
Catalytic Site pKa Values of Aspartic, Cysteine, and Serine Proteases:
Constant pH MD Simulations
Florian Hofer, Johannes Kraml, Ursula Kahler, Anna S. Kamenik, and Klaus R. Liedl*

Cite This: J. Chem. Inf. Model. 2020, 60, 3030−3042 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Enzymatic function and activity of proteases is closely
controlled by the pH value. The protonation states of titratable residues in
the active site react to changes in the pH value, according to their pKa, and
thereby determine the functionality of the enzyme. Knowledge of the titration
behavior of these residues is crucial for the development of drugs targeting the
active site residues. However, experimental pKa data are scarce, since the
systems’ size and complexity make determination of these pKa values inherently
difficult. In this study, we use single pH constant pH MD simulations as a fast
and robust tool to estimate the active site pKa values of a set of aspartic,
cysteine, and serine proteases. We capture characteristic pKa shifts of the active
site residues, which dictate the experimentally determined activity profiles of
the respective protease family. We find clear differences of active site pKa values
within the respective families, which closely match the experimentally
determined pH preferences of the respective proteases. These shifts are caused
by a distinct network of electrostatic interactions characteristic for each protease family. While we find convincing agreement with
experimental data for serine and aspartic proteases, we observe clear deficiencies in the description of the titration behavior of
cysteines within the constant pH MD framework and highlight opportunities for improvement. Consequently, with this work, we
provide a concise set of active site pKa values of aspartic and serine proteases, which could serve as reference for future theoretical as
well as experimental studies.

■ INTRODUCTION
Proteases catalyze the cleavage of peptide bonds, a ubiquitous
reaction in the whole biosphere. Indeed, 2−3% of all human
genes code for proteases or protease inhibitors.1 The function
of the proteases is manifold. Processes from signaling cascades
over digestion to programmed cell death are based on
proteolytic processing.2 Consequently, the physiological
environments where proteases need to operate are very diverse
as well, including vastly different ranges of acidity. For
example, digestive proteases in the stomach at a pH of 2.0
have to catalyze the same reaction as proteases of the blood
coagulation cascade at a pH of 7.4 and proteases in the gut at
basic conditions.3,4 An overview of the various activity profiles
of aspartic, cysteine, and serine proteases is shown in Figure
1.5,6 Taken together, these three families cover a broad pH
range in terms of activity. While aspartic proteases are active in
the acidic range, cysteine proteases cover the mild acidic to
neutral range and finally serine proteases are mostly found
active at neutral to slightly alkaline conditions.3−7

The major distinctions between these three families in terms
of catalysis can be found in their active site architecture. The
catalytic center of aspartate proteases consists of an aspartic
dyad, of which one aspartate acts as a base and the other one as
an acid during catalysis.3,8,9 For this purpose, it is imperative
that the dyad is in a monoprotonated state when the protease

is active. In cysteine proteases on the other hand, a cysteine
and a histidine constitute the active site, which form an ion
pair, i.e., the cysteine is in its thiolate form, while the imidazole
side chain of the histidine is protonated and therefore
positively charged.7,9,10 In contrast, serine proteases show a
catalytic triad motif, consisting of an aspartate, a histidine, and
a serine, of which only the aspartate is negatively charged,
while the histidine and serine are ionized intermediately during
catalysis.4,9 In summary, the nature and arrangement of the
active site residues are decisive for the pH-dependent activity
ranges of the different protease families shown in Figure 1.
Different pH values or changes thereof lead to changes in

the protonation states of titratable residues within a
protein.11−14 How a titratable residue reacts to different pH
values is determined by its pKa value.

9,15 The so-called intrinsic
pKa value of a titratable residue, i.e., the pKa of the isolated
amino acid, is perturbed by the complex electrostatic
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environment formed by its surrounding residues within a
protein to the so-called macroscopic or apparent pKa value.

9,16

Intrinsic pKa values of the various titratable amino acids
commonly found in proteins can be rigorously approximated
by small peptides (e.g., of the form acetyl-GXG-amide), which
are easy to measure directly (commonly by NMR) and readily
available in the literature.16 However, within the complex
environment of a protein, the direct determination of pKa
values can be very challenging or even impossible.16

All of the aforementioned active site residues, except serine,
are titratable in the pH range of 0 to 10, in which also the
discussed proteases are active.9 Thus, the titration states of the
active site residues depend directly on the pH. In consequence,
the pH determines whether or not the enzyme is active, since a
well-defined protonation state configuration is imperative for
activity.
As discussed above, the macroscopic pKa values determine

how the titratable residues in the active site react to a specific
pH value, which in turn depends on the electrostatic
environment they encounter and therefore on the structure
of the active site itself. The pKa values of the active site
residues are thus decisive for inhibitor design and mechanistic
investigations. However, the experimental determination of
these pKa values is extremely difficult, which is reflected by the
low number of available pKa values in the literature. In
consequence, computational tools, which can reliably predict
such pKa values are of utmost importance. Over the last
decades a multitude of such prediction tools have emerged,
most of which can be generally divided into two groups.17 The
group of static methods, e.g., PROPKA18 or H++,19 predicts
pKa values based on single or multiple static structures of a
protein. In contrast, dynamic methods such as the family of

constant pH molecular dynamics (cpHMD) methods use an
ensemble of structures for protonation state predictions.20 It is
well-established that proteins in solution are inherently flexible,
meaning they relentlessly fluctuate between diverse conforma-
tional states of varying probabilities.21−25 Consequently, the
structural environment around titratable residues is continu-
ously changing and the protonation state ensemble is inevitably
linked to conformational rearrangements. The cpHMD
approach offers the unique opportunity to account for this
intricate interplay of conformation and protonation. The
approach not only incorporates a diverse set of conformations
into the pKa prediction itself, but also allows capturing how a
protein structurally adapts to different pH values.20

Most of the different cpHMD approaches can be attributed
to two main groups, based on the treatment of the protonation
states. On the one hand, protonation states can be treated
discretely, and all titratable protons are explicitly defined at
each titratable group and if not active are only present as ghost
particles. The simulation is periodically interrupted, and the
protonation state changes are attempted based on a Metropolis
criterion.26−30 On the other hand, protonation states can be
sampled along a continuous titration coordinate λ.31,32 Similar
to the concept of thermodynamic integration,33 if λ is 0, the
respective residue is protonated and if λ is 1, it is
deprotonated; all states in between are unphysical. As in
typical simulations only a small number of frames would meet
this criterion, usually a cutoff is employed to maximize the
number of analyzable frames. Recently, Radak et al. presented
a hybrid nonequilibrium MD/Monte Carlo approach,34 based
on the works of Roux35 and Stern.28 Here, equilibrium MD is
performed with fixed protonation states. Periodically, a
nonequilibrium switch is attempted, sampling in the

Figure 1. Overview of the pH-dependent activity profiles of aspartic (red), cysteine (yellow), and serine (blue) proteases. Together these three
families cover a broad pH span, ranging from very acidic, over neutral, to mildly basic pH values. The ranges of major subfamilies are highlighted in
a darker shade of the respective color.
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protonation and conformation space. Whether or not the
switch is accepted is determined via a Metropolis Criterion. If
the switch is indeed accepted, equilibrium MD continues with
the new protonation state from the final conformation of the
switch. If not, the simulation reverts back to the conformation
before the switch attempt. This approach is implemented in
the NAMD package.36 For a more in-depth discussion of the
various techniques, we point the reader to the respective
works.26−32,34,35

In this work we use cpHMD simulations to titrate the active
site residues of selected proteases of the aspartic, cysteine, and
serine protease families. We focus on the methods
implemented in the AMBER software package.37 We use
primarily the Monte Carlo38 (MC)-based cpH approach, as
implemented in AMBER, with discrete protonation states,
specifically the most recent variant by Roitberg and co-
workers utilizing explicit solvent.30 On the other hand, we also
make use of the continuous cpHMD approach, which was also
recently implemented in AMBER by Shen and co-workers.32

Both aforementioned approaches of cpHMD have been
combined with enhanced sampling techniques like replica
exchange MD (REMD39) and accelerated MD (aMD40) in
order to achieve efficient sampling of conformations and
protonation states.29,30,32,41−44 The recent implementations of
cpHMD on graphics processing units (GPUs) dramatically
increased calculation speed. Hence, it is possible to capture
dynamics at slower time scales with continuous trajectories at
feasible computational costs. Here we use single pH cpHMD
simulations, as they can be run easily in parallel with an
arbitrary number of GPUs and show acceptable convergence
behavior.45

We apply this workflow to a set of 9 representative proteases
from three of the four main largest protease classes
distinguished by the catalytic mechanism.46 On the basis of
relevance in drug discovery and differences in pH-dependent
activity profiles, we selected representative proteases from the
aspartate, cysteine, and serine protease families. We excluded
the family of metalloproteases, as for this family, the
protonation/deprotonation events in the active site are closely
linked to the coordinating ion. In order to capture this effect, a
sophisticated description of the electrostatics and polarizability
of the ion would be necessary, which is not possible for the
force fields used within the cpHMD framework.
For the selected proteases we efficiently capture reliable

protonation state ensembles. In addition to reference pKa
values, we provide atomistic insights to rationalize the origin
of the strongly varying activity profiles.

■ METHODS
System and Simulation Setup. All systems were

prepared with the program MOE (molecular operating
environment)47 from X-ray structures, which are available in
the PDB. The respective PDB codes are summarized in Table
S1 in the Supporting Information. All crystal waters, agents,
and ligands were removed if any were present. If multiple
chains were present in the entry, the chain with the highest
quality and sequence coverage was chosen based on the full
PDB validation report.
The LEaP module of AmberTools 1937 was used to add

missing hydrogens and create topology and starting coordinate
files. The AMBER ff99SB48 force field coupled with the
necessary modifications for constant pH MD simulations was
used.27,30 The GB radii of the titratable oxygens of aspartate

were reduced to 1.3 Å as suggested by Swails et al.30 All
systems were placed in a truncated octahedral TIP3P water
box with a minimum wall distance of 10 Å.49

Furthermore, the cysteine protease papain was simulated
using the GB-Neck2 implicit solvent model with the
appropriate GB radii.50 As there were no reference energies
available for cysteine for this implicit solvent model, reference
energies were derived as suggested in the AMBER manual.37

For the derivation of partial charges and force field parameters
of deprotonated, i.e., negatively charged serine, the structure
was prepared with MOE and the needed parameters
subsequently derived with Gaussian 1651 and the antechamber
framework of AmberTools19.37 Partial charges were derived
with the RESP52 procedure.
Before production simulations, all systems were equilibrated

with an elaborate protocol developed in our group.53

All simulations were carried out with the pmemd module of
AMBER 18, making use of both the CPU and the GPU
implementation.37 Calculations were carried out on the Vienna
Scientific Cluster (VSC3 and VSC4) and on our in-house GPU
cluster.
The Langevin thermostat54 with a collision frequency of 5

ps−1 was used to keep a constant temperature of 310 K, as was
the Berendsen barostat55 with a relaxation time of 2 ps to keep
atmospheric pressure. The SHAKE56 algorithm was used to
restrain all bonds involving hydrogens, enabling the use of a 2
fs time step. Long range electrostatics were treated with the
particle-mesh Ewald method57 (PME), and a nonbonded
cutoff of 8 Å was used. All systems were simulated at pH values
from 0.0 to 10.0 (0.0 to 14.0 for papain) with a 0.5 spacing.
For all MC-based cpHMD simulations, protonation state
changes were attempted every 200 steps, followed by 200 steps
of solvent relaxation after a successful attempt. For the GB
calculations within the cpHMD framework, a salt concen-
tration of 0.1 was used. For aspartic proteases, the two
aspartates comprising the catalytic dyad were selected to
titrate. For serine proteases, the aspartate and the histidine of
the catalytic triad were selected to titrate. For the cysteine
protease papain, two approaches were tested. On the one hand,
both the cysteine and the histidine of the catalytic center were
selected to titrate, and on the other hand, only the cysteine was
titrated, while keeping the histidine in its doubly protonated,
i.e., positively charged form. Frames were collected every 1000
frames. All simulations were run for 100 ns per pH value,
resulting in 2.1 μs of aggregate simulation time per system.
For papain, the system was prepared following the procedure

described by Shen and co-workers50 and was simulated using
the recent implementation of continuous cpHMD in AMBER
18.32,45,50 In brief, CHARMM58 with the CHARMM22 all-
hydrogen force field59 was used to add missing hydrogens,
terminal cappings, set up the titratable groups, and perform
initial minimizations. Hereafter, the minimized structure was
prepared with LEaP using the AMBER ff14SB60 force field
with the necessary modifications for continuous cpHMD.32

The GB radius of the titratable sulfur was set to 2.0 Å as
suggested by Shen and co-workers.50 The subsequent
simulations were carried out with the same settings as
described above. For the continuous cpHMD specific settings,
a mass of 10 amu was used for the lambda particles, a friction
coefficient of 5 ps−1 was used for the titration integrator, and
the forces of the lambda particles were updated every step.

Analysis. All analyses were performed using cpptraj61 and
pytraj from AmberTools 19,37 combined with in-house python
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scripts. Analysis of the continuous cpHMD data was done with
a python script provided by Shen and co-workers.62 Structural
representations were created with PyMol.63

Titration data from MC-based cpHMD simulations was
analyzed with the cphstats program from AmberTools 19.37 As
the titrations of the catalytic residues were strongly coupled,
titration curves were obtained by fitting the average number of
total protons as was shown previously by Roitberg and co-
workers for the HIV-1 protease (eq 1).64 Setups in which only
one residue was titrated were fitted to the modified Hill
equation (eq 2).
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Shifts in pKa values were evaluated using capped tripeptide
(acetyl-GXG-amide) pKa values as published by Platzer and
McIntosh as reference.16 Convergence of pKa values was
evaluated by monitoring the cumulative averages of the pKa

predictions.
To profile protonation state transition probabilities between

the strongly active site residues in aspartate proteases, we set
up a 4-state model based on the possible protonation state
combinations of the respective titrated residues and calculated
transition matrices based on these models, as we previously
showed.65 The matrices were then visualized as network plots,
in which circle sizes denote state probabilities and arrow sizes
transition probabilities.

■ RESULTS
Chymotrypsin in Apo and Bound Form. In order to

benchmark the robustness of the applied constant pH MD
simulation approach, we aimed to reproduce the pKa change of
the catalytic histidine associated with the activation of
chymotrypsin described by Lin et al.66

We used the apo enzyme as a model for the encounter
complex of the protease and the peptide-compound as shown
in Figure 2A. With a predicted pKa value of 7.16, we closely
reproduce the literature pKa value of 7.5 (Figure 2B). We
modeled the negatively charged complex of protease and
peptide by simply deprotonating the catalytic serine residue,
thereby introducing an additional negative charge (see Figure
2A). For this system, we find a pKa value of 10.78, which is in
line with the experimentally determined pKa range of 10−12.

Serine Proteases. For the serine protease family, elastase,
trypsin, granzyme B and chymotrypsin were considered.
Reported activity ranges and experimental pKa values (only
available for chymotrypsin) are summarized in Table 1. Side
chain pKa values of the catalytic aspartate and histidine
residues were determined with single pH constant pH MD

Figure 2. Prediction of the pKa shift of the catalytic HIS57 of chymotrypsin upon formation of the negatively charged complex. Complex structure
and schematic representation are shown in the upper panel, titration curves obtained for the apo enzyme (left) and the complex (right) are shown
in the lower panel. The light blue area denotes the active region of the enzyme, while experimental (blue), and predicted (black) pKa values are
shown as lines.

Table 1. Summary of Serine Proteases Which Were
Considered in This Studya

protease pH activity range experimental pKa values

elastase 7−7.5 ND
trypsin 7−8 ND
granzyme B 7−8 ND
chymotrypsin 8−9 7.5

aActivity ranges reported in literature and available experimental pKa
values are given.
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simulation as described in the method section. Reported
activity profiles and predicted pKa values are summarized in
Figure 3.
As can be seen from Figure 3, all four systems show a similar

titration behavior. In each system an acidic and a considerably
higher, near neutral pKa value were captured, which span a
broad pH range in which a monoprotonated state is stable.
While the upper pKa value is at or near 6.0 for all systems, clear
differences can be seen for the lower pKa value. While for
trypsin and chymotrypsin the lower pKa is very acidic (below
1), this is less pronounced in elastase and granzyme B. For the
latter, the titrations of the two active site residues appear to be
coupled stronger and the pKa differences are smaller compared
to the other two systems (5.8 and 6.1 vs 3.1 and 3.5).
Furthermore, the upper pKa value of 6.2 found here for

chymotrypsin deviates more from the reported pKa of 7.5 than
the one reported for the isolated titration of the active site
histidine described above (7.2).
The convergence analysis shows that all upper pKa values

converged after 50−60 ns. The lower pKa values show a slower
convergence, especially for granzyme B and chymotrypsin (see
Figure S2 in the Supporting Information). This is in line with
the titration curves in Figure 3, which show that the
predictions are more noisy at lower pH values.
In relation to the respective active pH ranges, we find that

for all systems the active range is located at pH values higher
than both pKa values, i.e., in a range where both residues are
unprotonated.
Aspartic Proteases. We selected a set of 4 aspartic

proteases with varying pH activity ranges and experimental
titration information, as summarized in Table 2. Side-chain pKa

values of the active site aspartate residues were predicted with
single pH constant pH simulations as described in the
Methods section. The calculated titration curves and respective
predicted pKa values are summarized in Figure 4.
As can be seen from Figure 4, our approach closely

reproduces the available experimental pKa values of pepsin and
the HIV-protease I. Furthermore, the calculated pKa values
envelop the experimentally determined active range of the
respective protease (shown as colored boxes in Figure 4).
Both systems show notable pKa shifts for both aspartates

away from the free amino acid pKa value (3.86 for aspartate
16),

with the effect being more pronounced in the HIV-protease. In
both systems, one pKa value is shifted more toward acidic and
one toward more basic pKa values compared to the free amino
acid. Especially in pepsin, the titration curves appear to be
strongly coupled, with practically no gap between the titrating
regions, whereas in the HIV-protease, a monoprotonated state
is stable for a broad pH range (pH 2.0 to pH 6.0).
Consequently, the gap between the pKa values is much smaller
in pepsin (ΔpKa = 3.4), compared to the HIV-protease (ΔpKa
= 7.7). In both cases, the experimentally determined active

Figure 3. Titration curves and predicted pKa values of the serine proteases elastase (A), trypsin (B), granzyme B (C), and chymotrypsin (D), which
were considered in this study. Activity ranges reported in the literature are shown as colored boxes (Table 1). Experimental (only available for
chymotrypsin) and predicted pKa values are shown as blue and black lines, respectively.

Table 2. Summary of Aspartic Proteases Which Were
Considered in This Studya

protease pH activity range experimental pKa values

chymosin <3.5 ND
pepsin5 1−6 (optimum at 3.5) 1.57; 5.02
cathepsin D67 2.5−6.0 ND
HIV-protease 168−70 4.0−6.0 3.1−3.7; 4.9−6.8

aExperimental activity ranges and available pKa values are given.
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range of the respective protease is located between the two pKa
values, i.e., in the monoprotonated region. While for pepsin the
reported active region somewhat exceeds both experimental
and predicted pKa values, the reported pH optimum of 3.5 is
indeed located at the very center of the calculated titration
curve.
Also for chymosin and cathepsin D, for which no

experimental pKa information is available, titration curves
and pKa values could be estimated. The calculated pKa values
show the same trend as already observed for pepsin and the
HIV-protease I. Chymosin shows a strongly coupled titration
behavior, similar to that of pepsin, with a small pKa gap of 3.1.
The activity maximum is reported to be below pH 3.5, which
again lies at the very center of the monoprotonated region of
the titration curve. Cathepsin D, on the other hand, shows a
titration behavior similar to the HIV-protease I, in that the gap
between the pKa values is larger (4.8) and a monoprotonated
state is stable over a longer pH range (pH 2 to 4). The
reported activity range again lies in this pH region, below the
upper pKa value.
The convergence analysis of the predicted pKa values shows

that again all pKa values converge within the 100 ns of
simulation time. Most of the upper pKa values again converge
faster than their lower counterparts (see Figure S2 in the
Supporting Information).
State and Transition Analysis. To characterize the

transition paths and state distributions of the strongly coupled
titrations seen for the aspartic proteases, we performed
protonation state transition analyses. The active site titrations
are modeled as a 4-state-system, based on the protonation
states of the two aspartic residues (see Table 3). States 0 and 3

represent the fully deprotonated and fully protonated states,
respectively, whereas states 1 and 2 both represent a
monoprotonated state but distinguish which aspartate is
protonated. Hereby all 4 variants of a protonated aspartate
defined in the cpHMD framework are condensed into one
state. The resulting transition matrices are visualized as
network plots with circle and arrow sizes corresponding to
state and transition probabilities, respectively.
We find that all proteases follow a similar, pH-dependent

pattern in terms of state populations and transition
probabilities. In Figure 5, the results for selected pH values
of the pepsin simulations are shown exemplary. The analysis
for all pH values can be found in the Supporting Information
(Figure S1). We find that at very low or very high pH values,
the fully protonated (state 3) or deprotonated (state 0) states
are dominantly populated, respectively. Transitions to other,
very sparsely, populated states do occur but are rare. At
moderately acidic pH values, after the first titration has
occurred, states 1 and 2, i.e., the monoprotonated states,
increase in population until a near uniform distribution of all

Figure 4. Titration curves and predicted pKa values of the aspartate proteases chymosin (A), pepsin (B), cathepsin D (C), and HIV-1 protease (D),
which were considered in this study. Activity ranges reported in the literature are shown as colored boxes (Table 2). Experimental (if available) and
predicted pKa values are shown as red and black lines, respectively.

Table 3. State Definitions Used for the Protonation State
Transition Analyses of the Aspartic Proteasesa

state number ASP A ASP B

0 0 0
1 0 1
2 1 0
3 1 1

aProtonation states are denoted as 0 (deprotonated) or 1
(protonated).
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four states is reached. As the pH further increases, first state 3
and consecutively also states 1 and 2 diminish as state 0
becomes more and more populated. Furthermore, we note that
primarily single state transitions occur, which correspond to
transitions over the edges in the network plots in Figure 5.
However, also transitions over the diagonal are visible, which
correspond to both aspartates changing their protonation state
at the same time. However, these transitions are very rare.
Cysteine Proteases. For the family of cysteine proteases,

experimental pKa values are available for a number of systems,9

all of which show a very strong acidic shift of the active site
cysteine residue away from its tripeptide pKa value of 8.5. The
pKa values of active site cysteine residues have been reported
to be extremely challenging to predict, with most of the
available prediction tools failing to predict experimentally
determined pKa shifts and even predicting shifts into the wrong
direction.71 Here, we selected papain as a test system, which
shows a strong acidic shift of the active site cysteine of −5.2
pKa units (from 8.5 down to 3.3).9

We used single pH constant pH MD simulations to predict
the active site pKa value, as described in the Methods section.
The resulting titration curves and pKa values are shown in
Figure 6A. Clearly, our approach not only mispredicts the pKa

value of CYS25 but also does not capture the acidic pKa shift at
all. As can be seen from the titration curve in Figure 6A,
CYS25 does not titrate at all in the pH range, which was used
for the aspartic and serine proteases and only starts to titrate at
a pH as high as 12.0.
In order to analyze the source of these erroneous

predictions, we repeated the simulations utilizing different
implicit solvent models and GB-radii for the sulfur, as was
suggested recently by Shen and co-workers.32,50 To do this, we
had to derive the reference energies for cysteines, which are
necessary for the cpHMD workflow, since they were not yet
available for the GB-neck 2 model and different GB radii (see
Figure 6B). Furthermore, we employed the constant pH
replica exchange (cpH REMD) technique, which is imple-
mented in AMBER. This approach was shown in multiple
works to increase both protonation state and conformational
sampling (see Figure 6C). Finally, we also repeated the
simulations utilizing the recent implementation and setup of

Figure 5. Protonation state transition analysis performed for pepsin
shown as network plots at selected pH values. Circle sizes and arrow
thickness corresponds to state populations and transition proba-
bilities, respectively.

Figure 6. Titration of papain active site residues CYS25 and HIS159 with MC based constant pH MD with implicit solvent models GBOBC (A) and
GB-Neck2 (B), cpH REMD with the GBOBC model (C) and continuous cpHMD (D). Experimental pKa value of CYS25 of 3.3 could not be
reproduced with any approach, with the simulations using the GBOBC model (A and C) showing no titration at all.
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continuous cpHMD in AMBER by Shen and co-workers (see
Figure 6D).
While the titration curves in both Figure 6B (GB-Neck2

implicit solvent model) and Figure 6D (continuous cpHMD)
show notable improvements in the titration prediction of the
active site cysteine, the predicted pKa values (8.75 and 9.80,
respectively) are close to the pKa value of free cysteine (8.5)
and the strong acidic shift, which was observed in experiments,
could not be captured. In contrast to this, no benefit in terms
of pKa prediction could be achieved with the cpH REMD setup
compared to single pH simulations.

■ DISCUSSION
We use single constant pH MD simulations to predict the
active site pKa values of various members of the aspartic,
serine, and cysteine protease families. We further investigate
the molecular origins which could explain the observed
differences in the pH activity ranges within the individual
families.
Chymotrypsin Apo and Bound. As structural data of

substrate-bound complexes are limited, we simulated all
proteases in their apo-state. Nevertheless, we recognize that
the presence of a substrate, especially with charged residues, in
the active site might influence the pKa values of titratable active
site residues. For chymotrypsin, experimental pKa values for
both the apo enzyme as well as for various trifluoro-peptidyl
complexes are available (see Figure 2A).9,66 To assess, how
well our approach can capture such changes in the active site,
we predicted the pKa value of the apo enzyme as well as for the
modified enzyme. We approximated the peptide-bound form
with a simple negatively charged serine (see Figure 2A). While
this is a drastic simplification, we presume that in terms of pKa
shift potential the additional negative charge in the active site
represents the most decisive aspect. As there is no high-quality
structural data of these complexes available, we assume that the
error introduced by this simplification is smaller, compared to
the inaccuracies resulting from modeling the rather large
complex into the binding site. The validity of our
approximation is supported by the pKa values we obtain
from our simulations as shown in Figure 2B. With an unsigned
error of 0.32 pKa units, we closely reproduce the reported pKa
value of the free enzyme. For the complexes, we find a strong
basic shift for the active site histidine. This shift can be directly
attributed to the additional charge on the serine residue. The
experimental pKa values for the bound enzyme range from 10
to 13 depending on the complexed peptide. Our predicted pKa
of 10.8 is perfectly in line with these results. This indicates that
despite the simplified representation of the bound state, we still
capture the strongest perturbation driving the pKa shift, which
is indeed the additional negative charge.
Aspartate Proteases. In Figure 4, we summarize

predictions and experimental references for the family of
aspartate proteases. As can be seen from Figure 4B,D, our
approach closely reproduces the available experimental pKa
values of pepsin and the HIV-1 protease.5,68−70 Notably, in
both systems one pKa value is predicted to be shifted into the
acidic and the other one into the basic direction, compared to
the tripeptide reference values of aspartate. Our calculations
reproduce these shifts for both proteases. Furthermore, we find
that the experimentally reported activity range lies between the
two respective pKa values.
These findings are consistent with the mechanistic picture of

a monoprotonated catalytic dyad in active aspartic proteases.

To make an example with our predicted pKa values, following
this argument, pepsin should quickly become inactive if the pH
falls below 2.1 or rises above 5.5. Indeed, pepsin is reported to
be active between pH 1 and pH 6, i.e., in the pH range where a
monoprotonated state is predicted to be stable (see Figure
4B). A similar picture can be found for the HIV-1 protease
(Figure 4D). Also here the experimental pH range from 4 to 6,
in which the enzyme is found active, lies between the predicted
pKa values of −0.5 and 7.2. In contrast to pepsin, the lower pKa
value was predicted to be extremely acidic in our simulations
compared to the experimental pKa values (3.1 or 4.9
depending on the reference). Roitberg and co-workers studied
the influence of ligand binding on the active site pKa values of
the HIV-1 protease and predicted pKa values of 1.29 and 7.32
for the apo enzyme.64 While their upper pKa value is very close
to ours (7.32 to 7.2), the lower pKa value they find is still less
acidic than the one we find (1.29 to −0.5). However, both
times the lower pKa is found to be clearly more acidic than in
the experiment. With a pKa difference of 7.7 pKa units, the pH
range, in which a monoprotonated catalytic dyad is stable, is
very broad in our simulations. Interestingly, the enzyme is
reported to be active in only a small pH window at mildly
acidic conditions (pH 4 to 6), thereby using only a portion of
the pH range which would be possible from a mechanistic
point of view. However, the activity itself is a very complex
parameter, which depends not only on the pH value and
protonation states, but also on the respective substrate, the
exact assay conditions, and the fold stability of the enzyme
toward extreme pH values. The fact, that the reported activity
range of pepsin somewhat exceeds the margins given by the
pKa values (regardless if predicted or experimental) can also be
explained by this argument.
Our findings for chymosin and cathepsin D (see Figures

4A,C, respectively) are in line with the arguments made for
pepsin and the HIV-1 protease. At the time of writing this
manuscript, no experimental pKa values from direct titration
experiments but only activity profiles were available in the
literature for chymosin and cathepsin D. Chymosin was
reported to be most active at and slightly below pH 3.5,
indicated by the fading color of the panel in Figure 4A. The
titration curve we obtain shows a lower pKa value at 1.8,
followed by a small plateau at pH 3.5, which means that a
monoprotonated state is predicted to be stable right at the
reported most active pH. The loss of activity at higher pH
values can be attributed to the second aspartate starting to
titrate around pH 4.0 (predicted pKa of 4.9), thereby
inactivating the enzyme. Cathepsin D on the other hand,
shows a titration behavior similar to the HIV-1 protease, in
that the difference between the two pKa values is more than 1
pKa unit larger than in chymosin or pepsin. In consequence,
also the plateau between the two pKa values is broader and a
monoprotonated configuration is stable over a broader pH
range. Cathepsin is reported to be mostly active at pH values
from 2.5 to 6.0, depending on the assay conditions and the
substrate. This fits very well with the pKa values we find for the
catalytic dyad (0.8 and 5.6, respectively), as they suggest a
stable monoprotonated state over the reported active pH
range. Shen and co-workers reported calculated pKa values of
cathepsin D of 2.9 and 4.7, which in turn narrows the range in
which a monoprotonated state is predicted to be stable.67

Intriguingly, the only available experimental pKa values of 4.1
and >5 are significantly higher than the predictions of Shen
and co-workers and this study. Furthermore, this would
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suggest that a monoprotonated form is only stable at pH values
above 4.1, which stands in contrast to the reported active
ranges. However, as the reported experimental pKa values do
not stem from a dedicated titration study, but were estimated
from kinetic profiles, it is possible that they are limited by the
employed assay conditions.
To evaluate the potential errors of our pKa values stemming

from the discontinuities of the titration curves (see Figure 4),
we reran the simulations for cathepsin D and pepsin using the
pH-REMD approach implemented in AMBER. As can be seen
from Figure S3 in the Supporting Information, for pepsin no
notable change was found for the lower pKa value, while the
error of the upper pKa value compared to the experiment
increased by a small margin. On the other hand, for cathepsin
D, both pKa values come closer together, with especially lower
pKa showing a higher value than in our single pH simulations.
As expected, with the REMD approach, the discontinuities
disappear for both systems. However, as the overall picture
does not change and the resulting pKa values are very similar
for both methods, we observe no indication that the
discontinuities significantly contribute to the deviation from
the experimental values.
While the differences in upper pKa value are small for

chymosin, pepsin, and cathepsin D (4.9, 5.5 and 5.6), they
differ significantly from the upper pKa of the HIV-1 protease
(7.2). As all proteases were simulated in their apo form, we
conclude that structural differences of the enzymes themselves
must be a source of this difference. We have previously shown,
that within the constant pH framework and the used force
fields, proximal charges and to a lesser degree H-bonds have
the biggest potential of perturbing pKa values.65 However,
there are no positively charged residues close enough to the
active site aspartates to form ion pairs in any of the studied
enzymes. Hence, we calculated the average number of H-bonds
formed by the catalytic dyad to proximal residues with polar
side chains for each pH value. As can be seen from Figure 7,

the HIV-1 protease forms around 1 H-bond with neighboring
residues before the first titration, after which this number
increases to around 4 H-bonds. In contrast to that, pepsin and
cathepsin D can form 2.5 H-bonds on average in their doubly
negative form and chymosin fluctuates around 3 H-bonds on
average. This suggests, that the negative charges in chymosin,
pepsin, and cathepsin D are stabilized by an H-bond network
with neighboring residues, which is not present in the HIV-1
protease. This in turn could explain the notable shift of the
upper pKa value for the HIV-1 protease, as the number of
stabilizing H-bonds drastically increases to 4 H-bonds on
average, as soon as the dyad is monoprotonated. The increase
in the average number of H-bonds after the first titration is
visible for all studied systems, albeit less pronounced compared
to the HIV-1 protease. This can be attributed to the special
structural arrangement of the catalytic aspartates, which
enables the formation of H-bonds between the aspartates
when at least one is protonated and thus further stabilizes the
monoprotonated state. This is in line with the discussion above
and supported by the experimental activity ranges, which
report maximum activity of the respective proteases in these
regions.
Due to the spatial vicinity, the titration behavior of the two

active site aspartates is expected to be strongly coupled. We
thus profile the effect of this coupling by performing a
transition analysis based on the possible protonation state
combinations of the catalytic dyad. We illustrate this behavior
for pepsin in Figure 5, with a focus on the pH region in
between the two apparent pKa values. Here, the state
populations indeed suggest primarily a monoprotonated form
of the dyad, as is expected from the titration curves. At pH 4.0,
all states are almost equally populated with a high number of
edge (i.e., single proton) transition between all states.
However, at the flanking pH values of 3.0 and 5.0, we note a
certain preference in terms of which aspartate is protonated.
On the one hand, this could point to a simple convergence
issue and could be resolved by extending the simulations; on
the other hand, this could mean, that protonation on one
aspartate is indeed more stabilized than on the other. To
exclude a convergence issue, we extended the simulations to
200 ns per pH, i.e., doubling the simulation time per pH value.
However, the state distributions are remarkably stable and do
not change significantly with longer simulation time.
Furthermore, it is intriguing that single state transitions
(transitions over the edges in Figure 5) are far more frequent
than both residues changing their protonation state in the same
step (diagonal transitions in Figure 5). This is especially
interesting for the transition between states 1 and 2 which
corresponds to both residues swapping the proton. As both
residues are directly interacting with each other, the overall
change for the system would be very small; however, the
deprotonation of one residue and the protonation of the other
in the next step is clearly favored.

Serine Proteases. For serine proteases except chymo-
trypsin, no reliable active site pKa values could be found in the
literature at the time of the writing of this manuscript.
Therefore, the quality of the pKa prediction is evaluated based
on the reported activity profiles of the respective protease. As
already stated above, for these systems we did not titrate the
whole catalytic triad but only the catalytic aspartate and
histidine. Serine is generally not considered titratable in the
investigated pH range from 0 to 10.

Figure 7. Average number of hydrogen bonds formed by the catalytic
dyads of chymosin (A), pepsin (B), cathepsin D (C), and HIV 1
protease (D).
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As can be seen in Figure 3, all studied systems show a similar
titration behavior, in that a quite acidic pKa value below 1.0
and a near neutral pKa value is predicted for the titrated
residues. In relation to the reported active pH ranges, we find
for all studied systems that both pKa values are below the
reported active ranges. This means that both residues are in
their deprotonated form, i.e., aspartate is negatively charged,
while the histidine is neutral. This is well in line with the
mechanism of serine proteases, in which a neutral histidine is
strongly polarized by the neighboring aspartate and in
consequence abstracts a proton from the catalytic serine,
which in turn enacts the nucleophile attack on the substrate. It
is therefore imperative for activity, that the histidine is in its
neutral form and the aspartate is negatively charged. This is
reflected in our predicted pKa values for all studied systems.
While the upper pKa values for all studied systems are

relatively similar and all lie within the error margin of our
cpHMD approach of ±1 pKa units, significant differences in
the lower pKa values can be identified. In the case of trypsin
and chymotrypsin (Figure 3B,D), the respective lower pKa
values corresponding to the titration of the catalytic aspartate
are located below 1, clearly separating them from the upper
pKa values which are around 6. In contrast, the titrations of
elastase and granzyme B (Figure 3A,C) appear to be much
more coupled, with a separation of around 3 pKa units. This
difference can be attributed to differences in the H-bond
network, which the catalytic aspartate can form with
neighboring residues. In detail, a tyrosine residue (Y94,
chymotrypsin numbering), which is conserved in trypsin and
chymotrypsin and represents a potential H-bond partner for
the catalytic aspartate, is mutated to tryptophan in elastase.
This loss of interaction could potentially destabilize the
deprotonated, i.e., negatively charged form of the catalytic
aspartate and in turn lead to an elevated apparent pKa value.
This hypothesis is supported by an H-bond analysis, shown in
Figure 8. Clearly, the catalytic aspartate in trypsin (Figure 8C)

forms 1 H-bond more on average than the respective aspartates
in elastase (Figure 8A) and granzyme B (Figure 8B).
Interestingly, the same shift cannot be seen so clearly for
chymotrypsin (Figure 8D). We surmise, that while the
interaction is not recognized as such by the employed metric,
the polar interaction of the side chain is still present and will
perturb the apparent pKa value of the catalytic aspartate.

Cysteine Proteases. Compared to serine proteases, in
which the catalytically active serine gets deprotonated
intermediately during the reaction and directly attacks the
substrate, the catalytic cysteine in papain and other cysteine
proteases forms an ion pair with a neighboring histidine
residue even in the apo state of the enzyme.9,72 Since the
tripeptide pKa value of cysteine of 8.5

16 suggests a protonated
form at physiological and especially at acidic conditions, a
strong perturbation of the cysteine pKa value is necessary in
order to facilitate the ion pair formation. Indeed, for papain
and papain-like proteases like caricain and ficin strongly
perturbed pKa values as low as 3.3, 2.9, and 2.5, respectively,
have been reported in the literature.9,72 This strong shift of
more than 5 pKa units is generally attributed to the
aforementioned ionic interaction with the neighboring
histidine. However, common prediction tools are reportedly
unable to capture these strong shifts in the aforementioned
systems and strongly mispredict the respective cysteine pKa
values.71

As can be seen from Figure 6, unfortunately also our
approach falls short in predicting the pKa shift of the catalytic
cysteine of papain (experimental pKa of 3.3). Indeed, with the
implicit solvation model, which was successfully used for the
other families, no clear titration of cysteine could be observed
in the pH range from 0.0 to 14.0 (see Figure 6A). In an effort
to pinpoint the source of this erroneous behavior, we switched
the used implicit solvent to the most recent GB-Neck 2 model,
coupled with the increase of the GB radius of sulfur to 2.0 Å as
suggested recently by Shen and co-workers.50 This had the
notable effect that we now capture a titration of cysteine,
resulting in a pKa value of 8.7 (see Figure 6B). However, the
strong acidic shift is still not captured. Furthermore, we
repeated the simulations using a replica exchange protocol in
order to allow for a coupling of the pH values, but also this did
not improve the prediction (Figure 6C). To exclude a
deficiency of the MC-based constant pH framework, we
reran the simulation with the recent implementation of the
continuous constant pH approach in AMBER by Shen and co-
workers, following their suggested setup for the treatment of
cysteines.50 However, as can be seen from Figure 6D, while we
capture a titration of the cysteine, we still are not able to
predict the strong acidic shift. We would like to note here, that
while this manuscript was under revision, Shen and co-workers
published a broad benchmark study predicting cysteine pKa
values against experimental reference. With refined parameters,
they were able to very accurately reproduce even strong pKa
shifts (i.e., in papain). We would like to refer the interested
reader to their publication.73

We see a few possible reasons why the correct pKa values or
at least an acidic shift could not be predicted. First, the
predicted pKa values might correspond to a limited and
strongly biased protonation state ensemble, stemming from
insufficient conformational sampling. As the time scales, which
can be covered in standard MD simulations, are generally
several orders of magnitude below the time scales on which the
experimental reference values are measured on, it could be

Figure 8. Average number of hydrogen bonds formed by the catalytic
aspartate of elastase (A), granzyme B (B), trypsin (C), and
chymotrypsin (D).
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possible that we only observe a very small fraction of the
experimental conformational space. As the observed proto-
nation state ensemble is closely linked to the conformational
ensemble, also the apparent pKa values we obtain will in turn
only correspond to this small sub-ensemble. Large conforma-
tional changes, which happen at much slower time scales,
might severely alter the underlying conformational ensemble
and in turn also the predicted pKa values. However, we deem
this scenario to be very unlikely, as the prediction errors are
extensive both in terms of the actual value as well as in the shift
direction. Furthermore, this would also mean that the crystal
structure and conformations close to it would represent an
almost negligible part of the conformational ensemble at
slower time scales. Thus, we surmise that a systematic error in
the titration prediction is the source of the erroneous cysteine
pKa predictions.
Second, failing to capture the perturbation-effect itself could

lead to a complete misprediction of the pKa values. However,
as discussed above, the main perturbation of the pKa of CYS25
in papain comes from the ionic interaction with HIS159, an
interaction that is generally well captured within the cpHMD
framework.65 To rule out a possible effect of the titration of
HIS159, we reran the simulation, not allowing HIS159 to
titrate and keeping it in its positively charged form (data not
shown). As this did not change the pKa prediction of CYS25,
we presume that also this scenario is not the definitive error
source.
Third, the description of the sulfur and its titration in the

context of partial charges could be problematic. Since the
titration of the reference compounds works without any issues,
we presume that the description of the sulfur or the titration
itself is not a problem when an isolated cysteine is considered
but rather arises when the cysteine is located in a complex, i.e.,
protein environment. Shen and co-workers recently used the
continuous constant pH MD implementation to successfully
reproduce the pKa value of the creatin kinase.50 As the cysteine
pKa values in kinases are generally perturbed less than the ones
found in proteases like papain,9 this could mean that only very
strong perturbations are not captured correctly. This could be
linked to the strong polarizability of sulfur, an effect that is
neglected in all tested cpHMD approaches, as no polarizable
force fields are used.74 We therefore presume that either a
more sophisticated description of the electrostatics of sulfur or
the incorporation of polarizable force fields would significantly
improve the prediction. The aforementioned approach by
Radak et al. as implemented in the program NAMD holds
great promise in this regard due to its modular implementation
with generally no prior assumption of the used force field.34

■ CONCLUSION
We apply constant pH MD simulations to provide pKa
estimations for active site residues of a set of 9 different
proteases. While the constant pH MD framework has been
successfully applied to protease systems before, to our
knowledge no study was published yet, which systematically
predicts and summarizes active site pKa values of multiple
protease families.
We find that our predictions are consistent with the available

experimental pKa values and are in sound agreement with the
strongly varying pH activity profiles of aspartic and serine
proteases. All titrated active site residues show substantial shifts
away from the tripeptide pKa values. The applied sampling
strategy successfully captures this behavior, highlighting the

benefits of dynamic pKa prediction tools compared to static
algorithms. The approach also allows us to depict the strongly
coupled titration behavior found for some of the studied
systems, which we show in detail for pepsin. Furthermore, we
find pH-dependent H-bond networks which could explain the
varying protonation and thus pH activity profiles. We presume
the discussed residues as promising starting points, e.g., for
protein engineering efforts toward tailored pH activities.
However, we also clearly identify limitations of the method-
ology in terms of treating the strongly polarizable sulfur.
Nevertheless, as the field of cpHMD simulations is rapidly
progressing, we see these findings as an opportunity to enhance
the reliability of this method even further.
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