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Fibroblast activation protein-a (FAP) is a type II integral serine protease that is specifically
expressed by activated fibroblasts. Cancer-associated fibroblasts (CAFs) in the tumor
stroma have an abundant and stable expression of FAP, which plays an important role in
promoting tumor growth, invasion, metastasis, and immunosuppression. For example,
in females with a high incidence of breast cancer, CAFs account for 50–70% of the cells in
the tumor’s microenvironment. CAF overexpression of FAP promotes tumor development
and metastasis by influencing extracellular matrix remodeling, intracellular signaling,
angiogenesis, epithelial-to-mesenchymal transition, and immunosuppression. This
review discusses the basic biological characteristics of FAP and its applications in the
diagnosis and treatment of various cancers. We review the emerging basic and clinical
research data regarding the use of nanomaterials that target FAP.

Keywords: cancer-associated fibroblast, FAP substrates, immunosuppressive, targeted therapy, nanomaterials,
fibroblast activation protein-a
INTRODUCTION

In 1986, Rettig et al. (1) discovered fibroblast activation protein-a (FAP) using a monoclonal
antibody (F19), which reacted with activated fibroblasts in vitro. Rettig initially described the FAP
protein as a cell surface antigen expressed on epithelial cancer cells, most of the soft tissue sarcomas,
granulation tissue, and some fetal mesenchymal fibroblasts. However, it was not expressed on
normal fibroblasts or benign/malignant epithelial tumor cells, hence it was referred to as the
“fibroblast activation protein”. Aoyama et al. (2) later discovered a 170 kDa membrane-bound
gelatinase dimer at the invasive front of the human melanoma cell line LOX, which was named
“seprase” due to its surface expression by Monsky et al. (3), although protein sequence analysis
subsequently revealed that FAP and seprase were the same protein (4, 5). Busek et al. (6) later
reported that generally FAP is not expressed in healthy adult mammalian tissues, although some
FAP+ cells are present in the placenta and uterine stroma, particularly during the proliferative phase
(7), embryonic tissue (8) and multipotent bone marrow stromal cells (9). Moreover, small amounts
of FAP are present in plasma from humans and other mammals (approximately 100 ng/mL or 0.6
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nmol/L) (6). The source of this soluble FAP is unclear, although
it may be shed from the plasma membrane through a2-
antiplasmin (10). Therefore, FAP localization is not limited to
the cell surface.

Some studies have revealed that systemic therapy targeting
FAP+ cells can lead to severe cachexia, including muscle damage,
osteotoxicity, and even death (11, 12). These findings raise
concerns regarding strategies that target FAP and have largely
hindered related research. Nevertheless, it is useful to identify
treatments that selectively kill FAP+ locally activated fibroblasts,
without causing systemic toxicity, which would permit
treatments that aim to deplete tumor-associated FAP+ cells.

Previous reviews have summarized progress on the use of
FAP in tumor diagnosis, however, many developments have
been made since (13–15). There are also some studies focusing
on FAP inhibitors and their radionuclides in tumors (16–18).
This study focuses on the occurrence of FAP in tumors over the
past ten years. It includes a comprehensive discussion of tumor
development and updates on clinical applications, focusing on
the progress of diagnosis and treatment of FAP tumors based
on nanomaterials.
BIOLOGICAL PROPERTIES OF FAP

Enzymatic Activity and Substrates
At the genetic level, human FAP and dipeptidyl peptidase-4
(DPPIV) genes share substantial homology. The FAP gene is
located on chromosome 2q23 and contains 26 exons (total
Frontiers in Oncology | www.frontiersin.org 2
length: 73 kb), while DPPIV is located on chromosome 2q24.3
and contains 26 exons (total length: 70 kb). Therefore, some
people believe that FAP evolved through the duplication of the
DPPIV gene. Expression of FAP is observed in various animal
species, including mice (19, 20) and xenopus (21), with the FAP
gene in mice very similar to that in humans (located on
chromosome 2, contains 26 exons, with a total length of 60
kb). Thus, mouse models are likely reliable for preclinical
research regarding treatments that target FAP.

The FAP protein is a 170-kda homodimer with two N-
terminal glycosylated subunits. The 97-kda type II
transmembrane serine protease is a member of the prolyl
peptidase family, which includes DPPIV (most similar to
FAP), DPP7, DPP8, DPP9, and prolyl carboxypeptidase. The
FAP and DPPIV proteins have a 70% identity at the amino acid
sequence (22) and share a catalytic triad of serine, aspartic acid,
and histidine residues (23). Serine plays a nucleophilic role,
which allows DPPIV to cleave the N-terminal Pro-“X” peptide
bond (where “X” is any amino acid except proline or
hydroxyproline). Unlike FAP, DPPIV is expressed in a variety
of human tissues under normal conditions and is related to many
physiological processes, including glucose homeostasis and T-
cell activation (24). The FAP protein has dipeptidyl peptidase
and endopeptidase activities, which are sometimes described as
gelatinase activity. Although both FAP and DPPIV have
dipeptidyl peptidase activity, the unique endopeptidase activity
of FAP makes it preferentially cleave to the Gly-Pro-“X”
sequence (Figure 1A), with the most effective cleavage when
“X” is Phe or Met and the least effective one when “X” is His or
A

B

FIGURE 1 | The expression of FAP in tumor tissues and FAP enzyme activity. Cancer-associated fibroblasts (CAFs) express high levels of fibroblast activation
protein-a (FAP). FAP has dipeptidyl peptidase (DPP) and endopeptidase (EP) activity (A). The P2 preferences depend on the type of enzymatic activity, and different
amino acids at different positions have a greater impact on enzyme activity (B).
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Glu (25–27). In addition, this cleavage by FAP is impaired when
the P4 and P2 residues are heavily charged amino acids
(Figure 1B). Therefore, endopeptidase activity can be used to
specifically detect FAP and are the basis of nanomaterial
treatments that aim to specifically inhibit FAP.

Previous studies have shown that DPPIV can cleave
neuropeptide Y, peptide YY, SP (Substance P), and brain
natriuretic peptide 32, which can also be cleaved by FAP (28).
The known active substrates of the FAP endopeptidase include
collagens I, III, and V, as well as a-2 antiplasmin and fibroblast
growth factor 21 (29). Other recently identified substrates of FAP
include fibrillin-2, extracellular matrix protein 1, C-X-C motif
chemokine 5, C1q, and tumor necrosis factor related protein 6
(C1qT6), and lysyl oxidase homolog 1 (Table 1). The ability of
FAP to cleave collagen depends on previous matrix
metalloproteinase activity or thermal degradation (30). Soluble
FAP is known as a2-antiplasmin cleaving enzyme (APCE),
which has pro-coagulation properties. After FAP cleaves a-2
antiplasmin, it is converted into a more effective plasmin
inhibitor, which slows the dissolution of the fibrin clot and
reduces bleeding during tissue repair (31).
Non-Enzymatic Activity of FAP
Studies of mutated FAP with impaired enzymatic activity have
revealed that FAP may have non-enzymatic functions. For
example, transfection of mouse melanoma cell lines with non-
enzymatically active FAP reduced their tumorigenicity. In
contrast, FAP with normal enzymatic activity had enhanced
tumorigenicity, which suggested that even low FAP enzymatic
activity exerts biological effects (32). Similarly, breast cancer cell
lines were transfected with a version of FAP that had low
enzymatic activity exhibited faster tumor growth in vivo and
faster degradation of the extracellular matrix (vs. untransfected
cell lines) (33). Thus, FAP can induce tumor growth and
extracellular matrix degradation, regardless of whether it has
high or low enzymatic activity.

Another study of fibroblasts that were transfected with
enzymatically inactive FAP revealed increased growth and
migration of breast cancer cell lines, with FAP activating the
phosphoinositide 3-kinases (PI3Ks), matrix metallopeptidase 2,
and matrix metallopeptidase 9 signaling pathways (34). Other
studies have indicated that FAP was highly expressed in oral
squamous cell carcinoma cells, where FAP gene knockout
inhibited tumor cell proliferation, migration, and invasion
through the inhibition of the phosphatase and tensin homolog/
Frontiers in Oncology | www.frontiersin.org 3
PI3K/protein kinase B and Ras-ERK signaling pathways (35).
Moreover, FAP can form complexes with DPPIV, matrix
metallopeptidase 1, matrix metallopeptidase 2, urokinase-type
plasminogen activator, and other proteins, which can act as
inter-cell signal transduction pathways to promote tumor cell
invasion (36, 37). The combination of FAP and integrin
regulated downstream RhoA activity and influenced the
migration of bone marrow-derived mesenchymal stromal cells,
as the FAP protein loss significantly inhibited migration,
although the peptidase activity of FAP did not play a role in
this process (38). Inflammatory cytokines (IL-1b, TGF-b, and
TNF-a) also promote the migration of bone marrow-derived
mesenchymal stromal cells by upregulating FAP expression.
Another study also revealed that FAP positively activated signal
transducer and activator of transcription (STAT3) in fibroblasts
through the urokinase receptor-dependent focal adhesion kinase-
Src-Janus kinase 2 signaling pathway (39). The murine model of
liver cancer indicated that FAP+ cancer-associated fibroblasts
(CAFs) are the main source of chemokine (C-C motif) ligand 2
(CCL2), and fibroblast STAT3-CCL2 signaling inhibited tumor
growth through enhanced recruitment of myeloid-derived
suppressor cells. Moreover, FAP expression is positively
correlated with levels of CCL2 and STAT3.

Cells that overexpress FAP have increased proliferation and
migration, due to activation of the PI3K and sonic hedgehog
pathways. Phosphorylation of FAP may be reduced when it
forms a complex with the focal adhesion kinase protein, which
may ultimately promote FAP overexpression. In this context,
PI3K and sonic hedgehog inhibitors can inhibit FAP expression,
which reduces cell proliferation and migration (36).
EXPRESSION OF FAP IN TUMORS

Normal tissues have low and generally undetectable levels of FAP
expression. However, FAP is overexpressed in many tumor
tissues, including breast (40–43), colorectal (44–46), pancreatic
(47–50), lung (51–53), brain (54–56), intrahepatic bile duct (57),
and ovarian (58–61) cancers. In addition, high levels of FAP
expression can be detected in some tumors that are derived from
non-epithelial tissues, such as melanoma (2, 62) and myeloma
(63). In these tumors, FAP overexpression is typically observed
in the interstitium, which has led to FAP being considered a
universal marker for CAFs, although FAP expression can also be
detected in gastric carcinoma (64–66), pancreatic carcinoma (67)
and melanoma (2) cells.
TABLE 1 | Differences between FAP and DPPIV on expression, enzyme activity, and natural substrates.

Expression Enzymatic
activity

Natural substrate

FAP Specific(fibrosis, arthritis, atherosclerosis, autoimmune diseases,
metabolic diseases, and cancer)

EP & DPP Collagens I, III and V; FBN-2; ECM-1;CCL-2, CXCL-5; C1qT6; LOX-L1;
a-2 antiplasmin; NPY; PYY; SP; BNP; FGF21

DPPIV Nonspecific DPP NPY; PYY; SP; BNP; FGF21
DPP, Dipeptidyl peptidase; EP, endopeptidase; FBN-2, fibrillin 2; ECM-1, extracellular matrix protein 1; CCL/CXCL, chemokines belonging to the CC and CXC family; C1qT6, complement
C1q tumor necrosis factor-related protein 6; LOX-L1, lysyl oxidase-like-1; NPY, neuropeptide Y; PYY, peptide YY; SP, substance P; BNP, brain natriuretic peptide; FGF21, fibroblast
growth factor 21.
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ROLES OF FAP IN TUMORS

The broad range of FAP expression in a variety of cancers has led
to numerous studies regarding the pro-tumor and anti-tumor
effects of FAP expression. The cumulative results of which
indicate that FAP expression influences tumor growth by
impacting tumor cell proliferation and invasion, angiogenesis,
epithelial-to-mesenchymal transition, immunosuppression, and
drug resistance (Figure 2).

Promoting Tumor Cell Proliferation
and Invasiveness
Numerous studies have indicated that FAP promotes tumor cell
proliferation, migration, and invasion, which ultimately leads to
tumor growth. There are two main hypotheses regarding the
underlying mechanisms (3, 32–37, 68, 69). The first hypothesis
involves an indirect mechanism, whereby FAP regulates
extracellular matrix remodeling that leads to enhanced tumor
growth and invasion (3, 32–34). It remains unclear whether FAP
regulates this extracellular matrix remodeling through its
Frontiers in Oncology | www.frontiersin.org 4
enzymatic or non-enzymatic activity. The second hypothesis
involves a direct mechanism, whereby FAP expression
influences signaling pathways that control the cell cycle and
proliferation, which ultimately promote tumor growth (35–37,
68–70).

The direct hypothesis is supported by many studies. In the
indirect hypothesis, transfection of small interfering RNA targeting
FAP inhibits the proliferation of ovarian CAFs, leading to cell cycle
arrest (68). In squamous lung cancer cell lines, FAP overexpression
promotes proliferation, migration, and invasion, accompanied by
upregulation of the PI3K/protein kinase B and sonic hedgehog/
glioma-associated oncogene signaling pathways (70). Other studies
on oral squamous cell carcinoma have indicated that FAP is an
upstream regulator of phosphatase and tensin homolog PI3K/
protein kinase B and Ras-ERK signaling pathways (35).
Additionally, Kawase et al. (69) studied the effects of co-culturing
FAP+ fibroblasts with pancreatic ductal adenocarcinoma (PDAC)
cell lines and reported increased phosphorylation of tumor
suppressor genes in cancer cells leading to enhanced cell cycle
progression and proliferation.
FIGURE 2 | The role of FAP in tumors. FAP can promote tumor growth by facilitating the proliferation and invasion of tumor cells, promoting the formation of
microvessels, and regulating immunity, such as inhibiting the differentiation and maturation of dendritic and T cells, thereby increasing the proportion of myeloid
suppressor cell, and up-regulating IFN-g and TNF-a.
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Microangiogenesis
Aimes et al. (71) reported that human endothelial cells can
produce FAP, which plays a regulatory role in microvascular
reorganization and capillary morphological changes, in addition
to other serine proteases. In this context, FAP+ breast cancer cells
do not exhibit in vitro proliferation advantages, although
inoculation into severe combined immunodeficiency mice
leads to faster tumor growth and a higher degree of
vascularization. Histological analysis of gastric cancer biopsy
specimens also revealed that higher FAP expression is
associated with a significantly greater density of microvessels
(72). In vivo models of lung cancer and colon cancer also
revealed that FAP knockout or drug-based inhibition are
associated with decreased microvessel density and slower
tumor growth (73). Another study revealed that FAP is
expressed in human endothelial cells during the early stage of
capillary formation, although FAP expression is absent in the
mature endothelium (74). In addition, FAP expression is
observed in endothelial cells at the invasive front of ductal
carcinoma, suggesting that FAP promotes capillary growth and
invasion of the extracellular matrix (75). Abundant FAP
expression is also observed around abnormally proliferating
blood vessels in the stroma of glioblastoma (54). A large
number of studies have confirmed that FAP is expressed on
the microvascular endothelial cells of malignant tumor tissues,
such as multiple myeloma, gastric cancer, and breast cancer (63,
65, 76).

Epithelial-to-Mesenchymal Transition
The epithelial-to-mesenchymal transition allows malignant
epithelial cells to acquire a mesenchymal phenotype that
permits increased migration and invasion required for
metastasis (3). Studies have confirmed that antibodies targeting
FAP can be used to isolate fibroblasts and reduce the purity of
primary cells, and many epithelial-derived cell lines also express
FAP during the epithelial-to-mesenchymal transition after
transforming growth factor beta induction (77). Thus, although
most FAP+ cells are derived from CAFs, some epithelial cells can
express FAP under certain conditions.

Immunomodulation
Studies have shown that FAP+ CAFs can promote an
immunosuppressive tumor microenvironment by interfering
with the differentiation and maturation of dendritic cells,
blocking the conversion of T-cells to cytotoxic T-cells, and
inhibiting the expression of the major histocompatibility
complex antigens (78). One study revealed that relative to FAP-

CAFs, FAP+ CAFs have unique inflammatory gene expression
characteristics, with the greatest upregulation of CCL2 expression
(39). In addition, upregulation of CCL2 by FAP is not related to its
enzymatic activity, as treatment using talabostat (an inhibitor of
FAP enzymatic activity) does not alter CCL2 protein expression.
The same research group investigated the role of FAP+ CAFs and
mixed cells in the Hepa1-6 hepatoma cell line and observed that
relative to FAP- CAFs and mixed cells, the tumor model produced
using the FAP+ CAFs mixture has higher proportions of
Frontiers in Oncology | www.frontiersin.org 5
polymorphonuclear myeloid-derived suppressor cells, myeloid-
derived suppressor cells, and macrophages, and lower
proportions of interferon gamma (IFNg) IFNg+CD8+ T-cells.
Furthermore, in CCL2 knockout mice, tumors with FAP+ CAFs
have the same proportion of myeloid-derived suppressor cells as
tumors with FAP- CAFs, although the tumors lose their growth
advantage. These results suggest that FAP+ CAFs release CCL2,
which is recognized by the CCL2 receptor (CCR2) on circulating
myeloid-derived suppressor cells and leads to their recruitment to
tumor tissues (39).

Another colorectal cancer study confirmed that FAP+ CAFs
produce CCL2 and exert similar effects on myeloid-derived
suppressor cells. Feig et al. (67) speculated that FAP+ CAFs
serves as the main source of tumor C-X-C motif chemokine 12
(CXCL12), which is involved in the local immunosuppressive
environment. After adding inhibitors of the CXCL12 receptor C-
X-C chemokine receptor type 4, the authors noted a T-cell-
dependent reduction in tumor volume and improved response to
anti-PD-1 treatment, although no clear anti-cytotoxic T-
lymphocyte-associated protein-4 effects occur. Another study
confirmed that FAP+ CAFs secrete CXCL12 after recognizing
adenosine through the A2B adenosine receptor (79).

Kraman et al. (9) described the ability of FAP+ cells to
suppress the anti-tumor immune response, which they
evaluated using a transgenic mouse model in which the FAP
gene was modified to include coding sequences for green
fluorescent protein or diphtheria toxin receptor. They used the
green fluorescent protein-expressing model to confirm that FAP
was expressed in different CD45+ and CD45- cells and noted that
immunogenic tumors could be created through forced
expression of ovalbumin. Further, prophylactic treatment of
the mice with a vaccine successfully slowed tumor growth. The
diphtheria toxin receptor-expressing model confirmed that
diphtheria toxin reduced the number of FAP+ cells. When the
ovalbumin vaccine was tested in the transgenic mice, the
researchers observed that tumor growth stopped immediately
after the diphtheria toxin-related decrease in FAP+ cells,
although a similar result was not observed for the non-
immunogenic tumors. Furthermore, the researchers confirmed
that T-cell counts in the mice were not related to FAP expression,
suggesting that FAP mediates the immune response through an
alternate mechanism. Moreover, anti-tumor necrosis factor
alpha and anti-IFNg treatment counteracted the reduced tumor
growth that was observed after the decrease in FAP+ cells,
suggesting that FAP may inhibit the production of tumor
necrosis factor alpha and IFNg or weaken the cellular response
to these cytokines. The cytokine levels also did not change in
response to the decrease in FAP+ cells, which supports the latter
hypothesis that FAP reduces the response of tumor cells to tumor
necrosis factor alpha and IFNg. The same group used diphtheria
toxin receptor-expressing transgenic mice to study the role of
FAP in PDAC and found that eliminating FAP+ cells
significantly reduces tumor growth, which is related to CD4+/
CD8+ T-cell activity. The decrease in FAP+ cells also enhances
the response to anti-PD-1 and partially improves the efficacy of
anti-cytotoxic T-lymphocyte-associated protein-4 treatment
August 2021 | Volume 11 | Article 648187
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(67). Thus, in a murine model, FAP is involved in the resistance
of PDAC to these immune checkpoint inhibitors. In vivo models
of colorectal cancer also indicate that colorectal cancer cell lines
co-injected with FAP+ CAFs have increased resistance to anti-
PD-1 treatment (78), while in vivo models of gastric cancer
revealed that anti-PD-1 treatment and FAP inhibitors have a
synergistic effect in terms of slowing tumor growth (64).
Therefore, it appears that FAP is involved in modulating the
immune environment of tumors.

However, not all studies have shown that FAP exerts an
immunosuppressive effect. For example, the elimination of CAFs
can cause immunosuppression in pancreatic cancer, which in
turn leads to shortened patient survival (80). Another study on
non-small cell lung cancer revealed that in tumors with high
CD3+/CD8+ T-cell infiltration, high FAP expression is associated
with increased patient survival (81). These results suggest that
FAP+ CAFs may have beneficial effects in some settings, and thus
caution is warranted regarding treatments that aim to directly
eliminate FAP+ CAFs.
TARGETING FAP

As described in the previous sections, FAP expression appears to
be related to the occurrence and development of malignant
tumors, and FAP expression appears to be highly specific to
tumor tissues. Thus, relative to directly targeting cancer cells,
there may be diagnostic and treatment benefits associated with
targeting the FAP+ tumor stroma. Therefore, several research
groups have explored strategies for treating various tumors by
targeting either FAP itself or FAP+ CAFs (Table 2). Many tracer
drugs that target FAP have shown great clinical promise, not
only for diagnosis, but also for treatment (131).

Inhibitor of FAP
Talabostat is a small molecule that inhibits the dipeptidyl
peptidase activity shared by DPPIV and FAP. Preliminary
findings revealed that oral talabostat treatment slows tumor
growth in mouse models of fibrosarcoma, lymphoma,
melanoma, and rhabdomyosarcoma, as well as in bladder
cancer cell lines (91, 92). Talabostat also enhances the efficacy
of oxaliplatin in mouse models of colon cancer (93). Thus,
talabostat has been evaluated in various clinical trials, and a
phase II trial revealed tumor control in 21% of patients with
colorectal cancer (94). Although talabostat may be useful in this
setting, additional studies are needed to identify strategies to
improve its efficacy.

After years of research, the latest selective FAP inhibitor with
low nanomolar potency was UAMC-1110. Meletta et al. (95)
reported the first inhibitor-based probe of UAMC-1110 in 2015,
which was originally designed to visualize atherosclerotic plaque.
However, in vitro studies have found that this method is not
useful for the expected atherosclerosis imaging, but it seems to be
highly correlated with tumor tissue imaging.

The same inhibitory drugs are also used to study nervous
system tumors. One preclinical study revealed that fibroblast
Frontiers in Oncology | www.frontiersin.org 6
activation protein inhibitor-04 (FAPI-04) exhibits great tumor
accumulation and delayed elimination. In addition, FAP-specific
positron emission tomography revealed increased tracer uptake
in glioblastoma and high-grade mutant astrocytoma, without
significant uptake in diffuse astrocytoma (96). Loktev et al. (97)
used inhibitor-based radiopharmaceuticals to selectively target a
variety of tumors with high FAP expression and designed several
fibroblast activation protein inhibitor variants to further increase
tumor accumulation and the tracer effect, which improved the
therapeutic effect. Moreover, Watabe et al. (98) used 64Cu and
225Ac to radioactively label fibroblast activation protein
inhibitor-04, permitting live tracking and treatment response
evaluation for pancreatic tumors that were transplanted into an
in vivo mouse model. Recently, 68Ga-FAPI has been clinically
adopted, allowing researchers to obtain a variety of tumor images
with very high uptake and image contrast, paving the way for
new applications in tumor characterization, staging, and
treatment. Qin et al. (99) evaluated the performance of 68Ga-
DOTA-FAPI-04 (68Ga-FAPI) PET/MR in the diagnosis of
primary tumors and metastatic lesions in patients with gastric
cancer and compared it with 18F-FDG PET/CT. The results
show that, due to the high expression of FAP in gastric cancer
and its metastatic tissues, 68Ga-FAPI PET/MR is significantly
superior to 18F-FDG PET/CT for the diagnosis of primary
gastric cancer and its metastatic lesions. Thus, 68Ga-FAPI
PET/MR may represent a promising diagnostic method that is
expected to replace 18F-FDG PET/CT in the future.

Recently, a detailed preclinical study evaluated the role of the
highly selective FAP inhibitor UAMC-1110 in a mouse model of
pancreatic cancer. UAMC-1110 did not slow down tumor
growth, nor did it enhance the effect of radiotherapy.
According to existing data, inhibiting FAP enzyme activity may
have some beneficial effects on the tumor microenvironment, but
it may not be sufficient to prevent tumor progression (100).
Instead, the super binding ability of FAP inhibitors has been
widely used in tumor diagnosis.

Immunotherapy Targeting FAP
FAP Vaccine
Chen et al. (82) evaluated a whole-cell tumor vaccine targeting
FAP, which suppressed tumor growth by simultaneously
attacking cancer cells and CAFs. Subsequent studies evaluated
heterologous antigens to improve whole-cell tumor vaccines by
eliminating immune tolerance and activating the adaptive
immune response. One study revealed that this led to an
increased number of apoptotic tumor cells and decreased
number of CAFs, which was associated with delayed tumor
growth and lower recurrence. Additional experiments revealed
that the anti-tumor response was related to antigen-specific
cytotoxic T-cells, as well as activation of the humoral immune
response. Immunized mice produce antibodies to FAP, which
can be detected in their serum, and this FAP-based
heterogeneous whole-cell tumor vaccine treatment is a
potential strategy for personalized immunotherapy in cancer
patients. Wen et al. (83) used cationic liposomes to encapsulate a
FAP plasmid, and this vaccine was able to inhibit tumor growth
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and metastasis in a mouse model of colon cancer. Loeffler et al.
(84) constructed an oral vaccine targeting FAP DNA, which was
used to pre-treat mice that were subsequently injected with colon
cancer or breast cancer cells. The oral vaccine was associated
with reduced tumor growth, suppression of lung metastasis,
increased chemotherapy uptake, and increased survival that
was related to a CD8+ T-cell-dependent mechanism. Animal
models have also confirmed that the vaccine increased T-cell
activation, with one-half of the immunized mice not developing
tumors after being injected with tumor cells, while those that did
develop tumors had significantly prolonged survival.

Chimeric Antigen Receptor T-Cell Therapy
Targeting FAP
Chimeric antigen receptor (CAR) T-cells are an exciting new
immunotherapy strategy, using cytotoxic T-cells that are
artificially targeted to recognize specific antigens and thus
eliminate cancer cells (85–87). The US Food and Drug
Administration has approved CAR T-cell therapy for certain
forms of leukemia and lymphoma. In vivo studies have s-oma,
mesothelioma, breast cancer, colon adenocarcinoma, and lung
adenocarcinoma (88). Schuberth et al. (89) also demonstrated
that FAP expression existed in all subtypes of malignant pleural
mesothelioma, and that CD8+ T-cells targeting FAP had strong
therapeutic potential in vitro and in vivo, based on reduced FAP+

tumor growth and improved survival among mice in the FAP+

model. However, FAP expression in malignant cells is limited to
a few cancer types. Thus, targeting FAP+ stromal cells with CAR
T-cells can greatly broaden the application of this therapy, and
we hypothesize that using CAR T-cells to selectively eliminate
FAP+ cells may improve patient survival, given the tumor-
promoting effects of FAP+ CAFs. Kakarla et al. (90) have
demonstrated that CAR T-cells can effectively kill FAP+ cells in
vitro and increase overall survival in a mouse model of
lung adenocarcinoma.

Despite these benefits, caution is warranted regarding the
clinical application of CAR T-cells targeting FAP. For example,
one study revealed that FAP-specific CAR T-cells did not
regulate tumor growth and might instead induce lethal
osteotoxicity and cachexia by killing pluripotent stem cells in
the bone marrow stroma (12). Although the cause of this serious
adverse effect is unclear, it may be related to differences in FAP
specificity, which suggests that further research is needed to
optimize CAR T-cell therapy targeting FAP.

Nanodrugs Targeting FAP for Diagnosing
and Treating Tumors
Nanotechnology is an emerging field that aims to evaluate and
modify natural processes on a nanometer scale. Nanomaterials
have special properties that produce quantum size, interface, and
macroscopic quantum tunneling effects, which can induce
different biological responses. For example, the ultra-small size
and relatively large surface area of nanoparticles make them
effective for drug loading, as the nanoparticles can easily
penetrate blood vessels without causing vascular endothelial
damage and with a limited risk of enzymatic degradation.
Furthermore, the local drug concentration is high, which can
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improve the curative effect and reduce systemic side effects.
Moreover, nanoparticles have high surface reaction activity,
many active centers, high catalytic efficiency, and strong
adsorption capacity, which may have broad applications in the
diagnosis and treatment of tumors. Some fluorescently labeled
nanomaterials also have a significant role in tumor diagnosis and
treatment, particularly those emitting second near-infrared
channel (NIR-II) region fluorescence. Fluorescence imaging in
the NIR-II region is at the forefront of biomedical research due to
its inherent advantages, including relatively lower tissue
autofluorescence and higher spatiotemporal resolution (132–
134). Additionally, certain nanomaterials are constructed out
of materials that respond to enzyme activity, and consequently,
turn on quenched fluorescence under the catalysis of enzymes to
obtain clear images (135).

Targeted Drugs and Nanodrugs Based on
Antibodies to FAP
Early studies of monoclonal antibodies targeting FAP focused on
identifying FAP and F19 without considering their potential
therapeutic effects. However, radiolabeled F19 revealed high
expression of FAP in tumors and metastases, with improved
clinical symptoms, which supports potential diagnostic and
therapeutic roles for antibodies targeting FAP (101, 102).
Cheng et al. (19) reported that antibody treatment targeting
FAP inhibits tumor growth. Specifically, they immunized rabbits
with recombinant mouse FAP and collected the resulting serum
with FAP-specific antibodies. Treatment with this serum
significantly inhibited the growth of colorectal cancer cell lines
transplanted into nude mice. Specific anti-FAP antibodies and
single-chain variable fragments (scFv) against FAP were
subsequently developed, and the results revealed that the
human single-chain fragments (scFv18 and scFv34) have
greater affinity and lower immunogenicity, relative to F19
(103–105).

As macromolecular antibodies cannot easily enter solid
tumors and produce a curative effect, Schmidt et al.
constructed a bivalent FAP-specific antibody through targeted
selection and reported an increased affinity for tumor tissue and
human-derived VL and VH chains (104). Results from a phase I
clinical study and pharmacokinetic analysis of the humanized
anti-FAP antibody (sibrotuzumab) further revealed that it is well
tolerated in humans and is specifically concentrated in the tumor
stroma, with limited absorption in normal tissues (107).
Moreover, Millul et al. (106). described a ligand with ultra-
high affinity for FAP (OncoFAP) that is used for precise
diagnosis and treatment of FAP+ tumors. Through the
addition of fluorescein, which facilitates quantification of drug
aggregation, they observed that 10 minutes after intravenous
injection of OncoFAP, more than 30% of the drug had
accumulated in 1 g of the tumor, maintaining a high
concentration for at least 3 h, ensuring a long diagnostic time
window. Furthermore, certain drugs can be tagged with
fluorescein, allowing for simultaneous treatment and diagnosis.

Ruger et al. (110) combined liposomes containing DY-676-
COOH with antibodies of FAP (scFv) to prepare anti-FAP
Frontiers in Oncology | www.frontiersin.org 9
liposomes (anti-FAP-IL). After the synthesis, the fluorescence
of near-infrared fluorescent dyes in the aqueous solution within
the liposomes was quenched, and Only FAP-expressing cells
were able to take up and activate fluorescence, which improves
the diagnostic accuracy of the tumor. Li et al. (109) reported a
nanoparticle-based photodynamic therapy involving a
photosensitizer (ZnF16Pc) encapsulated in a ferritin nanocage.
The nanocage was conjugated with scFv to permit FAP targeting,
and phototherapy was then used to eliminate the targeted cells.
Targeting CAFs effectively treated tumors in mice. An analysis of
intratumoral aggregation at different nanoparticle sizes revealed
that nanoparticles in the tumors had enhanced permeability and
retention, although most nanoparticles were distributed in the
area around blood vessels and did not migrate to the tumor’s
center. This was largely related to the physical barrier that was
created by the dense tumor extracellular matrix, which prevented
effective nanoparticle extravasation and diffusion. Thus,
targeting and eliminating CAFs promotes the aggregation of
nanoparticles in the tumors. Zhen et al. (108) evaluated a similar
nano-photoimmunotherapy strategy using drug-bearing
nanocages conjugated with scFv to target FAP, which
effectively eliminated CAFs through phototherapy with
negligible damage to healthy tissues. Although this method did
not directly target cancer cells, it effectively reduced tumor
growth in tumor-bearing mice. Further studies revealed that
targeting CAFs leads to decreased CXCL12 release and decreased
extracellular matrix deposition, which reduces the barrier to T-
cell infiltration and facilitates greater tumor inhibition. Thus,
targeting FAP in this context might help regulate the tumor
microenvironment and permit a more effective anti-tumor
immune response. Lang et al. (111) built a CAF-targeted
siRNA delivery system by loading FAP antibodies onto cell-
penetrating peptide (CPP)-based nanoparticles. The
nanoparticles can specifically down-regulate the expression of
CXCL12 in CAFs, significantly inhibiting tumor cell invasion
and migration, and tumor angiogenesis.

Due to the special morphology of nanomaterials, more
antibodies are attached to the surface, which improves the
possibility of binding to FAP and greatly enhances the
targeting ability.

Prodrugs and Nanodrugs Based on FAP
Dipeptidase Activity
The general structure of the prodrug is Z-Gly-Pro-Drug (113–
119, 129). It has a small molecular weight, and its toxicity is lower
than that of the original drug. It exerts its effect after hydrolysis of
the FAP-positive site (Figure 3).

Diagnosis
Based on the high expression characteristics of FAP in tumor
tissues, fluorescent probes (122–124) (Figure 3A) and combined
prodrug probes (125) that respond to FAP enzyme activity have
been designed to diagnose tumors. The use of the above probes
has been only tested in animal tumor models for the time being.

Han et al. (126) developed a nanodrug with FAP
endonuclease as a switch based on polydopamine-coated gold
August 2021 | Volume 11 | Article 648187
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nanostar (GNS@PDA). This nanoplatform can essentially
perform computed tomography/photoacoustic/two-photon
luminescence/infrared thermal four-modality imaging. Under
the precise guidance of multi-mode imaging, GNS@PDA
performs uniform photothermal ablation of large solid tumors.
These results show the great potential of this scalable
nanoplatform related to FAP in cancer treatment. Ji et al. (127)
developed nanocarriers containing FAP cleavable peptides.
These particles can hold drugs or fluorescent dyes and can
release loaded drugs and fluorescent dyes under the action of
FAP endonuclease, so they can be used as drug delivery
platforms and cancer tissue imaging tools. Due to the high
loading rate of nanodrugs, in most cases, integrated diagnosis
and treatment research will likely be carried out, which can
achieve the effect of killing two birds with one stone.

Zhao et al. (128) constructed a near-infrared probe based on
FAP reactive peptides, which spontaneously form a large
quantity of nanofibers on the surface of CAFs. In vitro imaging
revealed that tumors were detectable at 24 h after probe
administration and that the tumor group had a 5.5-fold greater
signal than the control group. The probe provides a window of >
48 h for detecting a tumor and the selective probe assembly
permits differentiation between tumors and organs with high
metabolic activity, as the probe produces a tumor-specific signal
that is 4-fold greater than the liver signal and 5-fold greater than
Frontiers in Oncology | www.frontiersin.org 10
the kidney signal. Moreover, the probe could specifically, and
sensitively, diagnose small tumors with a diameter of
approximately 2 mm.

Therapies
Considering that FAP is overexpressed in the tumor
microenvironment and generally absent in healthy adult
tissues, some research groups have sought to use FAP protease
activity to selectively activate prodrugs at tumor sites to improve
effectiveness and reduce toxicity. Most candidates are prodrugs
that are modified using nanotechnology, although they have not
been tested in clinical trials. A mouse breast cancer model
revealed that epirubicin conjugated with a FAP-specific
dipeptide (Z-Gly-Pro) effectively releases epirubicin after
incubation with FAP, and epirubicin induces a substantial anti-
tumor effect in cells with high FAP expression (4T1) (Figure 3B).
Furthermore, relative to free epirubicin, mice treated with this
nanomaterial exhibit less weight loss with no obvious cardiotoxic
effects (120). Other mouse and dog models have revealed that
doxorubicin conjugated to a FAP substrate has significantly
lower toxicity and greater safety relative to the toxic effects of
free doxorubicin on the heart, liver, kidneys, spleen, and
peripheral blood leukocytes. Moreover, the same dose of the
doxorubicin-conjugated formulation is associated with a 2-fold
increase in intratumor accumulation. In the clinical trial stage, it
A

B

FIGURE 3 | The mechanism of action of fluorogenic probe and prodrugs. The general scheme for Fluorogenic probes is that the quenched fluorescence is restored
after the FAP-specific peptide is cleaved (A). FAP targeted prodrugs: X indicates variable linkage between cleavable bond and drug in the C-terminal part of the
prodrug. The toxicity of the drug reappears after the prodrug is cleaved (B). The size of fluorescent probes and prodrugs is much smaller than the nanometer level.
Although it can easily penetrate into tumor tissues, a considerable amount of drugs will flow back into the blood vessels, therefore, there is no passive targeting effect.
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was found that Z-Gly-Pro-Dox is difficult to dissolve in water
(117). Zhang et al. (129) designed a nanomicelle system (ZGD-
MNs) to promote the systemic administration of Z-Gly-Pro-
Dox. A physiologically based pharmacokinetic model was used to
evaluate its distribution in rats. The study found that ZGD-MNs
are reasonably stable in phosphate buffer, showing good physical
and chemical stability during the observation period of 2 weeks,
and the cumulative drug release rate within 24 h was over 56%. Ji
et al. (127) have designed a new cleavable amphiphilic peptide that
specifically responds to FAP on the surface of CAFs. The peptide
spontaneously assembles into fibrous nanostructures in solution,
which can easily be converted into drug-loaded spherical
nanoparticles. These nanoparticles break down in response to
FAP activity, resulting in rapid and effective drug release at the
tumor site.

Deep Delivery of Nanodrugs in
Tumor Tissues
The performance of many anti-cancer drugs is largely hindered
by insufficient penetration. However, the variability of the
particle size in nanomedicine allows for better dispersion and
infiltration after entering the tumor tissue. In addition, targeting
FAP to induce CAFs damage can also increase the penetration
depth of the drug in the tumor tissue. Hou et al. (130) have
proposed a self-assembling FAP-triggered drug delivery system
composed of peptide-crosslinked cationic polyaminoamine
dendrimers. The chemotherapeutic drug (docetaxel) is
conjugated to the peptide-crosslinked cationic polyaminoamine
through disulfide bonds and electrostatic interactions and also
coupled to hyaluronic acid to improve tumor targeting and
biocompatibility. The nanoparticles have a diameter of
approximately 200 nm and negative zeta potential, which permits
stable circulation in the blood. However, when exposed to FAP, the
nanoparticles dissociate and release the chemotherapeutic drug,
which can penetrate CAFs and tumor cells. Studies have confirmed
that the nanomaterial has good penetration of tumor-related
biological barriers while killing a large number of tumor cells and
a smaller number of CAFs. This effect is associated with a good
therapeutic effect in hyperplastic solid tumors in connective tissues
(Figure 4A). Yan et al. (112) have previously designed a light-
triggered large-size nanoparticle. The FAP-a-targeting peptide was
modified on the surface to increase the targeting of tumor tissue.
After the photodynamic reaction, the large particles decomposed
into small nanoclusters, which enhances drug delivery (Figure 4B).
The photodynamic response simultaneously induces CAFs
apoptosis and breaks the physical barrier that affects deep tumor
delivery. Another study revealed that CAFs are closely associated
with local angiogenesis while targeting FAP+ CAFs and
administration of vascular disrupting agents that kill perivascular
cells are associated with a less stable blood-tumor barrier and greater
killing of tumor cells. Chen et al. (121) examined how this
mechanism used vinblastine combined with a FAP substrate,
which significantly reduced the growth of HepG2, A549, HeLa,
and CNE-2 xenograft tumors. Both of these treatments rely on drug
delivery through dipeptidase activity, which can kill CAFs and
weaken the extracellular matrix, subsequently enhancing local drug
Frontiers in Oncology | www.frontiersin.org 11
accumulation. These strategies have good tumor specificity and
therapeutic effects in a variety of solid tumor models.
CONCLUSION AND FUTURE DIRECTION

FAP is a marker that is constitutively expressed on the
mesenchymal cells of most epithelial solid tumors. There is
increasing understanding that expression of FAP promotes tumor
occurrence, development, invasion, and metastasis, which worsens
the patient’s condition and is associated with a poor prognosis.
Furthermore, our understanding of the physiological effects of FAP
expression has expanded to include its effects on the activation of
tumorigenic signals, angiogenesis, the epithelial-to-mesenchymal
transition, and even immunosuppressive functions. Thus, there is
interest in FAP as a potential target for anti-tumor treatments, and
existing research suggests that FAP-targeted drugs can exert
curative effects in models of most solid tumors. Although some
drugs have been evaluated in clinical studies, drug instability and
systemic side effects have limited their application. Moreover, the
complex interactions between the tumor microenvironment
components have made it difficult to precisely determine the
specific contribution(s) of FAP to tumor development. Although
its clinical application is limited, nanotechnology is a promising
field for addressing these issues by increasing drug delivery,
solubility, and adsorption, which may promote greater tumor
permeability and retention. Another option is targeted therapy,
although there are limited data regarding the anti-cancer efficacy of
drugs that solely target CAFs. Further research is needed to
determine whether these drugs should be combined with
chemotherapy, radiotherapy, targeted therapy, or even
immunotherapy, as some researchers believe that simply
eliminating CAFs might promote metastasis by de-stabilizing the
extracellular matrix surrounding the tumor. Therefore, substantial
work is needed to continue advancing our understanding of
treatments targeting FAP and their anti-tumor effects. Building
prodrugs on the basis of nano-platforms has absolute advantages in
both fluorescence imaging capabilities and drug loading; coupled
with its passive targeting effect (enhanced permeability and
retention effect, EPR) (136–139) and deep delivery to tumor
tissues, both of these greatly increase the accumulation of drugs
in tumor tissues and reduce the concentration of prodrugs in non-
target organs in the body. The structure of nanomaterials is
relatively stable, reducing the possibility of accidental release in
the circulation.Todate,mostnanomedicine remains in the research
phase. The preparation ofmost nanodrugs is complicated while the
synthesis conditions are strict, therefore, nanomedicine cannot be
mass-produced. Furthermore, most nanodrugs used in medicine
use materials with good biocompatibility, such as proteins and
peptide chains. Thesematerials are extremely easily degraded in the
body and, even if they show good results in vitro, reactions may be
slowed down in the complex environment of the organism, and
some side effects may occur. Therefore, although nanomaterials
have many advantages, there remain many unknown parameters
that require further study, but we believe that nanomedicine will
significantly improve disease treatment.
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