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Genome mining is a computational method for the automatic detection and annotation of biosynthetic
gene clusters (BGCs) from genomic data. This approach has been increasingly utilised in natural product
(NP) discovery due to the large amount of sequencing data that is now available. Ribosomally synthesised
and post-translationally modified peptides (RiPPs) are a class of structurally complex NP with diverse
bioactivities. RiPPs have recently been shown to occupy a much larger expanse of genomic and chemical
space than previously appreciated, indicating that annotation of RiPP BGCs in genomes may have been
overlooked in the past. This review provides an overview of the genome mining tools that have been
specifically developed to aid in the discovery of RiPP BGCs, which have been built from an increasing
knowledgebase of RiPP structures and biosynthesis. Given these recent advances, the application of tar-
geted genome mining has great potential to accelerate the discovery of important molecules such as
antimicrobial and anticancer agents whilst increasing our understanding about how these compounds
are biosynthesised in nature.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
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1. Introduction

Microorganisms and plants produce a plethora of natural prod-
ucts (NPs) with a range of bioactivities including antimicrobial,
anticancer, pesticidal and immunosuppressive. As a result, many
of these compounds are highly valuable and extensively utilised
in medicine, agriculture and the food industry [1–2]. In bacteria,
the genes encoding NP biosynthetic pathways are typically clus-
tered tightly together on the chromosome as biosynthetic gene
clusters (BGCs). These genomic regions include genes for biosyn-
thetic precursors, tailoring enzymes, regulation, transport and
resistance elements [3]. Some bacteria have a particularly complex
specialised metabolism, with actinomycetes such as Streptomyces
species harbouring between 20 and 40 BGCs [3–5]. Fungal gen-
omes also contain multiple specialised metabolite BGCs [6–8].
However, much of this microbial biosynthetic capacity is currently
unexplored. Microbes only express limited numbers of their BGCs
under laboratory conditions, and many microorganisms are uncul-
tivatable [9], making the isolation of novel compounds challenging.
In order to uncover the cryptic biosynthetic potential of microor-
ganisms, genomics-based strategies have become powerful and
increasingly popular methods for the automatic detection of
biosynthetic genes [10]. Before the advent of genome mining, the
identification of novel bioactive metabolites typically involved
labour-intensive cultivation and screening of microbial extracts.
As well as this being a highly time-consuming procedure,
activity-based screening is also hindered by high rediscovery rates
[11–13]. In contrast, a major challenge of genome mining is that it
is difficult to predict which BGCs will produce molecules with
desirable bioactivity, especially if a BGC is very different to previ-
ously characterised BGCs.

The first bacterial genome was sequenced in 1995, from Hae-
mophilus influenzae [14]. Seven years later, the first Streptomyces
genome was sequenced from Streptomyces coelicolor A3(2) [4],
which provided the first evidence that actinomycetes contain
many more BGCs for specialised metabolites than previously
thought [3]. Since then, as sequencing technologies have become
more advanced, accessible and cheaper, the number of prokaryotic
genome sequences that are publicly available exceeds 200,000
(NCBI, March 2020). This wealth of genomic information has led
Fig. 1. Schematic of R
to the development of multiple genome mining tools that survey
this genomic data to automatically detect and annotate potential
BGCs, typically by using algorithms that are based on knowledge
of NP biosynthetic machinery. As well as identifying novel com-
pounds from bacteria that are known to be talented producers of
specialised metabolites, genome mining can also serve as a valu-
able tool to understand the biosynthetic potential of underex-
plored genera. Therefore, there is great potential for genome
mining strategies to revitalise the antibiotic pipeline, at a time
when discovery rates are dwindling and antimicrobial resistance
is increasing [13].
2. Ribosomally synthesised and post-translationally modified
peptides (RiPPs)

RiPPs are a class of peptide NP harbouring post-translational
modifications (PTMs) that give rise to a high degree of structural
and chemical complexity [15]. RiPPs are produced from a short
precursor peptide (PP) comprised of a leader peptide and a core
peptide (Fig. 1). The PP is synthesised by the ribosome, and the core
peptide is post-translationally modified by a series of RiPP tailoring
enzymes (RTEs) that install various structural features onto the
peptide backbone. The core peptide is usually cleaved from the lea-
der peptide once most PTMs have been made, yielding a biologi-
cally active final product [15–16] (Fig. 1). Leader peptides usually
contain sequence motifs that act as recognition sequences for the
RTEs to bind. A widespread mode of binding occurs via domains
called RiPP precursor peptide recognition elements, which are pre-
sent on many RTEs [17–19]. The leader peptide is also thought to
play a protective role, preventing the core region from proteolytic
cleavage before the biosynthetic post-translational modifications
are complete [15]. In some examples, RiPPs contain a follower
region instead of, or in addition to, the leader region [20].

The term ‘RiPP’ was only formally coined in 2013 [15], but char-
acterised members of this NP class date back to as early as 1928,
with the discovery of the lanthipeptide nisin [21], an antibacterial
peptide that is still used as a food preservative today. RiPPs are
grouped into multiple families based on their varied biosynthetic
machinery and structural features. RiPP classes that have been
iPP biosynthesis.



Fig. 2. Examples of RiPP natural products. A. Structures of a thiopeptide (thiostrepton), a recently discovered antibiotic (darobactin), a redox cofactor (pyrroloquinoline
quinone, PQQ) and a thioviridamide-like molecule (prethioviridamide). B. Precursor peptides corresponding to these RiPPs, where core peptides are coloured red.
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characterised to date include linear azoline-containing peptides
peptides [22–23], bottromycins [24], thiopeptides [25–26],
thioviridamide-like molecules [27–28], lanthipeptides [29–30],
cyanobactins [31–32], lasso peptides [33–34], sactipeptides (pep-
tides with sulfur-to-a carbon cross-links) [35–36] and linaridins
[37–38]. These molecules display diverse bioactivities (Fig. 2A).

Unfortunately, genome mining for novel RiPPs presents several
challenges. Unlike other classes of NP such as polyketides and
nonribosomal peptides that are produced by multi-modular
complexes, the biosynthetic logic of RiPPs means that there are
few conserved features across the class, with RTEs varying between
different RiPP families. Furthermore, RiPP PPs are very short
(often < 50 amino acids, Fig. 2B) and are sometimes not annotated
in genomes. Despite these challenges, genome mining for RiPPs
presents an exciting opportunity to discover previously untapped
biochemical diversity. Increased knowledge about RiPP biosyn-
thetic mechanisms has allowed for improved algorithms for RiPP
BGC detection. Improved knowledge of PP sequences can also aid
in structural prediction and provide information on interactions
between the PP and its cognate RTEs. The use of targeted genome
mining therefore represents a powerful strategy to accelerate
future RiPP discovery.

3. RiPP genome mining tools

General reviews of microbial genome mining have previously
been published [10,39–44], but this review will focus on the
plethora of genome mining tools that have been specifically
developed for RiPPs in recent years. While there are similarities
amongst a number of these tools, they each have different
strengths and there are substantial differences in how some tools
operate. Tools like antiSMASH [45–49] function by analysis of a
single genome (and integrate the RiPP output with analysis of
other BGC classes), whereas others such as RODEO [36,50] and
RiPPER [51] function optimally in a pan-genome mode and enable
the user to define RTEs. A number of these tools provide addi-
tional outputs, including the prediction of PP sequences, leader
peptide cleavage sites, PTMs and final product structures, as well
as associating sequence data with mass spectrometry data. All of
these tools are summarised in Tables 1 and 2 and are described
below in order of when they were first described. Online data-
bases containing information about known RiPP molecules and
BGCs are also reported (Table 3). Finally, we carry out a compar-
ative analysis of selected tools that assess the biosynthetic poten-
tial of whole genomes.

3.1. BAGEL

BAGEL (BActeriocin GEnome mining tooL) is one of the earliest
tools developed for the identification of RiPP and bacteriocin BGCs.
First released in 2006, it was built to address the issue that open
reading frames (ORFs) with limited sequence homology are diffi-
cult to annotate [52]. BAGEL searches for RiPPs (also defined as
class I bacteriocins by BAGEL), class II bacteriocins (small heat
stable proteins < 10 kDa) and class III bacteriocins (large heat-
labile proteins > 10 kDa). BAGEL identifies putative RiPP and bacte-



Table 1
Summary of genome mining tools available for RiPPs.

Tool Web address Function and RiPP class Interface Input Output

BAGEL4 http://bagel4.molgenrug.nl/ � BGC identification and annotation
� Multiple RiPP classes

Web Sequence file (FASTA) or built-in set of publicly
available genomes in RefSeq database

� Html output showing BGC regions with gene annotations
� Sequence alignment with curated precursor peptides
� Downloadable GenBank files, FASTA files, gene tables and
promoter/terminator information

antiSMASH5 https://antismash.
secondarymetabolites.org/

� BGC identification, annotation a
nd analysis

� Multiple RiPP classes

Web Sequence file (FASTA, GenBank or EMBL) or
NCBI nucleotide accession

� Html output showing BGC regions with gene annotations and
predicted class

� Predicted PP and cleavage sites for some RiPP classes
� Downloadable GenBank files and other data for BGC regions
� KnownClusterBlast analysis

PRISM4 http://grid.adapsyn.com/prism/#!/
prism

� BGC identification, PP cleavage
and PTM prediction

� Multiple RiPP classes

Web Sequence file (FASTA or GenBank) � Html output showing BGC regions with gene annotations and
predicted class

� Predictions of core peptide and final structures
� SMILES strings for predicted structures, FASTA sequences of BGCs

RiPPMiner http://202.54.226.242/~priyesh/
rippminer2/new_predictions/index.
php

� BGC identification and RiPP class
� Predictions of structure,
cleavage
and crosslinks

� Multiple RiPP classes

Web Peptide = PP sequence (raw or FASTA) Peptide
� Html output with predicted structure and class
� SMILES strings for predicted structures

Genome = sequence file (FASTA) Genome
� Html output showing identified clusters and annotations as well as
peptide cleavage, crosslinks and structural predictions

� SMILES strings of predicted structures
� List of other small ORFs present in BGC

RODEO2 http://ripp.rodeo/index.html � RiPP BGC identification, PP
identification and structural
prediction

� Lasso peptides, lanthipeptides,
thiopeptides & sactipeptides

Web or
Python

List of bait protein accession numbers. Optional:
HMMs and configuration file

� Html files with BGC information and Pfam domain annotation
� .csv files of PP sequences and BGC Pfam domains

RiPPER https://github.com/streptomyces/
ripper

� PP and BGC recognition
� Class independent

Docker List of bait protein accession numbers � GenBank files of retrieved BGCs annotated with short peptides
� Table of PP data
� RODEO files for retrieved BGCs

NeuRiPP https://github.com/emzodls/neuripp � PP recognition
� Class independent

Python PP sequence file (FASTA) � File of sequences classified by NeuRiPP as positive PPs
� Separate file of non-RiPP peptides
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riocin ORFs using knowledge-based peptide and motif databases,
combined with information about the genetic context of accessory
genes for processing, modification, transport and regulation of
RiPPs and bacteriocins. Initial screening identifies areas of interest
in which ORFs are identified. Small ORFs are subsequently
searched for in the intergenic regions and are analysed by BLAST
against curated databases for each type of bacteriocin described
above. If homology is found, an alignment is produced along with
predictions of promoters and terminators [52].

Since its first release, updates to the software have provided
further optimisation of RiPP detection. BAGEL2 implemented
extended use of profile hidden Markov models (HMMs) and
updated the manually curated databases of known bacteriocins
and accessory genes in order to incorporate improved biosynthetic
knowledge. An advanced classification algorithm was also
implemented to allow prediction of subclasses of bacteriocins
[53]. BAGEL3 included implementation of new HMM models for
tailoring genes involved in the biosynthesis of cyanobactins,
sactipeptides and linaridins [54]. The most recent update to the
software is BAGEL4, whose annotation database was updated with
improved RiPP protein domain information [55]. As well as BGC
identification, the BAGEL web server also provides a peptide
database containing information about almost 500 RiPPs and bac-
teriocins (Table 3). The BAGEL4 ‘‘Core Peptide Blast” function
enables the user to search against this database using a user-
defined set of precursor peptide sequences.
3.2. antiSMASH

antiSMASH (antibiotics and Secondary Metabolite Analysis
Shell) is a genome mining tool for the identification and analysis
of 52 types of NP BGC. It was first released in 2011 [45] and has
been updated several times [46–49]. antiSMASH is the most widely
used genome mining tool, with over 670,000 jobs processed online
at the time of writing. As well as bacterial genome mining, anti-
SMASH also has platforms that are optimised for fungal (fungiS-
MASH) [48] and plant (plantiSMASH) [56] genomes. antiSMASH
works by comparing encoded gene products with a manually
curated library of HMMs, which describe a range of NP biosyn-
thetic genes. BGCs are identified by assigning key enzymes present
in a gene cluster to specialised metabolite-specific clusters of
orthologous groups. Further downstream analyses are also carried
out to annotate accessory genes, predict BGC boundaries, and to
predict final structures of compounds. The integrated KnownClus-
terBlast feature enables the comparison of identified BGCs with
known BGCs present in the MIBiG database [57] (Table 3) [45–46].

Although not solely focused on RiPPs, successive updates to
antiSMASH have incorporated numerous features that provide a
detailed RiPP BGC annotation. antiSMASH 2.0 added support for
thiopeptide and sactipeptide BGC recognition [46] and antiSMASH
3.0 included improved analysis of lanthipeptide structures and
modifications, as well as integration with ClusterFinder [58], which
is a HMM-based algorithm that identifies BGCs based on the co-
occurrence of Pfam domains associated with biosynthesis. anti-
SMASH 3.0 also included the newly adopted RiPP nomenclature
that was published in 2013 [15]. antiSMASH 4.0 incorporated the
RODEO [50] algorithm (see below) to help evaluate candidate PPs
for lasso peptides, thiopeptides, class I lanthipeptides and sactipep-
tides [48]. In its current release, antiSMASH 5.0 includes refined
rules for lanthipeptides, linear azoline-containing peptides, radical
SAM-associated RiPPs and fungal RiPPs [49]. Overall, antiSMASH
harbours algorithms to detect a range of different RiPP families,
and has been successfully used to guide the discovery of novel
RiPPs, such as the lanthipeptide streptocollin [59].

https://github.com/ablab/npdtools
http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp
http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp
http://pep2path.sourceforge.net/
https://github.com/bbehsaz/cyclonovo
https://gnps.ucsd.edu/ProteoSAFe/index.jsp%3fparams%3d%257B%2522workflow%2522%3a%2522CYCLONOVO%2522%257D
https://gnps.ucsd.edu/ProteoSAFe/index.jsp%3fparams%3d%257B%2522workflow%2522%3a%2522CYCLONOVO%2522%257D
https://gnps.ucsd.edu/ProteoSAFe/index.jsp%3fparams%3d%257B%2522workflow%2522%3a%2522CYCLONOVO%2522%257D
http://deepripp.magarveylab.ca/


Table 3
Summary of databases available for RiPPs and their BGCs.

Database Link Features

ThioBase https://db-mml.sjtu.edu.cn/THIOBASE/ � Thiopeptide specific
� Structure and activity
� BGCs and core peptide sequences
� Literature links

BACTIBASE http://bactibase.hammamilab.org/main.php � Structural and physiochemical properties of bacteriocins
� Literature and sequence database links

BAGEL database http://bagel4.molgenrug.nl/databases.php � RiPP and bacteriocins
� Precursor peptide sequences
� Literature and sequence database links

RiPPMiner database http://www.nii.ac.in/~priyesh/lantipepDB/new_predictions/
index.php#/~priyesh/lantipepDB/new_predictions/second.php

� RiPP structures
� Precursor peptide sequences and modified residue details
� Literature links

IMG-ABC https://img.jgi.doe.gov/cgi-bin/abc-public/main.cgi � NP BGC database from all genomes in IMG
� All antiSMASH-identified NP classes
� Searchable by BGC class

MIBiG https://mibig.secondarymetabolites.org/ � Repository of NP BGCs
� Searchable by BGC class
� Structure and BGC details
� Literature links

antiSMASH database https://antismash-db.secondarymetabolites.org � antiSMASH outputs for sequenced bacterial genomes
� All antiSMASH-identified NP classes
� Searchable by BGC class
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3.3. ThioFinder

ThioFinder, released in 2012 [60], was specifically developed to
identify thiopeptide BGCs. ThioFinder requires a nucleotide
sequence as an input and uses this to search for conserved thiopep-
tide biosynthetic genes such as YcaO-domain proteins and
lanthipeptide-like dehydratases. These searches are based on
HMMs. PPs within a candidate thiopeptide BGC are then identified
by searching for characteristic motifs, such as ‘SCTT[CS][GI]CT[CS]S
[CS]’, which was identified through a MEME analysis [61] of known
thiopeptide PPs. This allows for subsequent detection and annota-
tion of corresponding thiopeptide BGCs. ThioFinder was used to
identify 54 new thiopeptide BGCs and grouped these into three
types, thus revealing previously untapped thiopeptide diversity.
3.4. RiPP-PRISM

RiPP-PRISM, released in 2016, is a tool that identifies BGCs and
predicts structures for 21 families of RiPPs [62]. It integrates into
the previously developed PRISM [63–64] (PRediction Informatics
for Secondary Metabolomes) tool, a platform for the identification
of non-ribosomal peptide and polyketide BGCs and associated
structures. PRISMwas extended to cover RiPPs by building libraries
of 58 motifs, 154 HMMs and 94 virtual PTMs specific to RiPP
biosynthesis. This knowledge is used to predict PP cleavage and
final structures. RiPP-PRISM was used to investigate the chemical
space occupied by RiPPs by analysing the 65,421 prokaryotic gen-
omes listed in NCBI at the time, leading to the identification of over
30,000 RiPP BGCs. RiPP-PRISM analysis suggested that 82% of
genetically encoded RiPPs remain unknown, but this figure is likely
to be an underestimation given that numerous recently discovered
RiPP families are not covered by RiPP-PRISM. As well as identifying
previously unknown BGCs, RiPP-PRISM was also used to facilitate
targeted identification of novel RiPPs, leading to the isolation of
aurantizolicin from Streptomyces aurantiacus, a cyclic azoline-
containing compound closely related to YM-216391 [62] (Fig. 3).
3.5. RiPPMiner

RiPPMiner, released in 2017, is a bioinformatics resource for
predicting chemical structures and classes of RiPPs, as well as iden-
tifying novel BGCs [65]. The aim of RiPPMiner is to predict complex
chemical structures from the precursor peptides of selected classes
of RiPP, including lanthipeptides, lasso peptides, cyanobactins and
thiopeptides. This uses support vector machine and random-forest
classifiers trained on over 500 experimentally characterised RiPPs,
which are used to distinguish RiPP PPs from other small proteins
and classify identified precursors into 13 RiPP families. Unlike tools
such as RiPP-PRISM and antiSMASH that use HMMs of RTEs to pre-
dict the RiPP class, RiPPMiner uses a machine learning model
trained using the amino acid sequence of the RiPP PP gene alone
to identify RiPPs and then predict their class.

RiPPMiner includes two different modules: peptide and gen-
ome. RiPPMiner-peptide takes a PP sequence and provides predic-
tions about class, structure, crosslinks and cleavage sites for
selected RiPP families, such as lanthipeptide, cyanobactin, lasso
peptide and thiopeptide. RiPPMiner-genome predicts chemical
structures and identifies BGCs from a genomic sequence. Like
BAGEL and ThioBase, RiPPMiner also includes a publicly available
database of known RiPPs, RiPPDB, containing information about
structures and biosynthetic genes (Table 3).

3.6. RODEO

RODEO (Rapid ORF Description and Evaluation Online), released
in 2017, is a tool developed for the analysis of RiPP BGCs and pre-
diction of PP sequences and structures [50]. Unlike previously
described genome mining tools that analyse a whole genome or
precursor peptide sequence, RODEO uses a protein of interest as
input and captures the surrounding genomic environment to iden-
tify nearby biosynthetic genes, and thus new BGCs. The RODEO
algorithm combines HMM-based analysis, heuristic scoring, motif
analysis and machine learning to identify precursor peptides and
predict cleavage sites between leader and core peptides. RODEO
was first used to survey and annotate the genomic space occupied

https://db-mml.sjtu.edu.cn/THIOBASE/
http://bactibase.hammamilab.org/main.php
http://bagel4.molgenrug.nl/databases.php
http://www.nii.ac.in/%7epriyesh/lantipepDB/new_predictions/index.php%23/%7epriyesh/lantipepDB/new_predictions/second.php
http://www.nii.ac.in/%7epriyesh/lantipepDB/new_predictions/index.php%23/%7epriyesh/lantipepDB/new_predictions/second.php
https://img.jgi.doe.gov/cgi-bin/abc-public/main.cgi
https://mibig.secondarymetabolites.org/
https://antismash-db.secondarymetabolites.org


Fig. 3. Examples of RiPPs whose discovery was guided by the use of genome mining tools. The compound name, class and tool are listed alongside each structure.
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by lasso peptides, revealing over 1,400 lasso peptide BGCs. Previ-
ously uncharacterised tailoring enzymes were also observed. Sev-
eral new lasso peptides were characterised following RODEO
analysis, including LP2006 from Nocardiopsis alba, which forms a
novel ‘handcuff’ topology (Fig. 3), and citrulassin A from Strepto-
myces albulus, which bears a unique RiPP PTM where an Arg resi-
due is modified to citrulline [50].

The RODEO algorithm was further developed for the analysis of
thiopeptides. This was guided by the generation of a custom
pHMM for the [4 + 2]-cycloaddition enzymes that generate a six-
membered N-heterocycle in thiopeptides. This expanded the class
by a factor of four and revealed multiple novel thiopeptide BGCs. A
novel antibacterial thiopeptide called saalfelduracin was isolated
from Amycolatopsis saalfeldensis [66]. RODEO2 has since been
updated for the detection of class I lanthipeptides and sactipep-
tides, and was utilised to discover huazacin, a sactipeptide with
activity against Listeria monocytogenes [36]. This analysis identified
further diversity in BGCs predicted to make sactipeptides, but also
led to the experimental characterisation of a new RiPP family, the
ranthipeptides (radical non-a thioether peptides).
3.7. RiPPER

RiPPER (RiPP Precursor Peptide Enhanced Recognition), released
in 2019, is a tool for the discovery of novel RiPP PPs and associated
BGCs. Like RODEO, RiPPER takes a putative RTE as an input, and
identifies putative PPs in the surrounding genomic region. RiPPER
was developed to overcome the limitation that many RiPP mining
tools are restricted to discovery of specific RiPP families, and might
therefore overlook untapped biochemical novelty [51]. RiPPER uses
the RODEO2 [66] script to capture genomic regions centred on the
‘bait’ RTE, and a modified version of Prodigal [67], Prodigal-short, is
employed to reannotate the captured genetic region for likely
protein-coding sequences that could be RiPP PPs. The peptides
with the highest Prodigal-short scores are retrieved and assessed
for numerous characteristics, including conserved domains, such
as Pfam domains and RiPP-specific HMMs from NCBI. Subsequent
networking analysis of identified PPs with EGN [68] is used to help
identify families of related PPs. RiPPER is therefore best suited to
the analysis of multiple related BGCs, and was shown to success-
fully identify families of precursor peptides for lasso peptides,
thiopeptides and microviridins without any prior knowledge of
precursor peptide sequence motifs.

RiPPER was used to assess the unexplored diversity of thioami-
dated RiPPs using an input of TfuA-like proteins from Actinobacte-
ria. 743 peptides were retrieved which grouped into 74 distinct
networks of peptides. Analysis of one of these networks led to
the characterisation of the thiovarsolins from Streptomyces varso-
viensis, a new structural class of thioamidated RiPP (Fig. 3). Due
to the input of user-defined protein accessions as a starting point
for analysis, RiPPER is a flexible tool that can be applied to various
RiPP classes [51] and can be used to identify precursor peptides
that have no homology to known families of RiPP, as well as short
peptides that contain RiPP PP domains. It also provides an accurate
reannotation of genomic loci for small genes missed by automated
genome annotations.
3.8. NeuRiPP

NeuRiPP [69], released in 2019, is a tool for RiPP PP identifica-
tion that does not require genomic context. The premise of NeuR-
iPP was to build a tool that could discriminate genuine PPs from
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false positives in a given list of sequences, thereby overcoming the
challenge when some genome mining approaches such as RiPPER
[51] might identify large numbers of peptide coding sequences.
NeuRiPP is built from a PP dataset that was used to train a deep
neural network (DNN). The positive dataset was constructed by
collating experimentally validated PPs as well as sequences from
PRISM [63], ThioFinder [60], RODEO [50], RiPPER [51] and anti-
SMASH [49]. The negative dataset was made from peptides shown
not to be genuine RiPP precursors. The neural network was thus
trained on over 9,454 sequences. The DNN was then used to clas-
sify short peptides on their likelihood of being genuine RiPP PPs,
with the best network architecture achieving over 99% accuracy.
NeuRiPP was able to identify the novel thioamidated peptides
identified previously by RiPPER [51] and also complemented pre-
dictions made by RODEO [50]. As well as identifying PPs enriched
with HMMs for known RiPP precursors, NeuRiPP was also able to
successfully identify putative precursors for RiPP classes it was
not trained on. The flexibility of neural networks allows for future
improvements, as more PPs can be added to the training dataset as
they are discovered. NeuRiPP is therefore a promising tool for RiPP
discovery that starts with PPs instead of biosynthetic enzymes for
the identification of BGCs.
3.9. Bespoke approaches

A 2011 review by Velasquez and van der Donk summarises the
foundational approaches used to mine for new RiPP BGCs [70],
such as the identification of the lasso peptide capistruin from
Burkholderia thailandensis E264 [71]. An early systematic approach
at identifying lasso peptide BGCs was reported by Link and col-
leagues in 2012 [72], who developed a pattern matching algorithm
using conserved amino acids in lasso PPs. This was used to direct
the discovery of astexin-1.

Despite the development of the genome mining tools described
in this review, the diversity of RiPP BGCs still necessitates bespoke
approaches for the discovery of novel RiPPs that do not conform to
the bioinformatic rules used by these tools. Haft has used computa-
tional approaches to predict multiple novel RiPP BGC families,
including mycofactocin, a RiPP predicted to be widespread in
mycobacteria [73]. To identify the mycofactocin BGC, partial phylo-
genetic profiling was used to identify conserved genomic loci asso-
ciated with genes encoding a clade of radical SAM proteins. The
BGCs were then reannotated to identify a conserved yet previously
unannotatedmycofactocin PP gene. Subsequent experimental stud-
ies have proven this to be a genuine RiPP pathway [74–75]. Haft and
Mitchell bioinformatically identified Nif11-like and nitrile
hydratase-like leader peptides associated with BGCs that had
homology to linear-azoline containing peptide BGCs [76]. Subse-
quent studies fromthePiel grouphaveexperimentally characterised
new RiPP families that derive from peptides with nitrile hydratase-
like leader peptides, including peptides with extensive D-amino
acids that are introduced by radical SAM epimerases [77]. An alter-
native approach by the Seyedsayamdost group searched for quorum
sensing-regulated, radical SAM enzyme-containing BGCs, leading to
the identification of around 600 novel RiPP BGCs. One subclass of
these RiPPs harboured a unique PTM, in which four unactivated
positions in the side-chains of Trp and Lys are linked by two C–C
bonds to form a substituted tetrahydro [5-6]benzindole moiety, a
reaction carried out by a single radical SAM enzyme [78].
4. Mass spectrometry-guided genome mining

Mass spectrometry (MS) is a powerful technique that is widely
used in NP research [79]. MS approaches have also been integrated
into several genome mining tools. The launch of Global Natural
Products Social (GNPS, https://gnps.ucsd.edu/ProteoSAFe/static/
gnps-splash.jsp) molecular networking has massively benefitted
NP discovery [80]. This uses tandem MS (MS/MS) to identify fam-
ilies of related compounds in spectra the user uploads, and com-
pares this to a large database of MS/MS spectra. This opened up
the potential to utilise a vast amount of publicly available metabo-
lomic datasets for NP discovery. Analysis of metabolomic data can
be useful in the context of peptidic NPs such as RiPPs, as fragmen-
tation patterns can provide key information about the identity and
order of amino acid residues present in molecules, as well as post-
translational modifications that correspond to characteristic mass
losses. However, extensive post-translational modifications also
provide a substantial challenge for automating RiPP identification
using MS-based methods, given that modifications can affect frag-
mentation patterns and MS/MS mass losses. This contrasts with
conventional MS/MS-based proteomics.

One of the first examples of MS-guided genome mining was
demonstrated in 2011 by Kersten et al. with Natural Product Pep-
tidogenomics (NPP) [81]. NPP was developed in order to help con-
nect chemotypes of peptide NPs such as RiPPs to their BGCs. NPP
took advantage of the recent technological advances in MS and
genomics, as well as knowledge of peptide NP biosynthesis. The
NPP workflow starts with MALDI-TOF MS analysis and searches
for masses between 1,500–5,000 Da. Putative peptides are then
identified based on MSn fragmentation patterns, which are used
to generate peptide sequence ‘‘search tags” that are compared to
the six-frame translation of the genome to identify candidate pre-
cursor peptides. Knowledge of RiPP biosynthetic logic is imple-
mented, and the NPP workflow includes several iteration steps
that ensure that a match of peptide MSn data to a genomics-
derived peptide structure makes sense biosynthetically. With this
approach, NPP was able to identify several examples of previously
unidentified RiPPs including lanthipeptides, lasso peptides and
linaridins from a range of Streptomyces strains. Since the develop-
ment of NPP, a number of publicly available tools are now available
that use MS and genomic data to guide RiPP discovery. These are
summarised below and in Table 2.

4.1. RiPPquest and MetaMiner

RiPPquest was developed as a combined metabolomic and
genome-guided mining tool for the identification of microbial
RiPPs [82], specifically lanthipeptides, with the aim of overcoming
limitations of previous MS-based tools. For example, the sequence
tagging method of NPP may lead to macrocyclic RiPPs being
missed, as the long sequence search tags are often not present.
When RiPPquest was released in 2014 it was the first genome min-
ing tool to automate both BGC prediction and connection with MS/
MS data. The RiPPquest workflow starts with the prediction of lan-
thipeptide BGCs and putative PPs from a target microbial genome.
MS/MS spectra of all possible final lanthipeptide structures are
then calculated for each putative core peptide based on all possible
PTMs. Next, the peptide-spectrum matches are scored in order to
identify connections between metabolomic and genomic data.
Finally, a molecular network is generated from the MS/MS data
set, in order to identify homologues of characterised lanthipeptides
and families of related peptides from top-scoring peptide-
spectrummatches. RiPPquest was successfully used to characterise
a new class II lanthipeptide called informatipeptin from Strepto-
myces viridochromogenes.

Despite this success, RiPPquest was limited to the discovery of
lanthipeptides from small datasets and could only search for a pre-
defined set of PTMs. To address these limitations, the same
research teams released MetaMiner as a replacement in 2019
[83], which is designed to search for lanthipeptides, linear
azoline-containing peptides, lasso peptides, linaridins, glycocins,

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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cyanobactins, proteusins, phenol-soluble modulins and auto-
inducing peptides. MetaMiner is integrated into GNPS (http://
gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp) and is also
available as part of the Natural Product Discovery tools package
(https://github.com/ablab/npdtools). MetaMiner works by first
analysing the paired genome/metagenome assemblies and MS/
MS data from a given sample set. From this (meta)genomic data,
MetaMiner identifies putative BGCs and corresponding PPs using
antiSMASH and Bacteriocin Operon and gene block Associator
[84], and then constructs target and decoy putative RiPP structure
databases. Here, it can either function in a fast ‘‘motif-ORF” (RiPP
motif finding) or a slower ‘‘all-ORF” (genome six-frame translation)
to search for putative PPs. Benchmark testing of these modes high-
lighted that each mode has its own advantages in terms of statisti-
cally significant PP detection. Notably, motif-ORF will miss PPs
with novel motifs, but typically provides better statistical signifi-
cance to predictions. Tandem mass spectra are then compared
against these databases, and the set of described RiPPs is expanded
via mass spectral networking. The decoy database is formed from
randomly shuffled ORFs and is used to estimate false discovery rate.

The application of MetaMiner led to the identification of 31
known and seven unknown RiPPs in datasets from multiple bacte-
rial taxa including Actinomyces, Bacillus and Cyanobacteria, as well
as numerous microbial sources, such as a sponge microbiome, the
International Space Station and the human microbiome.

4.2. Pep2Path

At a similar time to the release of RiPPquest, Medema et al
released Pep2Path, a tool for MS-guided genome mining of peptide
NPs [85]. Two algorithms were implemented to achieve this: one
for non-ribosomally synthesised peptides (NRP2Path) and one for
RiPPs (RiPP2Path). To match RiPP molecules to their PPs, RiPP2Path
converts a series of MS/MS mass shifts into possible amino acid
sequences to generate search tags. It then attempts to match these
tags to the six translation frames retrieved from (meta)genomic
sequences. Unlike RiPPquest, RiPP2Path was designed to identify
PPs of any type, although there is limited information on how well
it handles heavily modified RiPPs. RiPP2Path is unlike other MS-
based tools in that the required input comprises mass shift or
amino acid sequences rather than raw MS data.

4.3. Hypothetical Structure Enumeration and Evaluation (HSEE)

Released in 2014, the goal of HSEE was to predict the structure
of an unknown RiPP using a combination of the accurate molecular
weight, tandem MS data and the types of PTMs predicted from the
genetic or biochemical information (R scripts available in supple-
mentary information of the HSEE paper) [86]. HSEE is designed
to aid in the structural elucidation of RiPPs where MS/MS data
and a BGC is available. This does require the user to input possible
mass changes based on prior knowledge of likely post-translational
modifications. Therefore, the tool is not designed to identify new
RiPPs from complex datasets, but does allow the user to analyse
multiple MS/MS spectra with different experimental settings in
parallel, and thereby generate hypothetical structure scores to help
characterise the associated RiPP. HSEE was used to determine the
structure of prochlorosin 1.2, a lanthipeptide whose structure
was not known.

4.4. CycloNovo

CycloNovo, released in 2020, is a tool for the detection of cyclic
peptides including cyclic RiPPs [87]. This is available via Github or
integrated into GNPS. Previous cyclic peptide detection algorithms
have not been optimised for large mass spectral datasets and are
limited to the discovery of known cyclic peptides and related vari-
ants [88–90]. In contrast to linear peptides, cyclic peptides provide
a major challenge for MS/MS prediction, as they can theoretically
fragment at any amide in the cyclic backbone, which provides a
much more complex series of ions than linear peptides, as the
resulting fragment will not necessarily match the primary amino
acid sequence. CycloNovo overcomes this limitation by using de
Bruijn graph representations of spectra. Here, putative k-mers
(strings of k consecutive amino acids) are calculated for putative
cyclopeptides and CycloNovo then scores these against input spec-
tra [87]. de Bruijn graphs are used widely in DNA sequence assem-
blers but had not previously been applied to cyclic peptide
sequencing.

CycloNovo first uses an algorithm to identify putative cyclic pep-
tides in tandemMSdatasets. CycloNovo then generates all combina-
tions of predicted amino acids that have a total mass equal to the
precursor mass and predicts k-mers for each combination (effec-
tively the calculatedMS/MS spectra for each putative peptide string
within the cyclic peptide). These k-mers are defined as high-scoring
if they match the spectrum. A de Bruijn graph is then constructed
using these high-scoring k-mers. All feasible cycles are found in
the de Bruijn graph that correspond to a peptide with the correct
precursor mass and have a length equal to the number of predicted
amino acids. These are then scored against the experimental spec-
trum to provide a p-value associatedwith the prediction. In contrast
to other MS-based mining methodologies, this approach does not
require or use any matching genomic data. Cyclospectra that are
identified by CycloNovo from a given input file can be further anal-
ysed through GNPS to provide annotation using Dereplicator/Var-
quest [91–92], or to identify molecular networks. CycloNovo was
applied to GNPS datasets and found over 400 cyclic peptides that
were previously unreported. In comparison, database search tools
were only able to identify 81 known cyclopeptides. CycloNovo was
also used to analyse a human stool dataset, which found several
bioactive cyclopeptides from consumed food that had remained
stable throughout the gastrointestinal system [87].

4.5. DeepRiPP

Building on the genomic and MS approaches described above,
DeepRiPP (released in 2020) is an example of a tool that combines
both genomic and metabolomic information to automate detection
of RiPPs and their associated BGCs [93]. DeepRiPP is a three-stage
modular platform, where users can either run analyses on individ-
ual steps or utilise the full DeepRiPP workflow. The first step
involves a deep neural network-based tool, NLPPrecursor, which
identifies PPs independent from their genomic context. This pre-
dicts the RiPP class for a given PP sequence and also predicts a
cleavage site for the core peptide. The second step compares
biosynthetic loci to known RiPP pathways using the Basic Align-
ment of Ribosomal Encoded Products Locally (BARLEY) algorithm.
This infers RiPP biosynthetic reactions within the BGC and com-
pares the predicted RiPP product with a database of characterised
RiPPs. This provides a similarity score between the candidate BGC
and known RiPPs, with the aim of prioritising RiPP novelty. The
final step of DeepRiPP, Computational Library for Analysis of Mass
Spectra (CLAMS), employs an algorithm that compares mass spec-
tral data with identified RiPP BGCs. This involves matching the
exact mass of a predicted RiPP and assessing for the presence of
supporting MS/MS fragmentation patterns. DeepRiPP was capable
of discriminating true RiPP precursors from non-RiPP ORFs, with
a positive predictive value of 98% on a training set of RiPPs identi-
fied from RiPP-PRISM [62]. DeepRiPP was used to analyse 65,421
bacterial sequences where it identified 19,498 novel RiPPs. This
analysis guided the identification of novel compounds, including
deepstreptin, a lasso peptide, and two lanthipeptides, deepflavo

http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp
http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp
https://github.com/ablab/npdtools


Fig. 4. Overview of RiPP mining results for Streptomyces scabies 87–22. A. Genetic details of all RiPP BGCs identified by one or more tools. B. Summary of predictions made by
each tool for a given RiPP BGC. Regions highlighted in red relate to predicted core peptides. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Summary of structural predictions provided for lanthipeptide BGCs by antiSMASH, RiPPMiner, PRISM and DeepRiPP. A. Summary of predictions (note: both PRISM and
DeepRiPP predict multiple possible RiPP products and only the first prediction is visualised here). B. Structures of two characterised lanthipeptides whose BGCs have
homology to BGC1 and BGC2.
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(Fig. 3) and deepginsen [93]. Much like BAGEL and antiSMASH,
DeepRiPP is mainly limited to the identification of representatives
of known RiPP families.
5. RiPP databases

Numerous databases for RiPPs have been developed, providing
information about sequences, structures and producers of known
RiPP molecules (Table 3). More generally, databases for NP gene
clusters have also been developed that include RiPP BGCs. anti-
SMASH has its own searchable database of BGCs from over
24,000 genomes [94], and is also associated with a number of other
databases, including MIBiG (Minimum Information about a Biosyn-
thetic Gene Cluster) and IMG-ABC (Integrated Microbial Genomes
Atlas of Biosynthetic gene Clusters) [95]. IMG-ABC is a repository
for known and predicted NP BGCs, containing information on over
400,000 BGCs including those for RiPPs, and also includes various
search and analysis tools for genes and pathways. MIBiG is another
repository of NP BGCs [57] that defines a community-approved set
of information to describe BGCs. MIBiG provides information about
biosynthetic genes, their products, class and producing organisms,
and is used for the KnownClusterBlast feature of antiSMASH. In
terms of RiPP-specific databases, the genome mining tools BAGEL,
ThioFinder and RiPPMiner all feature associated databases, while
BACTIBASE is a searchable database of lanthipeptides and class II/
III bacteriocins.
6. Comparative analysis of genome mining tools

In order to compare the BGC and PP recognition power of differ-
ent RiPP mining tools that analyse a single whole genome as the
input, we used the high-quality genome sequence of Streptomyces
scabies 87.22 (NC_013929.1) as input for antiSMASH 5, BAGEL4,
RiPPMiner, PRISM4 and DeepRiPP, and then carried out a detailed
analysis of the outputs (Figs. 4 and 5). We chose this organism as
it is known to produce the RiPP bottromycin [20] and has multiple
uncharacterised RiPP BGCs. In total, eight distinct RiPP BGCs were
identified by the five tools (Fig. 4A). Surprisingly, only three of the
eight BGCs were identified by all tools: a class III/IV lanthipeptide
(BGC2), a class I lanthipeptide (BGC3) and bottromycin (BGC5).

DeepRiPP was the only tool that did not describe the class of the
bottromycin BGC, whereas PRISM was the only tool that was able
to identify both the correct core peptide and post-translational
modifications for this known RiPP. Similarly, BAGEL did not iden-
tify two likely lanthipeptide BGCs that were identified by all other
tools (Fig. 4B). The diversity of outputs extended to whether a pre-
cursor peptide was identified, where the cleavage site was pre-
dicted to be and what post-translational modifications are made
to the core peptide (Fig. 4B and Fig. 5A). In the case of lanthipep-
tides, most tools predict a cleavage site, dehydrated residues and
some predict final cyclised structures. For example, antiSMASH
predicts cleavage sites, dehydrations for all Ser and Thr residues
in a predicted core peptide, and states a predicted number of
cross-links (Fig. 5A). It also provides a list of alternative masses
based on fewer dehydrations. In contrast, RiPPMiner, PRISM and
DeepRiPP provide full structural predictions (Fig. 5A). Despite sim-
ilarity to characterised lanthipeptide BGCs, there was no consensus
for predicted cleavage sites for any lanthipeptide, and the pre-
dicted sites and types of post-translational modifications also dif-
fered between tools.

The currently uncharacterised BGC1 provides a significant exam-
ple of the challenges associated with RiPP predictions. RiPPMiner
predicts its product will feature two lanthionine (Lan) residues
[96], whereas both PRISM and DeepRiPP predict two labionin (Lab)
residues, which feature a lanthionine thioether linkage and a carba-
cycle formed with an additional didehydroalanine or didehydrobu-
tyrine [97]. PRISM and DeepRiPP themselves differ in the residues
involved in these cyclisation reactions (Fig. 5A). Each of the seven
structures proposed byDeepRiPP features the same cyclisation sites,
whereas the top ten structures proposedbyPRISMprovideanumber
of alternative cyclisation sites, although all feature labionins.

Despite these differences, comparisons to known RiPPs high-
lights the difficulties in making robust RiPP predictions. This BGC
is highly similar to a series of characterised lanthipeptide BGCs,
including SapB [98] (S. coelicolor), avermipeptin [99] (Streptomyces
avermitilis) and the labyrinthopeptins [97] (Actinomadura namibien-
sis) (Fig. 5B). However, despite similarities on a sequence level, SapB
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contains two Lan residues, avermipeptin contains 1 Lab and 1 Lan,
and the labyrinthopeptins contain two Lab residues. Furthermore,
RiPPquest-guided discovery of further members of this family, the
informatipeptins [82], revealed that numerous derivatives were
produced that differed at the N-terminus of the core peptide, high-
lighting the challenge of even identifying a true cleavage site. There-
fore, RiPPMiner, PRISM and DeepRiPP all provide valid predictions
for this BGC, especially as the Lan and Lab modifications cannot be
distinguished by mass if a Lan modification is accompanied by an
additional dehydration (as seen in SapB and the RiPPMiner BGC1
prediction). It is worth noting that BGC2 also has homology to these
characterised BGCs (Fig. 5A). This highlights why predictive soft-
ware should highlight these ambiguities when possible, and ideally
provide users with a series of alternative predictions. This is carried
out by DeepRiPP and PRISM (and partially by antiSMASH), although
this could extend to proposing a small number of different cleavage
sites, depending on the BGC. If this is not technically possible, gen-
ome mining tools should clearly highlight the limitations of their
predictive powers when the user receives results.

The varied BGC and PP predictions provided by different RiPP
mining tools highlights why it can be beneficial to use a variety
of tools when analysing a genome, especially when some tools
are better suited to certain RiPP subclasses. For example, the S. sca-
bies ‘‘linaridin” BGC is identified by all tools apart from RiPPMiner,
whereas RiPPMiner is the only tool to identify a ‘‘cyanobactin”-like
BGC. The linaridin BGC is likely a genuine RiPP BGC, and was first
bioinformatically identified along with the report of the first linar-
idin, cypemycin [100]. The cyanobactin-like BGC encodes a protein
(SCAB_66631) with homology to PatG, which functions as an oxi-
dase and macrocyclase in patellamide biosynthesis [101–102].
However, further analysis shows that this homology is only to a
domain of unknown function at the C-terminus of PatG [103]. Nev-
ertheless, it is perhaps notable that SCAB_66631 is encoded along-
side four short peptides as well as other putative biosynthetic
proteins (Fig. 4A). This highlights the challenge of accurately inter-
preting some genome mining outputs.

The application of different tools can also be a useful way to
provide confidence in a BGC prediction. PP sequences are not
always predicted for identified BGCs, which highlights the impor-
tance of tools such as RiPPER and RODEO that can help identify
PPs near a given RTE. On the other hand, more than one putative
PP sequence was identified for some BGCs, and tools such as BAGEL
and RiPPMiner also provide a list of other small ORFs nearby. In
these cases, tools such as NeuRiPP may be useful to distinguish
genuine RiPP PPs from other small peptides. Tools that integrate
genomics and mass spectrometry, such as MetaMiner and Dee-
pRiPP, are likely to prove increasingly useful in connecting
sequence data to experimental data, although challenges remain
in accurately predicting post-translational modifications, as well
as the resulting masses and MS/MS fragmentation patterns.
7. Summary and outlook

The recent development and application of specialised RiPP
genome mining tools has helped to uncover a vast landscape of
RiPPs present in nature that were previously overlooked. This
growing RiPP knowledgebase has led to advances in the algorithms
used by these tools, which in turn is improving the systematic
identification and annotation of RiPP BGCs in genomic data. This
is also reflected by the development of multiple RiPP databases.
As well as improved genomic analyses, several tools have also inte-
grated the analysis of metabolomic data, searching for characteris-
tic peptide residues and fragmentation patterns indicative of RiPP
molecules. This has also allowed the exploration of large MS data-
sets that are now publicly available via resources such as GNPS.
Despite developments in genome mining, several challenges
still remain in the field of RiPP discovery. Firstly, the identification
of truly novel RiPP classes is a limitation of many current genome
mining tools. This is partly due to the inherent nature of algorithms
that rely on already known compounds. Furthermore, although
genome mining facilitates the rapid identification of BGCs from
genomic data, a bottleneck still remains with expressing and
manipulating pathways in order to identify target molecules.
Another drawback of genome mining is that, unlike activity-
guided discovery, there is no guarantee that identified BGCs will
produce a compound with clear biological activity. It is difficult
to predict or prioritise BGCs that might encode NPs with a partic-
ular bioactivity of interest, given that self-resistance genes can be
difficult to identify, if they are required at all. Therefore, extensive
activity assays might be needed to determine the biological func-
tion of newly identified RiPPs. This is a challenge that is relevant
across NPs.

However, the future of RiPP discovery holds a lot of exciting
promise. The tools described in this review have been used to iden-
tify thousands of previously uncharacterised RiPP BGCs from a
range of environments, and have also led to the isolation of struc-
turally novel RiPPs with important antimicrobial bioactivity
[36,66]. Furthermore, an increased understanding of RiPP biosyn-
thesis can enable the engineered production of unnatural peptides.
For example, the characterisation of the highly promiscuous
cyanobacterial lanthipeptide synthetase ProcM [104] led to the
engineered production of a library of over 1 million cyclic peptides,
including a potent inhibit of a protein–protein interaction critical
for HIV infection [105]. Looking forward, we envisage that the
use of exploratory tools, such as NeuRiPP and RiPPER (along with
fully bespoke methods), will guide the discovery new RiPP families.
The RODEO and RIPPER approach of using a user-defined protein of
interest as ‘‘bait” differs from many other tools and provides
greater flexibility due to the lack of strict rules for BGC detection.
This is also better suited to the pan-genome analysis of related
BGCs. Newly discovered BGC families can then be used to define
conserved domains that, once incorporated into tools such as anti-
SMASH, DeepRiPP and BAGEL, will enable widespread discovery
and understanding of related pathways. It is also clear that tradi-
tional activity-led screens can also be important for the discovery
of new RiPP families, such as the recent discovery of darobactin
(Fig. 2B), the founding member of a new RiPP class that selectively
kills Gram-negative pathogens [106]. Discoveries such as this will
also improve the bioinformatic rules used to identify RiPP BGCs.
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