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In the field of cell and molecular biology, green fluorescent protein (GFP) images provide functional information embodying the
molecular distribution of biological cells while phase-contrast images maintain structural information with high resolution.
Fusion of GFP and phase-contrast images is of high significance to the study of subcellular localization, protein functional
analysis, and genetic expression. +is paper proposes a novel algorithm to fuse these two types of biological images via generative
adversarial networks (GANs) by carefully taking their own characteristics into account. +e fusion problem is modelled as an
adversarial game between a generator and a discriminator. +e generator aims to create a fused image that well extracts the
functional information from the GFP image and the structural information from the phase-contrast image at the same time. +e
target of the discriminator is to further improve the overall similarity between the fused image and the phase-contrast image.
Experimental results demonstrate that the proposed method can outperform several representative and state-of-the-art image
fusion methods in terms of both visual quality and objective evaluation.

1. Introduction

In the field of cell and molecular biology, fluorescent im-
aging and phase-contrast imaging are two representative
imaging approaches. As a widely used tool in fluorescent
imaging, green fluorescent protein (GFP) displays bright
green fluorescence when exposed to light in the range of blue
to ultraviolet. +e GFP image contains functional in-
formation related to the molecular distribution of biological
cells but has very low spatial resolution. Phase-contrast
imaging is an optical microscopy technique that visualizes
phase shifts through converting it to variation of amplitude
or contrast in the image. +e phase-contrast image provides
structural information with high resolution. Fusion of GFP
image and phase-contrast image is of great significance to
the localization of subcellular structure, the functional
analysis of protein, and the expression of gene [1].

In recent years, a variety of image fusion methods have
been proposed. Generally, existing image fusion algorithms
mainly consist of three steps: image transform, fusion, and

inverse transform [2]. +e representative fusion methods
include multiscale transform-based ones [3–8], sparse
representation-based ones [9–13], spatial domain-based
ones [14–17], hybrid transform-based ones [18–21], etc. In
most of the existing image fusion methods, the role of each
input image is equivalent in terms of the fusion system,
which means that the input images generally undergo
identical transforms and uniform fusion rules. However, for
the problem of GFP and phase-contrast image fusion,
considering that the input images vary significantly from
each other, different roles can be assigned to them in the
fusion system by carefully addressing their own character-
istics, which is likely to provide a more effective way to tackle
this fusion issue.

In this paper, we propose a novel GFP and phase-
contrast image fusion method based on generative adver-
sarial networks (GANs). +e fusion problem is modelled as
an adversarial game between a generator and discriminator.
+e aim of the generator is to obtain a fused image that
integrates the functional information from the GFP image
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together with the structural information from the phase-
contrast image, while the discriminator further ensures the
overall similarity between the fused image and the phase-
contrast image. +is adversarial process enables the fusion
result to capture the complementary information from
different input images as much as possible. An example of
the proposed method is illustrated in Figure 1, where the
input GFP and phase-contrast images are shown in
Figures 1(a) and 1(b), respectively. Figure 1(c) shows the
fusion result obtained by the proposed method. By referring
to the input images, it can be seen that our method achieves
high performance in terms of the preservation of functional
and structural information. +e main contributions of this
paper are summarized as follows:

(1) We propose a deep learning- (DL-) based GFP and
phase-contrast image fusion method via generative
adversarial networks (GANs). To extract in-
formation from these two kinds of biological images
adequately, the input images are treated differently in
the proposed fusion model according to their own
characteristics.

(2) Extensive experiments on more than 140 pairs of
input images demonstrate that the proposed method
outperforms several representative image fusion
methods in terms of both visual quality and objective
evaluation.

+e remainder of this paper is organized as follows.
Section 2 depicts some related works. In Section 3, the
proposed GAN-based image fusion method is introduced
in detail. +e experimental results and discussions
are given in Section 4. Finally, Section 5 concludes the
paper.

2. Related Work and Motivations

2.1. GFP and Phase-Contrast Image Fusion. Fusion of GFP
and phase-contrast images is conducive to the study of
subcellular localization and functional properties of protein.
In the past few years, several image fusion methods have
been proposed to address this issue [22–24]. Li and Wang
[22] proposed a NSCT-based GFP and phase-contrast image
fusionmethod. In their method, the intensity components of
input images are decomposed by NSCT and the obtained
coefficients are then merged by a variable-weight fusion rule.
In [23], Feng et al. introduced a fusion approach for GFP and
phase-contrast images based on sharp frequency localization
contourlet transform (SFL-CT). To fuse the decomposed
coefficients, they designed a maximum region energy-
(MRE-) based rule, a maximum absolute value- (MAV-)
based rule, and a neighborhood consistency measurement-
(NCM-) based rule to merge the approximation subbands,
the finest detailed subbands, and other detailed subbands,
respectively. Recently, Qiu et al. [24] presented a complex
shearlet transform- (CST-) based method to fuse GFP and
phase-contrast images. +e high-frequency subbands are
fused with the traditional absolute-maximum rule, while a
Haar wavelet-based energy rule is introduced to merge low-
frequency subbands.

It is worth noting that all of the above GFP and phase-
contrast image fusion methods are based on conventional
multiscale transforms. Moreover, the role of each input
image is equivalent in these fusion methods, as they handle
the GFP image (more precisely, its intensity component) and
phase-contrast image in the same way.

2.2. Deep Learning-Based Image Fusion. In recent years, due
to the high effectiveness and convenience in feature rep-
resentation of deep learning (DL) models, DL-based study
has emerged as a very active direction in the field of image
fusion [25]. Many DL models such as stacked autoencoders
(SAEs) and convolutional neural networks (CNNs) have
been employed in a wide range of image fusion problems
including remote sensing image fusion [26, 27], multifocus
image fusion [28–30], multiexposure image fusion [31, 32],
medical image fusion [33, 34], and infrared and visible image
fusion [35–37]. In [26], Huang et al. firstly introduced deep
learning into remote sensing image fusion by applying a
sparse denoising autoencoder to characterize the nonlinear
mapping between low- and high-resolution multispectral
image patches. Liu et al. [28] proposed a CNN-based
multifocus image fusionmethod in which a Siamese network
is designed to simultaneously act as the roles of activity level
measurement and fusion rule. In [31], Kalantari and
Ramamoorthi introduced a learning-based multiexposure
image fusion approach via CNN to model the complex
deghosting process in dynamic scenes. Hermessi et al. [33]
presented a CNN-basedmedical image fusionmethod which
preextracts the shearlet features of source images as network
input. Most recently, Ma et al. [35] introduced a novel
generative adversarial network- (GAN-) based infrared and
visible image fusion method by modelling the fusion
problem as an adversarial game, aiming to preserve infrared
intensities and visible details at the same time. +is work
demonstrates the high potential of the GAN models for
multimodal image fusion.

2.3. Motivations of-isWork. In this work, considering that
the characteristics of the GFP image and the phase-contrast
image are significantly different, unlike the exiting fusion
methods on this issue introduced in Section 2.1, different roles
are assigned to the input images for extracting information
from them more effectively. To this end, and inspired by the
great progress recently achieved in image fusion by deep
learning, a GAN-based GFP and phase-contrast image fusion
method is presented.Wemainly adopt the GAN-based fusion
scheme introduced in [35] due to its effectiveness and sim-
plicity in multimodal image fusion, while carefully devising
the loss functions according to the characteristics of the GFP
and the phase-contrast images. To the best of our knowledge,
this is the first time that a DL-based approach is used in the
field of GFP and phase-contrast image fusion.

3. The Proposed Method

3.1. Overview. Figure 2 shows the schematic diagram of the
proposed GFP and phase-contrast image fusionmethod.+e
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fusion issue is formulated as an adversarial problem to
preserve the complementary information contained in the
input images as much as possible. +e GFP image is treated
as an RGB color image in the fusion process. It is firstly
converted into the YUV color space that can effectively
separate the intensity or luminance component from the
color image. Actually, this is a widely used approach in the
field of functional and structural image fusion [6, 38].

During the training process, the GFP image Ig is
converted into YUV color space to acquire the Y, U, and V

components: IY
g , IU

g , and IV
g . +en, IY

g and the phase-
contrast image Ip are concatenated in the channel di-
mension to generate a two-channel map Ic � IY

g , Ip , in
which the first channel I1c � IY

g and the second channel
I2c � Ip. Next, Ic is fed into the generator G and the output is
termed as the intermediate fused image IY

f, which inclines
to maintain the functional information of Ig and retain the
structural information of Ip. IY

f and Ip are fed into the
discriminator D to further ensure the overall similarity
between them. In this way, adversarial game between G and
D is founded.

During the testing process, IY
g and Ip are concatenated in

the channel dimension and then fed into the trained gen-
erator to obtain the intermediate fused image IY

f. +e final
fused image If is acquired by performing the inverse YUV
conversion (i.e., YUV to RGB) over IY

f, IU
g , and IV

g .

3.2. Network Architecture. +e network architecture of the
generator is shown in Figure 3. +e input of the generator is
the concatenated IY

g and Ip, followed by a five-layer con-
volution network. +e filters used in the first two layers, the
next two layers, and the last layer are 5 × 5, 3 × 3, and 1 × 1,
respectively. +e symbol “n256s1” denotes the corre-
sponding layer has 256 feature maps and the stride is 1, and
so forth. In each convolutional layer, the stride is 1 and there
is no padding operation. To preserve the details contained in
the source images, the downsampling process is not adopted
in each layer. Besides, to overcome the problems of van-
ishing gradient and data initialization sensitivity, batch
normalization are employed in the first four layers. Leaky
ReLU and tanh activation functions are used in the first four
layers and the last layer, respectively. +e output of G is the
intermediate fused image IY

f.

+e network architecture of the discriminator is shown
in Figure 4. +e inputs of the discriminator are Ip and IY

f,
followed by a five-layer convolution network where 3 × 3
filters are used in the first four layers with a stride of 2. +e
discriminator actually plays the role of a classifier. Batch
normalization is employed in the second, third, and fourth
layers, and the leaky ReLU activation function is used in the
first four layers, and the last layer is a linear layer.+e output
of the discriminator is the predicted label (the dimension is
one).

3.3.-eDefinitionof theLossFunctions. +e loss functions of
our network are composed of two parts: the loss function of
the generator G and the loss function of the discriminator D.
To improve the quality of generated images and the stability
of training process, they are designed based on the least
squares generative adversarial networks (LSGANs) in-
troduced by Mao et al. [39].

3.3.1. -e Loss Function of the Generator. +e loss function
of G is formulated as

LG � VGAN(G) + αLC, (1)

whereVGAN(G) andLC denote the adversarial loss between
the generator and the discriminator and the content loss,
respectively. +e parameter α is used to control the balance
between VGAN(G) and LC. +e first term VGAN(G) is
defined as

VGAN(G) �
1
N



N

i�1
D I

Y(i)
f  − c 

2
, (2)

where N is the number of training samples in a batch and
I

Y(i)
f denotes the fused image with i ∈ NN. +e parameter c

is the value that the generator expects the discriminator to
believe in terms of the fake data. +e second term LC is
formulated as

LC �
1

HW
I

Y
f − Ig

�����

�����
2

F
+ β ·

1
HW

I
Y
f − Ip

�����

�����
2

F
+ c · SSIM I

Y
f, Ip ,

(3)

where H and W indicate the height and width of the input
images, respectively, ‖ · ‖F denotes the matrix Frobenius

(a) (b) (c)

Figure 1: A pair of GFP and phase-contrast images and the fusion result obtained by the proposed method. (a) +e GFP image. (b) +e
phase-contrast image. (c) +e fused image of the proposed method.
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norm, and SSIM represents the structural similarity oper-
ation [40]. +e first term is designed to preserve the func-
tional information of GFP image. +e second term aims to
extract the energy (represented by image intensity) of the

phase-contrast image, and the third term is devised to
maintain the structural information contained in the phase-
contrast image. β and c are trade-off parameters to balance
these three terms.

Adversarial
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f

YUV to RGB
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Y, Ip}

(b)

Figure 2: Schematic diagram of the proposed GAN for GFP image and phase-contrast image fusion.
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3.3.2. -e Loss Function of the Discriminator. +e in-
formation of Ip is incapable of being completely expressed
only by its energy and structural information. For example,
the texture details may not be fully extracted in this way. To
further improve the overall similarity between Ip and IY

f, a
discriminator D is introduced into the proposed framework.
+e loss function of D is formulated as

LD �
1
N



N

i�1
D Ip  − b 

2
+

1
N



N

i�1
D I

Y
f  − a 

2
, (4)

where a and b stand for the labels of IY
f and Ip, respectively.

3.4. Training Details. +e popular GFP database, which is
available at http://data.jic.ac.uk/Gfp/, released by the John
Innes Centre [1] is employed as the training data in this
work. +e database contains 148 pairs of registered GFP and
phase-contrast images of size 358 × 358 pixels that focus on
the Arabidopsis thaliana cells.

In order to obtain sufficient data for network training,
each input image is cropped into a large number of patches
of the same size 112 × 112 pixels. +e stride for cropping is
set to 12. As a result, we totally acquire 65268 pairs of GFP
and phase-contrast image patches, and the range of each
patch is normalized to [− 1, 1]. In each iteration during
training, the input of the generator contains n pairs of input
image patches (i.e., the batch size is n), and the output
intermediate fused patches and the phase-contrast patches
(the central part of size 100 × 100 pixels) are employed as the
input of the discriminator. Moreover, in each iteration, the
discriminator is firstly trained m times (i.e., the training step

is m) using the Adam optimizer [41] and then the generator.
Algorithm 1 summarizes the procedure of network training.

In our experiments, the parameters for training are set as
follows. +e batch size n and the number of epochs are set to
32 and 10, respectively. Accordingly, the number of training
iterations is 65268 × 10/32 ≈ 20396. +e training step of the
discriminator m is fixed as 2, and the learning rate is set to
10− 4. For easier training, as suggested in [35], soft labels are
adopted for a, b, and c. +at is, they are set to random
numbers rather than specific ones. +e label a of IY

f and the
label b of Ip are with the ranges of 0 to 0.3 and 0.7 to 1.2,
respectively. +e label c of IY

f ranges from 0.7 to 1.2.

4. Experiments

4.1. Experimental Settings

4.1.1. Testing Images. Considering that the proposed
method is an unsupervised approach (there is no ground
truth fused images for training), all the 148 pairs of images
used for training in the GFP database [1] (as mentioned in
Section 3.4) also act as the role of testing images.

4.1.2. Compared Methods. Seven representative multimodal
image fusion methods are selected for performance com-
parison: the dual-tree complex wavelet transform-
(DTCWT-) based method [3], the curvelet transform-
(CVT-) based method [4], the non-subsampled contourlet
transform- (NSCT-) based method [5], the sparse repre-
sentation- (SR-) based method [9], the convolutional neural
network- (CNN-) based method [36], the sharp frequency

3 
× 

3 
Co

nv

Le
ak

y 
Re

lu

n32s2

3 
× 

3 
Co

nv
Ba

tc
hN

or
m

Le
ak

y 
Re

lu

n64s2

3 
× 

3 
Co

nv
Ba

tc
hN

or
m

Le
ak

y 
Re

lu

n128s2

3 
× 

3 
Co

nv
Ba

tc
hN

or
m

Le
ak

y 
Re

lu

n256s2

Li
ne

ar

Pr
ed

ic
te

d 
la

be
l

IY
fIp

Figure 4: Network architecture of the discriminator.+e discriminator only works in the training process.+e input (either the central part
of the phase-contrast image patch or the output of the generator) has the size of 100 × 100 pixels (see Section 3.4 for more details). For better
visualization, we adopt the entire images as the input in this figure.
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Figure 3: Network architecture of the generator. In each convolutional layer, there is no padding operation. During the training process, the
input is image patches of size 112 × 112 pixels and the output is of size 100 × 100 pixels (see Section 3.4 for more details). During the testing
process, the input is the entire images with 6 pixels padded in each direction to ensure that the output has the same size with the input
images. For better visualization, we adopt the entire images as the input and output in this figure.
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localization contourlet transform- (SFL-CT-) based method
[23], and the complex shearlet transform- (CST-) based
method [24]. +e first three are based on popular multiscale
transforms, and their parameters are set to the optimal
values reported in an influential comparative study [42]. +e
fourth one is based on sparse representation via simulta-
neous orthogonal matching pursuit (SOMP) algorithm. +e
fifth one is a recently proposed deep learning- (DL-) based
method, while the last two are the fusion methods specially
designed for GFP and phase-contrast images. +e param-
eters in these methods are all set to the default values for
unbiased comparison.

4.1.3. Objective Metrics. In [43], Liu et al. presented a
comprehensive review of the objective evaluation metrics for
image fusion and classified them into four categories: the
information theory-based ones, the image feature-based
ones, the image structural similarity-based ones, and the
human perception-inspired ones. In this paper, to conduct
an all-round objective assessment, one widely used metric is
chosen from each category. +e first one is the normalized
mutual information (QMI) [44] that measures the mutual
dependence between the input images and the fused image.
+e second one is an image feature-based metric using phase
congruency (QP) [45]. +is metric assesses the fusion quality
through comparing the local cross correlation of corre-
sponding feature maps of the input and fused images. +e
third one is Yang’s metric (QY) [46], which evaluates the
structural similarity between the input images and the fused
one. +e last one is proposed by Chen and Blum (QCB) [47]
based on human visual system (HVS) models. In addition,
the visual information fidelity (VIF) measure [48] between
the input phase-contrast image and the fused image is also
employed for objective assessment. By characterizing the
relationship between image information and visual quality,
the VIF measure has been widely verified to be highly
consistent with subjective evaluation. It is worth noting that
the same measure between the GFP image and the fused
image is not included. As reported in [23] (Table 1), the
result on VIF measure between the GFP image and the fused
image (the proposed method has the lowest score) is on the
contrary with that of the VIF measure between the phase-
contrast image and the fused image (the proposed method
has the highest score). We also verify this point in our
experiment. Specifically, we experimentally find that the
result on VIF measure between the phase-contrast image
and the fused image is highly consistent with other fusion
metrics, while the situation for the GFP image is just on the
contrary. One possible explanation for this issue is that most
of the pixels or regions in the GFP image are dark (the
intensity is zero), which is significantly different from the
situations of the fused image or the phase-contrast image.
+erefore, a higher VIFmeasure between the GFP image and
the fused imagemay not indicate a better fusion result. Based
on the above observations, only the VIF measure between
the phase-contrast image and the fused image is used for
evaluation in this work. For each of the above metrics, a
higher score indicates a better performance.

4.2. Parameter Analysis. In this section, the impacts of three
trade-off parameters α, β, and c in our method are quan-
titatively studied via the objective fusion metrics. Based on a
large quantity of experiments, we obtain an appropriate
setting: α � 6, β � 6, and c � 6. As a popular approach for
analysing the impacts of multiple parameters, the controlling
for a variable is adopted to verify this point. +e results are
shown in Figure 5. Considering that it is practically difficult
to show all the results that contain too many combinations,
only one set of results is provided to exhibit the impact of
each parameter, by fixing the other two as the well-per-
formed values (this is a widely used manner in the study of
image fusion [8, 38]). For each metric, the average score of
148 images is employed for evaluation in Figure 5. It is
obvious that for each parameter, the best performances on
all the five metrics are mostly obtained when its value is 6.
Accordingly, these three free parameters are all set to 6 in
our method.

4.3. Results andDiscussion. Figures 6 and 7 provide two sets
of fusion results which include the input images and the
fused images obtained by different methods. In each image,
two representative regions are enlarged as close-ups for
better comparison.

It can be seen that the DTCWT-based, CVT-based,
NSCT-based, and SR-based methods can well capture the
functional information from the GFP image and the spatial
details from the phase-contrast image. However, these
methods tend to lose a large amount of image energy from
the phase-contrast image. As a result, the brightness of the
fused images is obviously lower in comparison to the phase-
contrast image, leading to undesirable visual artifact (see the
first close-ups in Figures 6(b)–6(f) and 7(b)–7(f)).

For the CNN-based method, the image energy can be
well preserved, but the functional information is not well
tackled as the green regions are actually over emphasized
when compared with the GFP input image. As a conse-
quence, some structural details are concealed by the green
regions (see the second close-ups in Figures 6(g) and 7(g)).
+e SFL-CT-based and CST-based methods achieve obvious
improvement on this issue, but still suffer from this defect to
a certain degree (see the second close-ups in Figures 6(h)-
6(i) and 7(h)-7(i)).

+e proposed method can achieve the highest visual
quality among all the methods. On the one hand, the
functional information from the GFP image is accurately
preserved bymethod. On the other hand, the fused images of
our method well inherit both the structural information and
image energy from the phase-contrast image.

+e objective assessment of different fusion methods on
the above five metrics are listed in Table 1. For each method,
the mean value (MV) and the standard deviation (SD) of
each metric over 148 pairs of input images are reported.
Moreover, the number of image pairs on which the corre-
sponding method achieves the highest score is counted and
termed as winning times (WT) in Table 1. +e maximum
mean value, minimum standard deviation, and maximum
winning times among all the methods are indicated in bold.
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It can be seen that the proposed method clearly outperforms
the DTCWT-based, CVT-based, NSCT-based, SR-based,
CNN-based, and SFL-CT-based methods on all the five
evaluation metrics. In comparison to the CST-based method
that wins the first places on QY and QCB, our method owns
obvious advantage on QMI, QP, and VIF, while achieving
very close performance on QY and QCB. Besides, the pro-
posed method obtains relatively small standard deviations
on all the five metrics, which indicates that it can stably
obtain high-quality fusion results.

Based on the above qualitative and quantitative com-
parisons, the proposed method exhibits clear advantages
over the other seven methods. Moreover, the computational
efficiency is sufficiently high for practical usage. Specifically,
under the hardware environment consisting of an Intel Core
i7-7820K CPU and a NVIDIA TITAN Xp GPU, it takes only
about 0.06 seconds for our method to fuse two images of size
358 × 358 pixels. Since all the other methods are imple-
mented in Matlab, their running time is not provided for
comparison.

4.4. Influence of Network Architecture. In this section, we
study the influence of network architecture on the fusion
performance of the proposed method. Specifically, the im-
pacts of the number of feature maps and the number of
convolutional layers are studied. Firstly, two sets of exper-
iments are conducted to investigate the influence of the
number of feature maps, one of which is halving the number
of the feature maps in the first four layers of the generator
and the discriminator, and the other is doubling them.
Secondly, to analyse the impact of the number of con-
volutional layers, we perform another two sets of experi-
ments, one of which is removing the first layer of the
generator and the fourth layer of the discriminator (both of
them contain 256 feature maps), while the other is adding a
convolutional layer with 512 feature maps into the generator
before the first layer and into the discriminator after the
fourth layer, respectively.

Table 2 lists the objective evaluation results of the above
experiments, which are denoted by halved feature maps,
doubled feature maps, reduced layers, and increased layers.
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Figure 5: Influences of α, β, and c on objective performance.

(1) for number of training iterations do
(2) for m steps do
(3) Select n fused patches {IY(1)

f , . . . , I
Y(n)
f } from generator;

(4) Select n phase-contrast image patches I(1)
p , . . . , I(n)

p ;
(5) Update discriminator with the Adam optimizer: ∇LD;
(6) end for
(7) Select n GFP image patches IY(1)

g , . . . , IY(n)
g  as well as n phase-contrast image patches I(1)

p , . . . , I(n)
p  from training data;

(8) Update generator with the Adam optimizer: ∇LG;
(9) end for

ALGORITHM 1:+e procedure of network training in our method.
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+e results of the original network architecture are also given
as reference. For each approach, the mean value of each
metric over 148 pairs of input images is reported. It can be
seen that the proposed method can generally obtain better
performance with more feature maps and convolutional
layers. In particular, the number of feature maps has rela-
tively more effect on the fusion performance in this task, in
comparison to the number of convolutional layers. By taking
the results given in Table 1 into consideration together, we
can see that the proposed method with a slighter model
(halved feature maps or reduced layers) is still competitive
enough among all the fusion methods. A heavier model
(doubled feature maps or increased layers) can provide some
further improvement in terms of the original network ar-
chitecture, but the extent is not significant. Considering the
factors like memory consumption and computational effi-
ciency, it is an appropriate choice to employ the network
architectures described in Section 3 as the default settings.

4.5. Verification of the Overfitting Problem. As mentioned
above, the proposed fusion method is essentially an

unsupervised approach since there is no ground truth
fused images used for training. Accordingly, the whole
dataset can be employed for training and testing in the
above experiments, without dividing it into training set
and testing set. Although it is a reasonable manner to
obtain the fusion results for all the images, the perfor-
mance of the trained model on new testing data remains
unknown.

To address this issue, we conduct a 5-fold cross vali-
dation to study if the proposed fusion model has the
overfitting problem. Specifically, all the 148 pairs of images
are randomly divided into five groups, with 30 pairs in the
first four groups and 28 pairs in the last group. In each fold,
four groups are employed as training data and the
remaining one is used for testing. +erefore, each pair of
images is employed for testing only once, and all the 148
fused images obtained in the testing process are used for
objective evaluation. Table 3 shows the objective assess-
ment results of the five-fold cross validation experiment,
along with the results of original training/testing manner
for comparison. For each approach, the mean value of each
metric over 148 pairs of input images is given. It is not

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 6: +e first set of GFP and phase-contrast image fusion results. (a) GFP image. (b) Phase-contrast image. (c) DTCWT. (d) CVT.
(e) NSCT. (f ) SR. (g) CNN. (h) SFL-CT. (i) CST. (j) Proposed.
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surprising that the performance of the cross validation
approach has a slight decrease when compared with that of
the original manner. By referring to the performances of
other fusion methods reported in Table 1, we can find that

this decreasing extent is very small, which demonstrates
that there is no obvious overfitting phenomenon and the
proposed image fusion model has good practicality to new
examples.

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j)

Figure 7: +e second set of GFP and phase-contrast image fusion results. (a) GFP image. (b) Phase-contrast image. (c) DTCWT. (d) CVT.
(e) NSCT. (f ) SR. (g) CNN. (h) SFL-CT. (i) CST. (j) Proposed.

Table 1: Objective evaluation of different fusion methods.

Metric Statistics DTCWT CVT NSCT SR CNN SFL-CT CST Proposed

QMI

MV 0.2916 0.2725 0.3070 0.3877 0.4233 0.5142 0.5396 0.6362
SD 0.0555 0.0493 0.0578 0.0461 0.1647 2.5361 25.4793 0.0438
WT 0 0 0 0 16 9 12 111

QP

MV 0.4374 0.4076 0.5011 0.6056 0.5218 0.5303 0.5597 0.7098
SD 0.1645 0.1550 0.1616 0.1382 0.1881 0.1799 0.1750 0.0697
WT 0 0 0 3 18 1 11 115

QY

MV 0.7185 0.7066 0.7372 0.7087 0.8570 0.8520 0.8938 0.8925
SD 0.0743 0.0739 0.0701 0.0746 0.1298 0.1001 0.1060 0.0669
WT 0 0 2 0 16 0 75 57

QCB

MV 0.4540 0.4541 0.4634 0.4491 0.4646 0.4885 0.4991 0.4908
SD 0.1045 0.1030 0.1081 0.1095 0.1350 0.1363 0.1377 0.1275
WT 0 8 11 0 8 5 69 47

VIF
MV 0.6697 0.6623 0.6968 0.6926 0.7368 0.6785 0.7705 0.8682
SD 0.1362 0.1343 0.1323 0.0869 0.1678 0.1147 0.1290 0.1236
WT 0 0 0 0 29 0 29 90

+e abbreviations MV, SD, and WT stand for mean value, standard deviation, and winning times, respectively.

Computational and Mathematical Methods in Medicine 9



5. Conclusion and Future Work

In this paper, we propose a GFP and phase-contrast image
fusion method based on generative adversarial networks.
+e fusion problem is addressed as an adversarial game
between a generator and a discriminator by carefully con-
sidering the characteristics of different input images. Ex-
perimental results demonstrate that the proposed method
can simultaneously extract the functional information from
the GFP image and the structural information from the
phase-contrast image, leading to better performance than
several existing methods in terms of both visual quality and
objective assessment. +e proposed fusion framework is of
high generality to functional and structural image fusion
problems. In the future, we will study its feasibility in
multimodal medical image fusion issues such as magnetic
resonance (MR) and positron emission tomography (PET)
image fusion.
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