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Background We have demonstrated that a neural network is able to predict a person’s age from the electrocardiogram (ECG)
[artificial intelligence (AI) ECG age]. However, some discrepancies were observed between ECG-derived and
chronological ages. We assessed whether the difference between AI ECG and chronological age (Age-Gap) repre-
sents biological ageing and predicts long-term outcomes.

...................................................................................................................................................................................................
Methods
and results

We previously developed a convolutional neural network to predict chronological age from ECGs. In this study,
we used the network to analyse standard digital 12-lead ECGs in a cohort of 25 144 subjects >_30 years who had
primary care outpatient visits from 1997 to 2003. Subjects with coronary artery disease, stroke, and atrial fibrilla-
tion were excluded. We tested whether Age-Gap was correlated with total and cardiovascular mortality. Of
25 144 subjects tested (54% females, 95% Caucasian) followed for 12.4 ± 5.3 years, the mean chronological age
was 53.7 ± 11.6 years and ECG-derived age was 54.6 ± 11 years (R2 = 0.79, P < 0.0001). The mean Age-Gap was
small at 0.88 ± 7.4 years. Compared to those whose ECG-derived age was within 1 standard deviation (SD) of
their chronological age, patients with Age-Gap >_1 SD had higher all-cause and cardiovascular disease (CVD) mor-
tality. Conversely, subjects whose Age-Gap was <_1 SD had lower all-cause and CVD mortality. Results were un-
changed after adjusting for CVD risk factors and other survival influencing factors.

...................................................................................................................................................................................................
Conclusion The difference between AI ECG and chronological age is an independent predictor of all-cause and cardiovascular

mortality. Discrepancies between these possibly reflect disease independent biological ageing.
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Graphical Abstract

In subjects without baseline cardiovascular disease, an older artificial intelligence (AI)-derived electrocardiogram (ECG) Age (AI-ECG age) compared to
chronological age was associated with increased all-cause and cardiovascular mortality. Subjects, where the reverse was true, had lower mortality.
Discrepancies between chronological age and ECG-derived age possibly reflect disease independent biological ageing.

Lay Summary

Biologic ageing is the main risk factor for many cardiovascular conditions and a determinant of long-term outcomes. We have shown that a per-
son’s age can be predicted with an electrocardiogram (ECG) (a medical test that records the electrical activity of the heart) using an artificial in-
telligence (AI). However, in some subjects, differences were observed between the ages derived from the ECG and the chronological age.
Our objective was to evaluate whether these differences represent biological ageing and if they would predict long-term death.
Our hypothesis was that those deemed older by the ECG (positive difference between ECG and chronological age) would be associated with
higher mortality, and that people deemed younger (negative difference) would live longer, regardless of other cardiovascular risk factors.
From the results, we obtained, we can interpret that the differences between chronological age and that of the ECG obtained with AI possibly
reflect biological ageing and predicts cardiovascular mortality regardless of the person’s disease and other causes.
The ECG contains a wealth of valuable information and has been used to diagnose a variety of heart diseases. ECG AI analysis can provide in-
formation beyond the state of a specific disease and can be used to identify biological ageing.

380 A.O. Ladejobi et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
Introduction

Ageing has been defined as a persistent decline in an organism’s age-s-
pecific fitness components due to internal physiologic deterioration.1

It is characterized by the accumulation of molecular and cellular dam-
age, which drive progressive functional decline and increases vulner-
ability for disease and mortality. Considering chronological age as an
exposure domain in ageing, several factors including genetics, diet, en-
vironmental interactions, mental health, and a host of other known
and unknown variables affect ageing providing a cumulative effect
measured by time. As such, persons of the same chronological age
will not necessarily experience ageing to the same extent.
Chronological age simply represents how long an organism has been
alive. Biological age, also referred to as physiologic age, on the other
hand, refers to the gradual decline in an organism’s functional sta-
tus—the clearest measure of which is mortality. The concept of bio-
logical age has therefore been used as a more holistic description of
ageing to factor in the aforementioned ageing contributors.
However, we typically want to measure ageing before its irreversible
endpoint. Several ageing biomarkers have been put forward, but
there remains no consensus as to which one most accurately meas-
ures ageing. Indeed, there is a push to measure ageing based on mul-
tiple biochemical, molecular, and genetic biomarkers.2

The heart age has been used as a means of assessing the biological
age of the cardiovascular system.3 It represents the age implied by a
person’s calculated cardiovascular risk assuming all other modifiable
risk factors are within ideal ranges.4 For example, a 50-year-old per-
son who smokes, has dyslipidaemia and uncontrolled hypertension
could have the same cardiovascular risk profile as a 69-year-old that
has none of these conditions. His heart age would therefore be 19
years older than his chronological age. Several heart age prediction
tools exist and typically require a mix of physical [e.g. chronological
age, body mass index (BMI), blood pressure, etc.] and biochemical
(e.g. serum cholesterol levels, diabetes diagnosis, etc.) inputs in order
to estimate the heart age. Others have incorporated non-invasive
parameters such as coronary artery calcification, and carotid intima-
media thickness into their cardiovascular risk assessments.3,5,6 A
major shortcoming of all these tools is their inability to account for
ageing independent of known cardiovascular factors which are
assumed to be reliable proxies for heart age. Ageing however
remains the more compelling predictor of both heart age and cardio-
vascular events. As such, a better estimate of heart age would place
more emphasis on capturing ageing.

The electrocardiogram (ECG) is a graphic representation of
cardiac functioning that is known to reflect several features includ-
ing normal ageing, disease states, and subject-specific characteris-
tics. For example, age-related ECG changes, independent of
cardiovascular disease (CVD), such as changes in QRS and T-
wave amplitudes, cardiac activation patterns, and leftward axis
shifts have been described.7 Similarly, specific ECG patterns in
congenital and acquired CVDs (e.g. myocardial infarction, hyper-
tension, etc.) have also been described.8–10 Finally, utilization of
the ECG has been proposed as a biometric sensor similar to a
retinal scan or a fingerprint, given the subject-specific features it
contains.11,12 Given these factors, several non-artificial intelligence
(AI) methods have been described to estimate the ‘heart age’ (in
years) using the ECG as an input. These have typically relied on

specific ECG features and statistical models alone or in conjunc-
tion with other physical characteristics e.g. BMI.13,14 A higher pre-
dicted ECG age compared to chronological age was noted in
subjects with CVD and risk factors. However, the correlation be-
tween this ECG-chronological age discrepancy to all-cause or car-
diovascular mortality has not been previously reported. It is also
unknown whether the discrepancy reflects biological ageing, could
be explained by the presence of cardiovascular risk factors alone
or if it extends beyond the presence of traditional cardiovascular
risk factors.

AI using machine learning has been shown to outperform traditional
cardiovascular risk estimation models when provided with similar
inputs.15,16 Reasons for this improved performance include machine
learning’s non-confinement to linearity assumptions and its ability to
utilize a larger range of continuous variables without the need to di-
chotomize them. Our previous work demonstrated that AI could use
standard 12-lead ECGs to predict chronological age and sex, left ven-
tricular dysfunction, and atrial fibrillation.17–19 Discrepancies between
AI-enabled ECG predicted and actual chronological age were associ-
ated with individual health status.17 Whether AI analysis of standard
12-lead digital ECGs is associated with future long-term events and
reflects biological ageing is currently unknown. In this work, we also
explore whether AI analysis of ECGs can provide information beyond
specific disease states to identify biological ageing.

Methods

Study population
Subjects were selected from a population-based, historical cohort, in
Olmsted County, Minnesota which was developed using resources from
the Rochester Epidemiology Project (REP).20,21 The REP is a federally
funded linkage system that indexes medical records, medications, proce-
dures, and other health-related information from the primary providers
of medical care in Olmsted County: Olmsted Medical Center, the Mayo
Clinic, and a few other individual private providers.20,21

Using the population census and the REP database, all county residents
aged >_30 years with primary care outpatient clinic visits between 1997
and 2003 and standard, digital, resting 10-s, 12-lead supine ECGs were
identified. Subjects were restricted to >_30 years as individuals younger
than this are expected to have less mortality and CVD. We excluded sub-
jects with a baseline history of atherosclerotic CVD (defined as coronary
artery disease, angina, myocardial infarction, and stroke at the time of or
within 30 days of the ECG), atrial fibrillation, those who did not provide
research authorization and those whose ECGs were used to develop the
AI age estimation model (Figure 1). Subjects with a history of heart failure
were not excluded. This approach was adopted in order to have our
population approximate a primary prevention cohort and to better
understand how comorbid conditions might influence the association be-
tween Age-Gap and mortality. We did however also perform a subgroup
analyses excluding all subjects with heart failure diagnoses. When subjects
had multiple ECGs, only the earliest ECG was selected.

Baseline data and outcomes
Baseline data including subject demographics, comorbidities, clinical diag-
noses (using the International Classification of Diseases-9th), laboratory
values, and vital signs at the time of the index primary care outpatient
clinic visit were abstracted from the REP database using previously vali-
dated methodology.22 Primary outcomes were all-cause and
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.cardiovascular mortality. These were obtained through 31 December
2016 directly from the REP, which records vital status from federal and
state vital statistics offices as well as the National Death Index.23,24

Cause of death was defined using International Classification of Diseases,
Ninth Revision (ICD-9), codes from 1997 to 1998 and International
Classification of Diseases, 10th Revision (ICD-10), codes from 1999 to
2016. All-cause mortality was defined as any death. Cardiovascular mor-
tality was defined as ICD-9 codes 390 to 398, 402, and 404 to 429 and
ICD-10 codes I00 to I09, I11, I13, and I20 to I51. These represent diag-
noses covering chronic rheumatic heart disease, hypertensive disease, is-
chaemic heart disease, pulmonary circulation diseases, and other forms
of heart disease. Follow-up was considered to be complete. The study
protocol was approved by the institutional review boards of both the
Mayo Clinic and Olmsted Medical Center.

Overview of artificial intelligence model
A convolutional neural network (CNN) model using Keras with a
Tensorflow (Google, Mountain View, CA, USA) backend was previously
developed and validated. A total of 774 783 unique subjects with ECGs
were used to develop the neural network: 399 750 in the training, 99 977
in the internal validation, and 275 056 in the holdout testing sets. The net-
work contained stacked blocks of convolutional, max pooling, and batch
normalization.25 Each block was followed by a non-linear activation func-
tion. After the first group of blocks extracted temporal features, another

spatial block was used to fuse data from all leads, and then the extracted
features were used in a fully connected network. A detailed description
of the network has previously been published.17 The network utilized 10
s samples of resting, digital, standard 12-lead ECGs of patients with data
in the Mayo Clinic digital vault. Its output was the AI-enabled ECG pre-
dicted age as continuous number. Our current study used the previous
network with no additional retraining using ECGs from the current study
population.

Statistical analysis
We summarized subject characteristics with frequencies and percentages
or means ± standard deviations (SDs) as appropriate. Age-Gap was
defined as the algebraic difference between AI-enabled ECG predicted
age and chronological age and was calculated by subtracting the chrono-
logical age from the AI ECG age. Therefore, a positive Age-Gap would re-
flect a person identified as being older by AI compared to his/her actual
chronological age, and a negative Age-Gap will reflect a person that is rec-
ognized as younger by the computer compared to his/her chronological
age. Chronological age and the AI-enabled ECG predicted age (in years)
were assessed and correlated with the Pearson correlation coefficient
(R2). The functional form Age-Gap was operationalized as both a continu-
ous and categorical (>_2 SD below, 1–2 SD below, within 1 SD, 1–2 SD
above, >_2 SD above) variable as appropriate for different analyses. The
continuous form was used to evaluate its relationship to all-cause and

Inclusion and Exclusion Criteria

Olmsted County residents
≥ 30 years (n = 65,988)

Provided research authorization
(n = 64,679)

ASCVD-free patients
(n = 55,090)

Patients with primary care visits
(n = 38,832)

Patients with complete clinical
information (n = 33,229)

Patients included in this analysis
(n = 25,144)

Patients without research authorization
(n = 1,309)

Patients excluded

Patients with previous ASCVD event (n = 9,589)

• PCI (n = 2,716)
• MI (n = 2,091)
• Stroke (n = 3,434)
• Atrial fibrillation (n = 1,348)

Patients without primary care visits
(n = 16,258)

Patients with missing clinical information e.g. 
ECGs, co-morbidities, etc. (n = 5,603)

Patients used in development of Artificial
Intelligence Algorithm (n = 8,085)

Figure 1 Inclusion and exclusion criteria.
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..cardiovascular mortality. To graphically illustrate the association between
Age-Gap and mortality, polynomial smoothing splines were utilized.
Kaplan–Meier curves with the log-rank test and Cox proportional haz-
ards models, were adjusted for factors associated with Age-Gap (e.g.

chronological age, sex, BMI, ongoing smoking, heart failure history and
dyslipidaemia history) and additional factors know to be associated with
mortality (e.g. diabetes history, hypertension history, systolic blood pres-
sure, and total cholesterol). Findings were summarized using hazard
ratios (HRs) and 95% confidence intervals (CIs). Multiplicative interac-
tions between Age-Gap and select subject characteristics were calcu-
lated. The assumption of proportionality for the Cox proportional
hazards models was assessed graphically (and fulfilled).

Logistic regression analyses were used to investigate the effects of
covariates on Age-Gap. The primary analysis compared those with an
Age-Gap >_1 SD to those within 1 SD. Each sociodemographic and clinical
characteristic was examined for association with and without chrono-
logical age adjustment. Findings were summarized using odds ratios
(ORs) and 95% CIs. A multinomial logistic regression analysis was also
applied where the >_1 SD group was broken into 1–2 SD and 2þ SD. A
contrast was constructed within the multinomial regression framework
to test for heterogeneity of association across SD groups and this test is
reported as Phet. Two-sided P-values <0.05 were considered statistically
significant. All analyses were completed using SAS version 9.4 (SAS
Institute Inc., Cary, NC, USA) and R (www.r-porject.org).

Results

Of 25 144 subjects tested (54% females, 95% Caucasian) and fol-
lowed for 12.5± 5.3 years, the mean chronological and AI ECG ages
were 53.7± 11.6 years and 54.6 ± 11 years, respectively (R2 = 0.79,
P < 0.0001). The neural network performed well in predicting the age
of most subjects in this cohort with a mean Age-Gap of 0.88± 7.4
years. Other baseline characteristics of our study population are
shown in Table 1.

Subjects with positive Age-Gap had ECG-derived age older than
their chronological age while those with negative Age-Gap had ECG-
derived age younger than their chronological age. Primary outcomes
were all-cause and cardiovascular mortality. There was a clear rela-
tionship between Age-Gap and both primary outcomes as shown in

.................................................................................................

Table 1 Baseline characteristics of the study
population

Variable Study population

(N 5 25 144)

Demographics

Race/ethnicity, n (%)

White non-Hispanic 22 983 (91.4%)

White Hispanic 805 (3.2%)

Black or African American 699 (2.8%)

Other 657 (2.6%)

Female sex, n (%) 13 548 (54%)

Chronological age, years 53.71 ± 11.59

AI ECG age, years 54.59 ± 10.99

Age-Gap, years 0.88 ± 7.41

Clinical history

Body mass index 28.71 ± 6.30

Heart failure history, n (%) 2371 (9%)

COPD history, n (%) 1334 (5%)

Chronic kidney disease history, n (%) 1209 (5%)

Current smoker, n (%) 3969 (16%)

Diabetes history n (%) 2551 (10%)

Hypertension history, n (%) 4215 (17%)

Dyslipidaemia history, n (%) 5438 (22%)

Alcoholism history, n (%) 1267 (5%)

Data are n (%) or mean (SD).
AI ECG Age, artificial intelligence enabled ECG age; Age-Gap, AI ECG age minus
chronological age.
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Figure 2 (A and B) Spline curves showing the relationship between Age-Gap and mortality [all-cause (A) and cardiovascular (B)].
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Figure 3 (A) All-cause mortality across different Age-Gap categories. Curves adjusted for chronological age, sex, current smoking, diabetes history,
hypertension history, systolic blood pressure, dyslipidaemia history, total cholesterol, heart failure history, and body mass index. A positive Age-Gap
means subjects’ electrocardiogram-derived ages were older than their chronological ages. In this figure, this includes 2þ SD above and 1–2 SD above.
A negative Age-Gap means subjects’ electrocardiogram-derived ages were younger than their chronological ages. In this figure, this includes 2þ SD
below and 1–2 SD below. (B) Cardiovascular mortality across different Age-Gap categories. Curves adjusted for chronological age, sex, current
smoking, diabetes history, hypertension history, systolic blood pressure, dyslipidaemia history, total cholesterol, heart failure history, and body mass
index. A positive Age-Gap means subjects’ electrocardiogram-derived ages were older than their chronological ages. In this figure, this includes 2þ
SD above and 1–2 SD above. A negative Age-Gap means subjects’ electrocardiogram-derived ages were younger than their chronological ages. In
this figure, this includes 2þ SD below and 1–2 SD below.
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..Figures 2A and B (as well as in Supplementary material online, Table S1
and Figures S1a–c and S2a–c). Compared to those whose AI-enabled
ECG-derived age was within 1 SD (±7.4 years) of their chronological
age, subjects with Age-Gap greater than þ1 SD (considered older)
had increased risk for all-cause mortality, while those with Age-Gap
less than -1 SD (considered younger) had decreased risk (Figure 3A).
After multivariate adjustment, those with Age-Gap between þ1 and
þ2 SD and those with Age-Gap >þ2 SD had increased risk of all-
cause mortality (HR 1.61, 95% CI 1.40–1.86; HR 2.33, 95% CI 1.74–
3.13, respectively). Those with Age-Gap between -1 and -2 SD and
Age-Gap <-2 SD had trends towards decreased risk for all-cause
mortality, P-value for trend <0.0001 (Figure 3A, Supplementary ma-
terial online, Table S1).

There was a more robust association between Age-Gap and car-
diovascular mortality across both sides of the SD spectrum (Figure 3B
and Table 2). After multivariate adjustment, those with Age-Gap >
þ2 SD had the highest risk (HR 2.92, 95% CI 1.67–5.10) followed by
those with Age-Gap betweenþ1 andþ2 SD (HR 1.94, 95% CI 1.48–
2.54). Those with Age-Gap <-2 SD had the lowest risk for cardiovas-
cular mortality (HR 0.79, 95% CI 0.53–1.18) followed by those with
Age-Gap between -1 and -2 SD (HR 0.78, 95% CI 0.64–0.95), P-value
for trend <0.0001 (Figure 3B). The absolute risk difference between
these last two groups was small at�1%. The decreased cardiovascu-
lar mortality for those with Age-Gap <-2 SD was not statistically sig-
nificant likely due to insufficient sample size.

There was an increased prevalence of some comorbidities
with increasing Age-Gap. After adjusting for chronological age,

several comorbidities were associated with Age-Gap >_1 SD
(Table 3): current smoking (OR 1.19, 1.09–1.29), BMI per 5 kg/
m2 increase (OR 1.03, 1.02–1.03), dyslipidaemia history (OR 1.27,
1.17–1.37), and heart failure history (OR 1.70, 1.49–1.94).
Multivariable analysis showed that chronological age, sex, BMI,
heart failure history, current smoking, and dyslipidaemia history
were independently associated with Age-Gap >_1 SD. When ana-
lysed between SD subgroups (1–2 and 2þ SD), there were
increased odds of having heart failure with increasing Age-Gap:
Age-Gap between þ1 and þ2 SD (OR 1.52, 1.33–1.75) and
Age-Gap> þ2 SD (OR 3.05, 2.33–3.99), Phet < 0.001. While not
statistically significant, other comorbidities demonstrated a trend
to increased odds of being present across increasing Age-Gap
subgroups (Table 4).

Subgroup analysis showed that our results did not significantly
change when we excluded subjects with a history of heart fail-
ure (Supplementary material online, Tables S2 and S3). It also
showed that the algorithm performed well across self-identified
racial/ethnic groups with similar HRs for each racial/ethnic group
when assessing Age-Gap and all-cause mortality (Supplementary
material online, Table S4). A test for the interaction between ra-
cial/ethnic subgroups and Age-Gap was non-significant (P Wald
= 0.47). A similar situation was seen when exploring potential
gender bias (Supplementary material online, Table S5). HRs for
all-cause mortality were not significantly different by sex and the
interaction between sex and Age-Gap was also not significant (P
Wald = 0.60).

....................................................................... ................................................

....................................................................................................................................................................................................................

Table 2 Hazard ratios for cardiovascular mortality

Chronological age and sex adjusted Multivariate model

HR P-value HR P-value

Chronological age, per 1 year increase 1.13 (1.12–1.14) <0.0001 1.11 (1.10–1.11) <0.0001

Female sex 0.56 (0.49–0.64) <0.0001 0.57 (0.48–0.70) <0.0001

Current smoker 1.88 (1.55–2.28) <0.0001 1.73 (1.43–2.09) <0.0001

Diabetes history 3.03 (2.60–3.54) <0.0001 1.97 (1.69–2.32) <0.0001

Hypertension history 5.18 (4.50–5.98) <0.0001 4.83 (4.16–5.60) <0.0001

Systolic blood pressure, per mmHg increase 1.05 (1.03–1.07) <0.0001 1.04 (1.02–1.06) <0.0001

Dyslipidaemia history 1.60 (1.38–1.85) <0.0001 1.37 (1.16–1.62) 0.0002

Total cholesterol, per 1 mg/dL increase 0.99 (0.98–1.00) 0.5192 1.00 (0.99–1.01) 0.7210

Heart failure history 3.32 (2.86–3.85) <0.0001 3.02 (2.59–3.53) <0.0001

BMI, per 5 kg/m2 increase 1.13 (1.07–1.20) <0.0001 1.00 (0.99–1.07) 0.7957

ECG age, per 1 year increase 1.05 (1.04–1.07) <0.0001 1.04 (1.03–1.06) <0.0001

D ECG-chronological age, years 1.05 (1.04–1.06) <0.0001 1.04 (1.03–1.06) <0.0001

Grouped D ECG-chronological age

2þ SD below 0.61 (0.41–0.92) 0.0188 0.79 (0.53–1.18) 0.2462

1–2 SD below 0.66 (0.54–0.80) <0.0001 0.78 (0.64–0.95) 0.0119

Within 1 SD (Reference group)

1–2 SD above 2.23 (1.71–2.90) <0.0001 1.94 (1.48–2.54) <0.0001

2þ SD above 4.84 (2.78–8.43) <0.0001 2.92 (1.67–5.10) 0.0002

Data are hazard ratios (95% CI).
Multivariate model adjusts for chronological age, sex, current smoking, diabetes history, hypertension history, systolic blood pressure, dyslipidaemia history, total cholesterol,
heart failure history, and body mass index.
BMI, body mass index; COPD, chronic obstructive pulmonary disease.
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Discussion

In this study, we provide a proof of concept that AI ECG age obtained
using a standard 12-lead ECG is associated with all-cause and

cardiovascular mortality, beyond what would be expected from
chronological age alone. This association persists even after adjusting
for comorbidities known to predict survival, indicating that AI analysis
of standard 12-lead ECGs could be employed as a marker of either
advanced or slower biological ageing. The purpose of our work is not
to predict chronological age from the 12-lead ECG but to demon-
strate that AI-enabled ECG predicted age identifies signals related to
the biological ageing of the cardiovascular system by demonstrating
that the gap between chronological age and what the ECG predicts
reflects different ageing rates. To the best of our knowledge, no other
studies have assessed the correlation between Age-Gap and long-
term outcomes or proposed Age-Gap as a biomarker of the ageing
process

Our AI model to predict chronological age performed well
(r = 0.837) for most subjects as previously described.17 However, age
prediction was imperfect, as several subjects had discrepancies be-
tween their chronological and ECG-derived ages. We refer to this
discrepancy as Age-Gap and it is conceptually similar to excess heart
age (EHA).26,27 In this study, we show that rather than representing
random error, Age-Gap derived from the ECG is correlated with
both all-cause and cardiovascular mortality in a population-based his-
torical cohort of subjects with no known baseline cardiovascular
comorbidities. All-cause and cardiovascular mortality risks are dem-
onstrated to increase in a step-wise manner with Age-Gap. We also
show a correlation between Age-Gap and known comorbidities.

Ball et al.13 and Starc et al.14 used Bayesian and linear regression
models to determine heart age using a several predefined variables
based on P-wave, QRS complex, and T-wave characteristics
extracted from standard and signal averaged ECGs in small cohorts.
We have employed AI interpretation of standard 12-lead ECGs to

.................................................................................................

Table 3 Chronological age-adjusted logistic regression
analysis evaluating the odds for having comorbidities
and Age-Gap �1 SD compared to Age-Gap within 1 SD

Variable OR P-value

Chronological age adjusted

Female sex 0.86 (0.81–0.92) <0.0001

Current smoker 1.19 (1.09–1.29) <0.0001

Diabetes history 1.03 (0.92–1.16) 0.58

Hypertension history 1.12 (1.02–1.22) 0.02

Dyslipidaemia history 1.27 (1.17–1.37) <0.0001

BMI, per 5 kg/m2 increase 1.03 (1.02–1.03) <0.0001

COPD history 1.02 (0.88–1.18) 0.78

Chronic kidney disease history 1.06 (0.91–1.23) 0.48

Heart failure history 1.70 (1.49–1.94) <0.0001

Multivariate adjusted

Chronological age, per 5 year increase 0.71 (0.70–0.73) <0.0001

Female sex 0.94 (0.87–1.00) 0.06

BMI, per 5 kg/m2 increase 1.13 (1.10–1.16) <0.0001

Heart failure history 1.55 (1.36–1.77) <0.0001

Current smoker 1.17 (1.07–1.28) 0.0003

Dyslipidaemia history 1.12 (1.03–1.22) 0.007

Data are odds ratios (95% CI).
BMI, body mass index; COPD, chronic obstructive pulmonary disease.

....................................................................................................................................................................................................................

Table 4 Multinomial logistic regression (within 1 SD, 1–2 SD above, 21 SD above); chronological age adjusted

Age-Gap Variable OR P-value Phet

1–2 SD

2þ SD

Female sex 0.86 (0.80–0.93)

0.86 (0.74–0.99)

<0.0001

0.04

0.90

1–2 SD

2þ SD

Current smoker 1.16 (1.05–1.27)

1.35 (1.13–1.62)

0.002

0.0008

0.10

1–2 SD

2þ SD

Diabetes history 1.00 (0.88–1.13)

1.20 (0.94–1.52)

0.99

0.15

0.18

1–2 SD

2þ SD

Hypertension history 1.09 (0.99–1.20)

1.23 (1.02–1.50)

0.07

0.03

0.25

1–2 SD

2þ SD

Dyslipidaemia history 1.24 (1.14–1.35)

1.44 (1.22–1.69)

<0.0001

<0.0001

0.09

1–2 SD

2þ SD

BMI, per 5 kg/m2 increase 1.03 (1.02–1.03)

1.03 (1.02–1.04)

<0.0001

<0.0001

0.81

1–2 SD

2þ SD

COPD history 1.02 (0.87–1.19)

1.04 (0.77–1.42)

0.84

0.78

0.87

1–2 SD

2þ SD

Chronic kidney disease history 1.01 (0.85–1.19)

1.32 (0.97–1.80)

0.92

0.07

0.10

1–2 SD

2þ SD

Heart failure history 1.52 (1.33–1.75)

3.05 (2.33–3.99)

<0.0001

<0.0001

<0.0001

Data are odds ratios (95% CI).
BMI, body mass index; COPD, chronic obstructive pulmonary disease.
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.
predict heart age in a much larger subject cohort. The nature of our
AI analysis allows a wider range of ECG variables to be used in heart
age estimation. Hirsch et al.27 showed that mean EHA was associated
with cardiovascular mortality and race. The heart age they used in cal-
culating EHA was based on seven sex-specific, non-laboratory based
Framingham risk prediction inputs. The correlation between EHA
and cardiovascular mortality was not surprising as cardiovascular risk
factors were used to derive the heart age estimates. A major limita-
tion of this study was that they did not explore the correlation be-
tween EHA and total mortality. Our study estimated heart age using
a standard 12-lead ECG as the singular input. We showed a correl-
ation not only with cardiovascular mortality but also with all-cause
mortality indicating that Age-Gap captures facets beyond traditional
cardiovascular risk factors. Finally, Raghunath et al.28 used the ECG to
predict short term (1 year) mortality, but without any attempt to use
the ECG as a measure of biological age or to predict long-term
outcomes.

It is important to note that while several methods (e.g. multiple lin-
ear regression, principal component analysis, the Hochschild’s
method, and the Klemera and Doubal’s method) for assessing bio-
logical age exist, they require categorical, binary, or continuous varia-
bles as inputs.29–32 Our approach represents a paradigm shift in two
ways. First, the raw ECG signals, which we utilize as our sole input,
do not fit into any of these input categories. Second, our analysis of
this non-traditional input is done using deep neural networks that can
consider linear and non-linear dynamics that other methods typically
haven’t been able to fully account for. Allowing AI to explore the
ECG on its own potentially allows it to sidestep investigator biases
and to identify and use ECG features which may not be readily identi-
fied by cardiologists. While this approach provides an optimal repre-
sentation of the data, it is not readily explainable using tools available
today.

Exploring potential bias
A recurring concern about deployment of AI in healthcare is about
potential racial and sex bias. The original AI algorithm that was tested
in this study’s cohort was developed using a predominantly
Caucasian population.17 Subgroup analysis based on this study’s co-
hort showed that despite this, the algorithm performed well across
racial groups with the interaction between Age-Gap and racial sub-
groups being non-significant. Both sexes were about evenly repre-
sented in the cohort used to develop the AI algorithm.17 As
expected, subgroup analysis showed that the model performed well
across both sexes with the interaction between sex and Age-Gap
also not being significant.

Excess and reduced risk
We demonstrated increased risk for all-cause and cardiovascular
mortality with increasing Age-Gap. This association with excess risk
was even more robust when exploring cardiovascular mortality (al-
though this endpoint was largely based on ICD diagnoses). This is
expected as Age-Gap is based on the ECG which is a direct output
from a critical component of the cardiovascular system. There was
also lower all-cause and cardiovascular mortality with a negative Age-
Gap. For all-cause mortality, this effect was attenuated after one Age-

Gap SD (7.4 years) and is possibly due to the small sample size of the
>-2 SD subgroup.

Potential applications
A fundamental goal of medicine is to prevent morbidity and mortality.
Ageing is the most consistent risk factor for morbidity and mortality
but measuring it has proved challenging. A potential use of the Age-
Gap is to identify individuals who are ageing beyond what would be
expected from their chronological age. Along with medical histories
and other clinical data, it could potentially be used to identify subjects
with excess risk that may represent preclinical or undiagnosed dis-
ease for which interventions can be deployed and perhaps create
opportunities for prevention. A future state integrating Age-Gap into
patients’ ECG reports could help facilitate this. A potential criticism
of this approach is that all patients should be advised to adopt a
healthy lifestyle, undertake appropriate screening, and take anti-age-
ing measures and that the information provided by the Age-Gap is
therefore redundant. However, one does not need to look too far to
conclude that such an approach has not been universally successful.
We believe Age-Gap is an addition to the healthcare toolkit that can
be used to drive increased patient motivation to make sustained posi-
tive lifestyle changes. It could also serve as a reminder for healthcare
providers to screen for pre-symptomatic disease. We recognize that
our work is largely a proof of concept, and as such, it will be preten-
tious to extensively talk about immediate applicability. We do how-
ever hope it may also be useful in assessing frailty, and, by serial Age-
Gap assessment, the effectiveness of anti-ageing drugs and/or of
adoption of a healthy lifestyle. Frailty is associated with biological age
although we acknowledge that they are not the same. We do how-
ever hope that further research into Age-Gap can help elucidate
whether this hypothesized association with ageing holds true.

Strengths and limitations
Our study has several strengths. Our AI model to predict age from
standard 12 ECGs was developed using a very large sample of sub-
jects. This model was then applied to another large and widely used
cohort of subjects with validated outcomes and extended follow-up.
This notwithstanding, there are several limitations to our study. First,
we hypothesize that Age-Gap reflects biological ageing but acknow-
ledge that no clear gold standard exists to assess biological ageing in-
dependent of disease states.33 Second, several comorbidities and
cardiovascular outcomes were based on ICD codes which may not
always be accurate. We also did not have a mortality adjudication
committee as part of this work. While cause of death using ICD
codes has been used extensively in epidemiologic studies, we recog-
nize it is imperfect and can lead to misclassification. However, the in-
formation from the REP is routinely reviewed for accuracy, has been
widely used and has been shown to be reliable.23,24 Furthermore, our
main primary outcome was all-cause mortality which is less prone to
bias. Third, while subjects were free of known CVD at baseline, their
point of entry into the database was via a primary care visit.
Therefore, and it is not unreasonable to assume ECGs were
prompted by clinical concerns in some subjects. Including diagnoses
up to 30 days after the incident ECG and then excluding subjects
with known baseline cardiovascular conditions, attempts to mitigate
this concern. Fourth, subjects with a baseline history of heart failure

The 12-lead ECG as a biomarker of biological age 387



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
were not excluded and it can be argued that the AI algorithm is pick-
ing this up. However, only a small percentage (�9%) of patients had
this history. Furthermore, the association between Age-Gap and our
primary outcome measures remained significant after removing all
patients with a heart failure history. Fifth, while we tried to adjust for
known variables that could affect our outcome, we acknowledge that
this is not perfect. We were only able to adjust for validated variables
captured in our dataset and other confounders may exist that may
continue to affect our output despite our diligent efforts. Sixth, while
every effort was made to determine the cause of mortality, we can-
not exclude cause of death apportioning errors made in vital statistics
databases used to ascertain mortality. Finally, our population is pre-
dominantly Caucasian and not racially diverse. It does however re-
flect the general population of Minnesota and the Midwest region of
the USA.34 Our subgroup analysis also shows that the algorithm per-
forms well across racial/ethnic groups.

Future research
Further research is needed to assess whether Age-Gap will be associ-
ated with long-term outcomes in community, non-patient and more
ethnically diverse populations. Other areas for further research in-
clude comparing AI ECG age to other estimators of heart age (e.g.
CDC heart age), comparing risk profile outputs from neural network
ECG analysis with other risk prediction algorithms (e.g. Charlson
comorbidity index, multi-morbidity index, etc.), determining which
ECG parameters drive excess risk and whether neural network pre-
dicted age correlates with known markers of accelerated ageing.
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