IGFBP7). In our meta-analysis, 
IGFBP2 and IGFBP7 were significantly up-regulated. 
It has been shown that high expression levels of this 
protein are accompanied by the growth of several 
types of tumors. In parallel with our observations, 
Verhagen et al.58 reported that IGFBP7 sensitizes 
AML cells to chemotherapy-induced cell death. 
Moreover, overexpression of IGFBP7, as well as 
addition of recombinant human IGFBP7, is able to 
reduce survival of AML cells by the induction of a G2 
cell cycle arrest and apoptosis. Importantly, in that 
study, 102 non-M3 AML patients with high IGFBP7 
expression had better outcomes than patients with 
low IGFBP7 expression, indicating a positive role for 
IGFBP7 in the treatment and patient outcomes of 
AML. Taken together, this suggests that the 
combination of IGFBP7 and chemotherapy 
potentially overcomes conventional AML drug 
resistance and thus improves AML patient survival. 
The CD86 (B7.2) molecules are surface 
glycoproteins and members of the Ig super family 
that are expressed only on professional antigen 
presenting cells (APCs). They are important in the 
early interactions between APCs and T cells during 
the induction of immune response. It is well 
established that mCD86 is expressed by AML 
myeloblasts in a considerable proportion of patients 
with acute myeloid leukemia in which substantial 
number of patients have expressed CD86 
molecules.59,60 In our pathway analysis, CD86 stayed 
on downstream of inhibited regulators; so, it is 
expected that CD86 downregulated in APL patients. 
Hamed et al.61 reported that sCD86 levels are 
highest in FAB subtypes with highest AML blast 

levels, which results in poor prognosis. Those 
findings strongly suggest that sCD86 is derived from 
the malignant cells in those patients. 
Our meta-analysis clearly demonstrates down-
regulation of RNA binding protein RBM38, which is 
involved in neutrophil differentiation in APL. These 
results are supported by the results from a recent 
study by Wampfler et al.62 where the expression of 
the RNA binding proteins RBM38 and DND1 were 
repressed in primary AML patients, and neutrophil 
differentiation was dependent on increased 
expression of both proteins. 
 
CONCLUSION 
   This study used a meta-analytical approach to 
develop a gene signature for APL containing 406 
genes that are up or down-regulated. According to 
pathway analysis, the MAPK pathway and its 
involved elements such as the JUN gene and AP-1 
play important roles in APL pathogenesis. IGFBP7 
was shown to be altered and could be a target in 
APL. The results of this meta-analysis could be 
useful for future studies that could lead to the 
development of more effective therapeutic 
strategies and new targets for diagnostic 
procedures and drug development. 
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