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Abstract

Helicobacter pylori infection has been proposed to be associated with various diseases of the hepatobiliary tract,
including cancer of the bile duct epithelial cells (cholangiocarcinoma, CCA). The ability of H. pylori bacteria to cause
pathogenic effects in these cells has, however, yet to be investigated. Given that the cag pathogenicity island
(cagPAl) is required for H. pylori pathogenesis in gastric epithelial cells, we investigated wild-type and cag mutant
strains for their ability to adhere, be internalized and induce pro-inflammatory responses in two bile duct epithelial cell
lines derived from cases of CCA. The findings from these experiments were compared to results obtained with the
well-characterized AGS gastric cancer cell line. We showed that the cagPAIl encodes factors involved in H. pylori
internalization in CCA cells, but not for adhesion to these cells. Consistent with previous studies in hepatocytes, actin
polymerization and a5B1 integrin may be involved in H. pylori internalization in CCA cells. As for AGS cells, we
observed significantly reduced levels of NF-kB activation and IL-8 production in CCA cells stimulated with either
cagA, cagl or cagPAl bacteria, when compared with wild-type bacteria. Importantly, these IL-8 responses could be
inhibited via either pre-treatment of cells with antibodies to a531 integrins, or via siRNA-mediated knockdown of the
innate immune signaling molecules, nucleotide oligomerization domain 1 (NOD1) and myeloid differentiation
response gene 88 (MyD88). Taken together, the data demonstrate that the cagPAl is critical for H. pylori
pathogenesis in bile duct cells, thus providing a potential causal link for H. pylori in biliary tract disease.

Citation: Boonyanugomol W, Chomvarin C, Hahnvajanawong C, Sripa B, Kaparakis-Liaskos M, et al. (2013) Helicobacter pylori cag Pathogenicity Island
(cagPAl) Involved in Bacterial Internalization and IL-8 Induced Responses via NOD1- and MyD88-Dependent Mechanisms in Human Biliary Epithelial
Cells. PLoS ONE 8(10): e77358. doi:10.1371/journal.pone.0077358

Editor: Yoshio Yamaoka, Veterans Affairs Medical Center (111D), United States of America
Received February 12, 2013; Accepted September 3, 2013; Published October 15, 2013

Copyright: © 2013 Boonyanugomol et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Commission on Higher Education of Thailand for grant support under the program Strategic Scholarships for
Frontier Research Network under the Joint Ph.D. Program for Thai Doctoral degrees, and some parts of this work was supported by Faculty of Medicine,

* E-mail: chariya@kku.ac.th

Khon Kaen University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

The Gram-negative bacterium, Helicobacter pylori, is a
causative agent of various gastroduodenal diseases, including
gastric adenocarcinoma [1]. It has been mooted that H. pylori
may also play a role in the development of hepatobiliary
disease, particularly liver cancer [2—4]. One such disease,
cholangiocarcinoma (CCA), is a cancer of bile duct epithelial
cells and is highly prevalent in Northeast Thailand [5]. The
disease process associated with CCA, however, has yet to be
fully elucidated. In a previous report, we showed that H. pylori
and its pro-oncogenic effector molecule, cagA, were more
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frequently detected in CCA patients [6,7]. Moreover, the
presence of H. pylori was associated with biliary inflammation
and proliferation when compared with cholelithiasis and in
control subjects [6]. We hypothesized that H. pylori might be
involved in CCA development.

Several virulence factors of H. pylori are proposed to play a
role in pathogenesis [8]. A major factor is the cag pathogenicity
island (PAIl), which consists of approximately 30 genes,
encoding a type 4 secretion system (T4SS), capable of
delivering CagA and a bacterial cell wall component,
peptidoglycan, into host cells [9]. The T4SS of H. pylori forms a
pilus-like structure encoded with CagL, which interacts with
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a5B1 integrin on host cells [10]. CagL interactions with a531
integrin are thought to be essential for H. pylori pathogenesis
[10]. H. pylori strains that possess a functional T4SS are more
frequently associated with severe inflammation and gastric
cancer [9].

Host cells possess a variety of putative pathogen recognition
molecules (PRMs) capable of modulating both innate and
adaptive immune responses through their sensing of
conserved microbial components. One of these PRMs,
Nucleotide Oligomerization Domain 1 (NOD1), which is known
to specifically recognize Gram-negative peptidoglycan, was
shown to play a critical role in pro-inflammatory responses to
infection by H. pylori cagPAl-positive strains [8]. A separate
study identified an essential adapter molecule of multiple Toll-
like receptor (TLR) pathways, myeloid differentiation response
gene 88 (MyD88), as being important for pro-inflammatory host
cell signaling to H. pylori infection [11].

Our previous in vitro studies revealed that H. pylori induces
multiple effects in CCA cell lines, including inflammation (IL-8
production), cell proliferation and apoptosis [12,13]. We also
found that at a low multiplicity of infection (MOI=1), H. pylori
could induce inflammatory and cell proliferative responses in
CCA cell lines. This finding suggests that the small numbers of
H. pylori bacteria that reach the epithelial cells of the
hepatobiliary tract may be sufficient to promote inflammation
and transformation within this niche; thereby supporting the
potential role of the bacterium in the development of
hepatobiliary disease [12]. In order to investigate this
hypothesis, as well as the possible link between cagPAl-
positive H. pylori strains and CCA, we tested the ability of
various H. pylori wild-type and isogenic cag mutant strains to
adhere, invade and induce pro-inflammatory responses in two
CCA cell lines. Furthermore, we examined the roles of a5(31
integrin, NOD1 and several TLR family members in these
responses and compared the findings with those obtained
using a standard gastric epithelial cell line (AGS). We herein
elucidate the mechanisms whereby cagPAl-positive H. pylori
induce pro-inflammatory responses in biliary tract epithelial
cells, thus providing a potential pathogenic link between the
bacterium and hepatobiliary disease.

Materials and Methods

Bacterial strains

H. pylori wild-type strain 251 [14], cagA (cagA’) [14], cagL
(this study, generated using the gene deletion strategy
described by Gorrell et al. [15]) and cagPAl (cagPAl) [16]
isogenic mutant strains were grown on Oxoid Blood Agar Base
No. 2 (Thermo Fisher Scientific, Australia Pty Ltd)
supplemented with 5% whole horse blood (Thermo Fisher
Scientific, Australia Pty Ltd) overnight at 37°C wunder
microaerobic conditions. Shigella flexneri (M90T serotype 5A)
was cultured on Trypticase Soy Agar, supplemented with
0.01% Congo red at 37°C.

Cell Culture

The human cholangiocarcinoma cell lines (KKU-100 and
KKU-M156) were obtained from the Liver Fluke and
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Cholangiocarcinoma Research Center (Khon Kaen University,
Thailand) [17-20]. These cells were cultured in Ham F-12
medium supplemented with 10% FBS, streptomycin (100
pg/ml) and penicillin (1 1U/ml) and incubated at 37°C in a 5%
CO,, humidified atmosphere. The AGS gastric cancer cell line
was cultured as previously described [21].

Adherence and internalization assays

Cells were cultured in 12-well tissue culture plates (1 x 10°
cells per well) and allowed to grow overnight. Prior to
stimulation, the media was removed and replaced with serum
free media, and cells were incubated with H. pylori wild type,
mutant or S. flexneri at an MOI of 1:100 [22], for 6 h. After
incubation, the cell culture medium was removed and the
treated cells were washed three times with PBS. To determine
the number of adherent bacteria, cells were scraped from the
tissue culture plates. For the invasion assay, the cell culture
medium was removed and extracellular H. pylori killed by
gentamicin (100 mg/ml) for 6 h. After gentamicin treatment, the
treated cells were washed three times with PBS and lysed
using 1% saponin for 15 min. Adherent and invasive bacteria,
respectively, were estimated by plating of serial dilutions. The
number of adherent or invasive bacteria were calculated as
percentages of the total number of bacteria added to cells.

Inhibition of bacterial internalization by cytochalasin D
or a5B1 integrin antibodies

Cells were grown in 12-well tissue culture plates and pre-
treated for 30 min with either cytochalasin D (5 pg/ml) (Sigma,
St. Louis, MO) or a5B1 integrin antibodies (5 pug/ml) (AlIB2 rat
anti-human B,integrin, 1gG1, BIIG2 rat anti-human as integrin,
IgG2b K integrin-blocking antibodies, Developmental Studies
Hybridoma Bank, University of lowa, USA) for 1 h at 37°C with
5% CO,, as previously described [23]. After treatment, the cells
were co-cultured with H. pylori wild type, cagPAl- or S. flexneri
at an MOI of 1:100 for 6 h. The numbers of internalized H.
pylori were determined as described above.

Detection of NF-kB activation in CCA cells

To measure NF-kB activation, cells were co-cultured with H.
pylori wild type, cagA- or cagPAl strains (MOI=1) for 6 h.
Phorbol myristate acetate (PMA) was used as the positive
control (200 ng/ml). The treated cells were washed with PBS,
fixed in 8% (v/v) formaldehyde then permeabilized with
absolute methanol for 10 min at -20°C. Cells were washed with
PBS and blocked with 5% fetal calf serum (containing 3%
Triton X-100) at room temperature for 30 min. The cells were
then incubated with rabbit anti-p65 antibody (Santa Cruz, USA)
(dilution 1:100) for 1 h at room temperature. After washing
three times with PBS, the cells were incubated with goat anti-
rabbit conjugated-Alexa 647 (Santa Cruz, USA) for 30 min at
room temperature. Cells were again washed three times with
PBS and stained with DAPI (Molecular Probes, 1:10,000) for 5
min. Nuclear translocation of p65-containing NF-kB complexes
were measured as the intensity of fluorescence within the cell
nuclei, using a Cellomic Array Scan™ (Thermo Scientific, USA)
machine. Twenty images per well were captured (200X
magnification).
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IL-8 Enzyme-linked Immunosorbent Assay (ELISA)

Cells were co-cultured with H. pylori wild type, cagA - or
cagPAI- strains (MOI=1) for 6 h. To determine the role of a5p1
integrin in IL-8 responses, the cells were pre-treated with
combined a5B1 integrin antibodies (5 pg/ml) for 1 h. Cell
culture supernatants were collected and IL-8 was quantified by
ELISA (BD Bioscience Pharmingen, CA, USA), as per the
manufacturer’s instructions.

RNA extraction

Cells were co-cultured with H. pylori wild type, cagA  or
cagPAI- mutant strains (MOI=1) for 6, 12 or 24 h. At each time-
point, the cells were washed with PBS and RNA extracted
using the PureLink™ RNA purification kit (Life Technologies
Corp., USA), according to the manufacturer’s instructions. RNA
samples were eluted in 50 pl of elution buffer and stored at
-80°C until used.

gRT-PCR detection of NOD1, TLR2, TLR4 and TLR5
gene expression

RNA (2 pg) was reverse transcribed using SuperScript 1II™
(Life  Technologies Corp., USA), according to the
manufacturer’s instructions. Briefly, RNA was added to 20 pl of
master mix containing 10 mM dNTP mix, 25 mM MgCl,, 0.1 M
dithiothreitol (DTT), 40 U RNase inhibitor, 50 uM oligo(dT) and
200 U of Moloney murine leukemia virus reverse transcriptase.
cDNA synthesis was performed by incubation at 50°C for 50
min.

The primers used to amplify NOD1 [21], B-actin (ACTB) [21],
TLR2, TLR4 and TLRS5 are listed in Table 1. Each reaction
contained 1 yM of forward and reverse primers, 5 yl of SYBR
Green PCR master mix (Applied Biosystems, Warrington, UK)
and 1 pl of cDNA. Each reaction was made to a final volume of
10 pl with ultrapure distilled water. Polymerase Chain
Reactions (PCRs) were performed in an ABI Prism 7700
Sequence Detection System (Applied Biosystems, Victoria,
Australia) as follows: 50°C for 2 min, 95°C for 10 min, followed
by 40 cycles at 95°C for 15 sec and 60°C for 1 min. The cycle
threshold (Ct) values for each gene were normalized to the Ct
value for B-actin. The expression levels of each gene were
compared to those of control cells.

siRNA knock-down of NOD1 and MYD88 expression
Pre-designed RNA oligonucleotides for NOD1 and MYD88
were supplied by Ambion (Life Technologies Corp.) with the
following siRNA ID numbers: NOD1 (S20322, 20324) and
MYD88 (S9138, S9136). siRNA to the human B-defensin 3
(HBD3) gene (DEFB103, si04269552, Qiagen) was used as a
negative control. Mock transfection control samples comprised
Opti-MEM containing lipofectamine 2000 without siRNA. In
brief, siRNAs were diluted to a final concentration of 4 uM in
Opti-MEM  medium containing lipofectamine 2000 (Life
Technologies Corp.). These siRNA mixtures were incubated at
room temperature for 20 min, then aliquots (100 pl) were added
directly into each well of a 24-well plate (in triplicate). Cell
suspensions (antibiotic-free) were seeded at a final density of 1
x 105 cells/well into each well containing the appropriate siRNA
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Table 1. Primer sequences used for qRT-PCR.

genes
NOD1 5'-ACGATGAAGTGGCAGAGAGTT -3 [21]
5'-GGCAGTCCCCTTAGCTGTGA -3'
TLR2 5'-GCCTCTCCAAGGAAGAATCC -3
5'-TCCTGTTGTTGGACAGGTCA -3
TLR4 5'-AAGCCGAAAGGTGATTGTTG -3
5'-CTGAGCAGGGTCTTCTCCAC-3'
TLR5 5-TGCCTTGAAGCCTTCAGTTATG -3'
5'-CCAACCACCACCATGATGAG-3'

Primer sequences Refs

This study (unpublished)

This study (unpublished)

This study (unpublished)

ACTB  5-GATGAGATTGGCATGGCTTT -3' [21]
5'-CACCTTCACCGTTCCCAGTTT -3'
MYD88 5'-CTCCTCCACATCCCTTCC -3' [63]

5'-CCGCACGTTCAAGAACAGAGA -3'
doi: 10.1371/journal.pone.0077358.t001

mixture. After 24 h of incubation, the media was removed and
transfected cells were co-cultured with H. pylori wild-type or
cagPAl- strains (MOI=1) for 24 h. Cell culture supernatants
were collected to quantify levels of IL-8 by ELISA. Each
experiment was performed in triplicate. NOD1 and MYD88
knock-down (KD) was confirmed by qRT-PCR using primers
listed in Table 1.

Statistical Analysis

Data are reported as means + SEM. Differences between
samples were analyzed using the Student’s t test. p values <
0.05 were considered significant.

Results

H. pylori adheres to and is internalized by biliary tract
epithelial cells

Adhesion of H. pylori to biliary tract cells was measured after
6 h of co-culture with the CCA cell lines, KKU-100 and KKU-
M156. No significant differences in adherence to these cell
lines, or to AGS cells, was observed for the wild-type, cagA-,
cagL- or cagPAI" strains (p>0.05) (Figure 1A).

Figure 1B shows H. pylori internalization in biliary tract
epithelial cells at 6 h after co-culture. Approximately 1% of H.
pylori bacteria invaded KKU-100 and KKU-M156 cell lines, just
as we had observed in the AGS cell line (Figure 1B). As a
positive control for these assays, we used the highly invasive
bacterium, S. flexneri. Interestingly, only the cagPAl mutant
strain had a decreased percentage of internalization in these
three cell lines, with a significant difference compared with the
wild type strain (p<0.05). Collectively, these findings suggest
that although loss of the cagPAI does not have an effect on the
ability of H. pylori to adhere to CCA cells, it may affect the
ability of H. pylori to invade these cells.

We next determined the role of actin polymerization in H.
pylori internalization, using the actin polymerization inhibitor,
cytochalasin D. After treatment with this inhibitor, we observed
a decrease in the percentages of internalized wild-type and
cagPAI- H. pylori, as well as of S. flexneri, in all three cell lines

October 2013 | Volume 8 | Issue 10 | 77358



>

80+

a

o

60

40

204

% Adherence bact

AN
AN

KKU-10

@

KKU-M1

W

6

=

N
o
]

1.5+
1.0+
0.5+
0.0

%% Bacterial internalization
[#/]
|

KKU-100

KKU-M156

H. pylori and Hepatobiliary Diseases

[ = pylori wild type
B ceeA-
] casL-

VA cagPAI -

AGS

[ Shigelia

I = pylori wild type
] caeA -

cagl. -

E& caePAI-

Figure 1. H. pylori adhesion and internalization. A. Percentage of H. pylori adhesion and B. internalization in biliary
(KKU-100 and KKU-M156) and gastric (AGS) cells incubated with H. pylori wild type, cagA-, cagL- or cagPAI mutant strains
for 6 h. H. pylori adhesion or internalization was determined by bacterial culture and interpreted as the percentage adherence or
internalization compared with the starting number of H. pylori. Data represent the mean + SEM in triplicate experiments. * p < 0.05
confirmed a significant difference between the H. pylori wild type internalization and cagPAI- internalization. # p < 0.01 indicated a
significant difference between Shigella internalization and H. pylori wild type internalization.

doi: 10.1371/journal.pone.0077358.g001

(KKU-100, KKU-M156, AGS), compared to the percentage of
intracellular bacteria contained within untreated cells (p<0.05)
(Figure 2A).

As integrins have been implicated in the internalization of
certain intracellular bacteria, such as Yersinia spp. [24], we
investigated the role of integrin-mediated internalization of H.
pylori in biliary tract epithelial cells. Pre-treatment of these cells
with combined anti-a5 and -1 integrin antibodies was
associated with modest but significant inhibition of intracellular
wild-type and cagPAIl- H. pylori, compared with untreated cells
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(p<0.05) (Figure 2B). No significant effect was observed in the
antibody-treated cells that had been co-cultured with S. flexneri
(Figure 2B). We suggest that actin polymerization and o581
integrins may be required for H. pylori internalization in biliary
cells, as has been reported for hepatocytes by Ito et al. [25].

H. pylori activates NF-kB and IL-8 production in biliary
tract cells

H. pylori strains with a functional T4SS, encoded by the
cagPAl, are known to induce NF-kB-dependent IL-8 responses
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Figure 2. Actin polymerization and H. pylori internalization. A. Effect of cytochalasin D (actin polymerization inhibitor) on
H. pylori internalization in biliary (KKU-100 and KKU-M156) and gastric cells (AGS). After treatment with cytochalasin D, cells
were incubated with H. pylori wild type, cagA or cagPAl mutant strains for 6 h. The H. pylori internalization was assessed by
bacterial culture. The percentage of H. pylori internalization in cytochalasin D-treated cells was compared to the number of H. pylori
internalization in untreated control cells. B. Effect of a5B1 integrin antibodies on H. pylori internalization in biliary (KKU-100
and KKU-M156) and gastric (AGS) cells. After pre-treatment with a5p1 integrin antibodies, cells were incubated with H. pylori wild
type, cagA- or cagPAl- strains for 6 h. H. pylori internalization was accessed by bacterial culture. The percentage of H. pylori
internalization in a5B1 integrin-antibody-treated cells was compared to the number of H. pylori internalization in untreated control
cells. Data are the mean + SEM of triplicate experiments. * p < 0.05 represented a significant difference compared between
cytochalasin D or a5B1 integrin antibody-treated cells and untreated cells.

doi: 10.1371/journal.pone.0077358.g002

in gastric epithelial cell lines. We therefore sought to determine
the ability of these bacteria to induce NF-kB activation and IL-8
production in biliary tract epithelial cells using a High Content
Screening technique and ELISA, respectively. We
demonstrated that wild-type H. pylori with a functional T4SS
was able to up-regulate the levels of nuclear NF-«kB
translocation (Figure 3A) and IL-8 production (Figure 3B) in
biliary tract epithelial cells. As hypothesized, similar results
were observed in AGS cells (Figure 3). Significantly higher
responses were also noted in all cell types stimulated with H.
pylori wild-type bacteria, compared with those stimulated with
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cagA,, caglL or cagPAl strains. This is the first report of the
observation that H. pylori requires a functional T4SS for the
activation of NF-kB, leading to the production of IL-8, in biliary
tract epithelial cells.

a5B1 integrin antibodies inhibit IL-8 production in
biliary cells infected with H. pylori

H. pylori CagL was reported to interact with a5p1integrins,
thereby activating a downstream signaling cascade and
cytokine production in host cells [15]. In order to determine
whether CagL-a5B1integrin interactions are involved in H.
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Figure 3. H. pylori activates NF-kB and IL-8 production in biliary cells. A. NF-kB activation and B. IL-8 production in biliary
cells (KKU-100 and KKU-M156) and gastric (AGS) cells after stimulation with H. pylori wild type, cagA-, cagL" or cagPAI
strains for 6 h. NF-kB activation was measured by a Cellomics Array Scan™ to measure the intensity of NF-kB translocation to the
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are presented. * p < 0.05, ** p < 0.01 indicate a significant difference between the control cells and H. pylori- or PMA-treated cells. #
p <0.05, # p < 0.01 represents a significant difference between the H. pylori wild type-stimulated cells and cagA-, cagL- or cagPAI-
stimulated cells.

doi: 10.1371/journal.pone.0077358.g003

pylori-mediated IL-8 responses in biliary tract epithelial cells,
we pre-treated these cells with antibodies directed against a5
and B1 integrins, as previously described [23]. The levels of
IL-8 production were significantly decreased in KKU-100 and
KKU-M156 cells that had been pre-treated with these
antibodies, when compared with untreated cells (Figure 4).
AGS cells were included as a positive control for this
experiment. These results indicate that cagPAl-dependent H.
pylori interactions with a5B1 integrin are involved in IL-8
production in biliary tract epithelial cells.

PLOS ONE | www.plosone.org

Effects of H. pylori on NOD1, TLR2, TLR4 and TLR5
gene expression in biliary cells

This study aimed to determine whether H. pylori could up-
regulate expression of the genes encoding key bacterial-
sensing PRMs in epithelial cells: NOD1, TLR2, TLR4 and
TLRS5. For this, KKU-100 and AGS cells were treated with H.
pylori strains (wild type cagA-, cagL- and cagPAl’) at 6, 12 and
24 h, then analyzed by quantitative RT-PCR. Although we were
unable to detect TLR2 expression in either KKU-100 or AGS
cells (data not shown), gene expression levels of NOD1 (Figure
5A), TLR4 (Figure 5B) and TLR5 (Figure 5C) were significantly
up-regulated in both cell types treated with H. pylori strains,
compared with untreated cells. A comparison between the wild
type and the cag mutant strains, especially cagPAl- strain
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doi: 10.1371/journal.pone.0077358.g004

revealed significant decreases in the expression of these three
genes in KKU-100 and AGS cells exposed to the H. pylori
cagPAI- strain. These results suggest that the presence of a
cagPAl in H. pylori might be associated with up-regulated
NOD1, TLR4 and TLR5 gene expression in biliary cells.

H. pylori induces IL-8 production in biliary cells
through NOD1 and TLRs

H. pylori strains that possess a functional T4SS have been
reported to induce NF-kB activation and IL-8 production in
gastric epithelial cells via either of the innate immune signaling
molecules, NOD1 or MyD88 [26,27]. While NOD1 is known to
respond specifically to Gram-negative peptidoglycan, MyD88 is
a co-adaptor molecule that is involved in the transduction of
signals from key bacteria-sensing TLRs (e.g. TLR4 and TLRS5).
For these reasons, as well as the fact that these PRMs appear
to be expressed in biliary tract epithelial cells (Figure 5), we
transfected KKU-100 biliary cells with siRNA directed to either
NOD1 or MYD88, then measured the IL-8 responses induced
by H. pylori wild-type or cagPAl- bacteria in these cells (Figure
6A).

AGS cells were also transfected with these siRNA. (siRNA
knock-down of NOD1 or MYD88 gene expression in these cells
was confirmed by qRT-PCR) After transfection with the
appropriate siRNA, the expression levels of NOD1 and MYD88
in H. pylori-stimulated cells were significantly decreased by
60% and 70%, respectively, in KKU-100 and AGS cells,
compared with non-transfected control cells (Figure 6B and
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6C). IL-8 responses in the KKU-100 cells—in which either
NOD1 or MYD88 gene expression had been knocked-down
prior to 24 h-stimulation with H. pylori wild-type bacteria—were
decreased by 50-70% compared with the KKU-100 control cells
or cells that had been transfected with an irrelevant siRNA (to
the HBD3 gene, DEFB103) (Figure 6A). Similar findings were
observed for AGS cells.

According to previous findings [21] and the results of our own
work, H. pylori cagPAI- bacteria induced significantly reduced
IL-8 responses in both KKU-100 and AGS cells. It appears,
therefore, that H. pylori bacteria encoding a functional T4SS
are able to induce IL-8 production in biliary tract epithelial cells
in a NOD1- and MyD88-dependent manner.

Discussion

Several reports have described the association of
Helicobacter spp. with hepatobiliary diseases, particularly H.
pylori and hepatobiliary cancer [2,4,28]. We previously reported
the prevalence of H. pylori in CCA patients and that this was
associated with biliary inflammation and proliferation [6]. These
findings suggested that H. pylori may be playing a causal role
in the pathogenesis of hepatobiliary diseases, however, there
has been limited information regarding the effect of H. pylori
bacteria on hepatobiliary cells. While H. pylori adhesion and
internalization in biliary tract epithelial cells has been reported
[25], it was not determined whether cagPAl-encoded factors
were required for these processes.
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doi: 10.1371/journal.pone.0077358.g005

In the current study, the ability of H. pylori to adhere to and
invade biliary cells was determined. The ability of H. pylori to
adhere and be internalized by biliary cells (KKU-100 and KKU-
M156) was similar to that seen in AGS cells. We found that
cagA and caglL mutations had no effect on H. pylori adhesion
and internalization, compared with the wild type bacteria,
whereas the cagPAl appears to be required for H. pylori entry
into cells (Figure 1B). These findings are similar to a previous
report that showed that an H. pylori cagA mutant strain was
unaffected in its ability to adhere to and invade AGS cells [29].

PLOS ONE | www.plosone.org

The cagPAl has been shown to exert multiple effects on
infected cells, including cytokine production, actin
polymerization, disruption of cell-to-cell junctions and altered
cell proliferation [30]. It has been proposed that actin
polymerization is involved in the internalization of H. pylori by
AGS cells [31,32]. We performed studies to elucidate the role
of actin polymerization and integrins in H. pylori internalization
and responses in CCA and AGS cells and found that the H.
pylori cagPAl mutant strain is indeed associated with
decreased bacterial internalization in biliary cells (KKU-100 and
KKU-M156) and AGS cells, when compared with the wild type.
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doi: 10.1371/journal.pone.0077358.g006

Integrins are transmembrane glycoproteins that mediate cell- both wild type and cagPAI- H. pylori strains. The data indicated
cell, cell-extracellular matrix and cell-pathogen interactions that the effect of cagPAI (T4SS) might be involved in H. pylori
[33]. Integrins are involved in the transduction of many forms of internalization in both biliary and gastric cells. We speculate
signals to cells, including proliferation, differentiation, survival, that actin polymerization and a5B1 integrin signaling might be
control of transcription and actin polymerization [34]. The H. involved for H. pylori internalization in the biliary cells. These
pylori CagL protein contains RGD-motifs, shown to be results are similar to those of Ito and colleagues who showed
important for interaction with 1 integrin [10]. To investigate the that actin polymerization and the (1 integrin receptor were
role of actin polymerization in H. pylori internalization, biliary required for H. pylori-internalization in hepatocyte cells [25].
cells and AGS cells were treated with cytochalasin D (an actin The role of the H. pylori cagPAl in internalization in
polymerization inhibitor) or a581 integrin blocking antibodies, hepatobiliary cells, however, remains unclear and requires
prior to H. pylori stimulation. After blocking actin polymerization further study. Internalization or invasion of H. pylori into host

in biliary cells, we observed a decrease in the internalization of cells is considered a mechanism for escaping host immune

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | 77358



responses [35]. H. pylori capable of invading both epithelial
(AGS) and immune cells (macrophages) have been reported
[32,35]. The current study suggests that the role of cagPAl
might be involved in immune evasion by H. pylori in the
hepatobiliary system.

H. pylori cagA and the T4SS, encoded by the cagPAl, are
involved in NF-kB activation and induction of IL-8 production
[9]. IL-8 is a potent chemokine that mediates the recruitment
and activation of neutrophils [36], associated with severe
gastritis [37]. Inactivation of the genes contained in the cagPAl
results in decreased activation of NF-kB and MAPK signaling,
which leads to a decrease in IL-8 production [38—40]. Backert
and Naumann reviewed at least 12 different signaling pathways
to activate NF-kB in gastric epithelial cells by T4SS-dependent
and CagA-dependent or independent pathways, as well as by
T4SS-independent effectors [41].

In our study, we show that wild type H. pylori significantly
activates NF-kB and stimulates IL-8 production in biliary
(KKU-100 and KKU-M156) and AGS cells. NF-kB activation
and IL-8 production in these three cell lines were also
significantly decreased when stimulated with H. pylori cagA,
cagL and cagPAl mutant strains. These data indicate that H.
pylori could promote inflammation through stimulation of IL-8
production in biliary cells in a cagPAl-dependent manner. The
levels of NF-kB activation and IL-8 production were, however,
similar in cells stimulated with either cagA or cagPAl mutant
strains. Our results are in contrast to those of previous studies
showing that IL-8 production in gastric epithelial cell lines was
dependent on the presence of a cagPAl, but not CagA [42—44].
One explanation may be that the cagA mutant strain in the
present study carries a secondary mutation in another cagPAI
gene essential to T4SS functionality.

Another important observation from our study was the
residual levels of IL-8 production in biliary cells stimulated with
H. pylori cag mutant strains (Figure 3B), suggesting a potential
role for T4SS-independent mechanisms. One such mechanism
may involve the H. pylori outer membrane protein, OipA, which
was reported to be involved in the activation of the signal
inducer and activator of transcription 1 (STAT1) cascade [45].
Further studies are required to identify the contribution of this
pathway on IL-8 production in biliary cells stimulated with H.
pylori bacteria.

Shaffer et al. showed that IL-8 production was significantly
decreased in AGS cells infected with H. pylori cagL mutant
bacteria compared to a H. pylori wild type strain, but they did
not address CagL-integrin interactions [46]. The involvement of
a5B1 integrin and IL-8 production in AGS cells infected with H.
pylori was also reported [23]. In addition, it was recently
reported that the T4SS machinery can induce IL-8 production
via CagL-a5B1 integrin interactions and subsequent activation
of MAPKs and NF-kB [15]. To investigate the role of CagL and
integrin in stimulating IL-8 production in biliary cells, KKU-100,
KKU-M156 and AGS cells were treated with a5B1 integrin
antibodies before H. pylori stimulation. After stimulation with H.
pylori, a decrease in IL-8 production was found in biliary
(KKU-100 and KKU-M156) and gastric (AGS) cells treated with
a5B1 integrin antibodies compared with untreated cells. These
results suggest that CagL and integrin might be involved in IL-8
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production in biliary cells, as previously reported in AGS cells
[15,46].

H. pylori exploits integrin for its pathogenesis [10]. It has also
been reported that H. pylori induces a5 and 1 integrin
expression in the AGS cell line and that Ras, AP-1 and NF-«kB
were found to be involved in the expression of a5 and (1
integrins [47]. In the current study, the expression of a5 and 1
integrin in biliary cells was also investigated and it was found
that cagA, caglL and cagPAl were all required for a5B1 integrin
expression in biliary cells (data not shown). These results are
similar to a previous report by Zhang and colleagues who used
proteomic analysis to demonstrate that H. pylori induced up-
regulated B1 integrin expression in human hepatic cells
(HepG2) [48]. Another report suggested that the excessive
expression of integrins may be involved in tumor progression,
including cell invasion, metastasis, angiogenesis, cell
transformation and cell proliferation [33]. We further
hypothesize that the cagPAIl of H. pylori accelerates CCA
progression by signaling via integrins.

The cytosolic innate immune protein, NOD1, plays a role in
host defense against microbial infection [49]. TriDAP, a
component of microbial peptidoglycan, is recognized by NOD1,
promoting inflammatory cytokine responses [26]. Recently, a
previous report in gastric epithelial cells showed that NOD1
gene expression was up-regulated in response to exposure
with H. pylori and that these responses occurred in a cagPAI-
dependent manner [21]. Consistent with that observation, we
found that H. pylori could up-regulate NOD71 gene expression
in a cagPAl-dependent manner in both biliary and gastric cell
lines.

In addition to NOD1, other innate immune molecules of the
TLR family have been shown to be involved in pro-
inflammatory cytokine responses to microbial infection [27].
TLR2, 4 and 5 have all been reported to be involved in the
recognition of H. pylori [50-52]; nonetheless, these findings
remain controversial. In the current study, we were unable to
detect TLR2 expression by real-time PCR in biliary and gastric
cell lines, thus further analysis of TLR2 was not performed. An
increased expression level of TLR4 and TLR5 genes were,
however, detected in biliary and gastric cells after stimulation
with H. pylori, which was dependent on the presence of a
cagPAl. These results are consistent with a previous study that
showed that the lipopolysaccharide of H. pylori cagPAl* strains
induced TLR4 expression in guinea pig gastric pit cells [50].
These findings, though, contrast with those from another study
that showed that TLR4 gene expression increased following H.
pylori infection, in a cagPAl-independent manner [52]. This
difference might be the result of different strains of H. pylori or
the multiplicity of infection (MOI) used in each study. Thus, the
data suggest that the cagPAl-encoded T4SS of H. pylori may
be involved in initiating inflammatory responses in biliary cells
via up-regulation of NOD1, TLR4 and TLR5 gene transcription.
Further studies are required to confirm these findings.

In order to investigate the roles of NOD1 and TLRs on IL-8
production in biliary cells stimulated with H. pylori, we pre-
treated cells with siRNA to the respective genes. We found
reduced levels of IL-8 production in H. pylori-stimulated biliary
and gastric cells that had been pre-treated with either NOD1 or
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MyD88 siRNA, when compared with cells treated with an
irrelevant siRNA. Similarly, IL-8 production was markedly
impaired in AGS NOD1 knock-down cells stimulated with H.
pylori, indicating that NOD1 signaling was involved in pro-
inflammatory responses in H. pylori-stimulated cells [21]. These
data are consistent with those of previous studies [14,21], as
well as those of Gorrell et al. [15] who despite finding no role
for NOD1 in CagL-dependent IL-8 responses, found that NOD1
contributes to T4SS-dependent IL-8 responses induced by H.
pylori bacteria. Interestingly, in the present work, we also
observed a significant effect of MyD88 gene knockdown on
IL-8 responses in H. pylori-stimulated AGS cells. Indeed, a
previous study reported that MyD88 but not NOD1 siRNA-
treated AGS cells produced significantly lower IL-8 responses
to cagPAIl-positive H. pylori bacteria [11]. Nevertheless, no data
were presented in that study to confirm the efficacy of the
NOD1 knockdown and thus the possibility of NOD1
involvement in IL-8 production could not be excluded. Further
investigations are thus warranted to determine the relative
contributions of MyD88 and NOD1 in H. pylori T4SS-dependent
IL-8 responses in AGS cells. In biliary cells, we propose that
both NOD1 and MyD88 signaling pathways may be required for
H. pylori T4SS-dependent inflammation..

In conclusion, the present study suggests that the cagPAl
encodes factors that may be associated with H. pylori
internalization in biliary cells. Additionally, a5B1 integrin
appeared to be involved with H. pylori internalization and its
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