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Application of hyperbolic geometry 
in link prediction of multiplex 
networks
Zeynab Samei1 & Mahdi Jalili2

Recently multilayer networks are introduced to model real systems. In these models the individuals 
make connection in multiple layers. Transportation networks, biological systems and social networks 
are some examples of multilayer networks. There are various link prediction algorithms for single-layer 
networks and some of them have been recently extended to multilayer networks. In this manuscript, 
we propose a new link prediction algorithm for multiplex networks using two novel similarity metrics 
based on the hyperbolic distance of node pairs. We use the proposed methods to predict spurious and 
missing links in multiplex networks. Missing links are those links that may appear in the future evolution 
of the network, while spurious links are the existing connections that are unlikely to appear if the 
network is evolving normally. One may interpret spurious links as abnormal links in the network. We 
apply the proposed algorithm on real-world multiplex networks and the numerical simulations reveal its 
superiority than the state-of-the-art algorithms.

Many real biological, social and technological systems are modeled as networks in which nodes and links repre-
sent entities and different kinds of connections respectively. Network analysis in complex systems such as biology, 
ecology, computer science and sociology has become very important and applicable1. One of the major topics in 
network science is to predict missing, forthcoming and spurious links2. Many different link prediction algorithms 
have been introduced that use structure information of networks. Most of them are classified in similarity-based 
prediction methods, which work under the assumption that the probability of existing a link between two nodes 
is depended to their similarity3.

There are other types of link prediction methods such as Hierarchical Structure Model and Stochastic Block 
Model which are based on maximum likelihood analysis2,4,5. Recently the study of hyperbolic geometry based 
on the network structure has become useful in solving the link prediction problem. Considering the hyperbolic 
geometry of networks, HyperMap method was proposed by Papadopoulos et al.6. This method first map target 
networks into hyperbolic space, and then predict the missing links using the hyperbolic coordinates of node 
pairs7.

Recent studies8–10 have shown that many real network systems are modeled better in multiple layers to show 
different kinds of interactions between individuals11,12. Multiplex networks are a special kind of multilayer net-
works in which the number of nodes in all layers is the same. Some studies have shown that the structural features 
of different layers in multiplex networks are indeed correlated to each other1,13. So it can be supposed that con-
sidering the interlayer information can enhance the performance of link prediction in each layer of a multiplex 
network. In this paper, we investigate the node similarity index based on hyperbolic geometry and the layer 
relevance of the multiplex networks for predicting the spurious and missing links. In this method, we improve the 
performance of the link prediction based on hyperbolic distance considering both the popularity and similarity 
of nodes by combining the similarity indices in multiplex networks.

Using the interlayer information in solving the missing link prediction in multiplex networks has been con-
sidered before in a number of works. Pujari et al.14 used a decision tree classifier to predict the interaction of the 
coauthorship network in a multiplex collaboration network with three layers. Hristova et al.15 used a supervised 
classifier for link prediction in a two layer network containing Foursquare and Twitter using the interlayer infor-
mation. In another work, Sharma et al.16 proposed a new method considering weight for each layer of multiplex 
network and used it to solve the link prediction problem in the target layer. Yao et al.17 proposed a novel method 
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based on interlayer and intralayer information to solve the missing link prediction problem in multiplex net-
works. Hajibagheri et al.18 proposed a holistic method considering the information of all layers simultaneously 
in link prediction of a target layer in multiplex networks. Also, Guimerà et al. used Stochastic Block Models to 
predict missing and spurious links in noisy networks. Zeng et al.19 studied the impact of spurious link identifi-
cation methods on distortion of networks’ structure and dynamics. In another study, Zhang et al.20 measured 
the inter-similarity using the local diffusion processes in bipartite networks. Samei et al.21 proposed a method to 
identify spurious links in multiplex networks. In fact, they proposed a method to employ interlayer information 
to improve the performance of spurious link prediction in the target layer.

In the context of hyperbolic geometry of network, Krioukov et al.22 introduced the mapping of networks 
to hyperbolic space. They used the underlying hyperbolic geometry of network to study the functionality and 
structure of complex networks. They showed that the strong clustering and the heterogeneous degree distribu-
tion are natural reflections of the negative curvature and other properties of the hyperbolic geometry of complex 
networks. Then, Papadopoulos et al.23 studied the impact of popularity and similarity in networks’ growth. They 
developed a framework to suggest that new connections can be made between node pairs with an optimized 
trade-off between popularity and similarity. In another work, Papadopoulos et al.24 presented the HyperMap 
method to map a network to its underlying hyperbolic space and used the hyperbolic distance as a similar-
ity measure to solve the link prediction problem. Different from these works, other methods were introduced 
to infer hidden geometry of complex networks6,25. Recently, Muscoloni et al.26,27 introduced a nonuniform 
popularity-similarity optimization model (N-PSO). This model was used to predict the missing links using the 
community structure of the networks in N-PSO that improved the performance of the link predictors signifi-
cantly. Muscoloni et al. also proposed an intelligent machine to infer the network hyperbolic geometry based on 
an “angular coalescence” phenomenon28. A minimum curvilinear automata has been recently proposed to embed 
hyperbolic geometry of networks and used it for link prediction29.

In this paper, our proposed similarity indices based on hyperbolic geometry of network benefit both intralayer 
and interlayer information to solve the spurious and missing link prediction in multiplex networks. Based on 
that the experimental results on four single layer synthetic networks and six real multiplex networks show that 
the performance has been improved when the hyperbolic-based methods is used and the node pairs similarity 
measures are computed considering both interlayer and interlayer information.

Methods
Consider G = (G1, G2, …., GM) as a multiplex network with N nodes in each of M layers, where Gα = (Vα, Eα)
represents the network of layer α with V as the set of nodes and E as the set of links11,12,30. We can assume 

=α αA a{ }ij
[ ] [ ]  as the adjacency matrix of each layer Gα, where for 1 ≤ α ≤ M and 1 ≤ i, j ≤ |Vα|31:
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In the context of unsupervised link prediction, many similarity measures are defined to find the likelihood of 
link existence between each node pair (i, j). In multiplex networks the similarity score in layer α is shown by αsij . 
After computing the similarity scores for all potential node pairs in each layer, a ranking method can be used to 
choose the top ranked pairs which have more chance to make a connection. The key issue is how to calculate the 
similarity scores based on the known topology of networks. Recent studies have shown that the structure of the 
layers in multiplex networks are mostly dependent32,33. Hence, one of the main challenges in solving the link 
prediction problem in multiplex networks is to find an appropriate similarity measure that can benefit the rele-
vant information of all layers30. Based on this, here we use both the information of the target layer (intralayer 
information) and other layers (interlayer information) and combine them based on layer relevance to improve the 
performance of link prediction compared with the single-layer based methods.

In the case of missing link prediction, the goal is to estimate the probability of existence of non-observed links 
based on the current topology of network and available node’s features in network G(V, E). Since the missing 
links are not known, we assume that a fraction of observed links E, is missing and the goal of link prediction is to 
identify them. In order to do that, in each iteration a fraction of the observed links E, is removed based on k-fold 
decomposition method and the proposed methods are supposed to predict them. In the case of identifying spuri-
ous links, the task is to evaluate whether the observed links are reliable enough based on the current topology of 
the network. In order to do that, in each iteration, some nonexistent links are randomly added to the link set and 
the proposed methods are supposed to identify them34. Precision is used here to quantify the accuracy of a link 
prediction method which is defined as:

=
+

Precision
TP

TP FP (2)

where |TP| is the number of positive predictions that are truly predicted and |FP| is the number of positive pre-
dictions that are wrongly predicted.

Node similarity index.  Description of the similarity indices is given in the following.

Existing measures. 
•	 Preferential Attachment (PA): This index is based on the node degrees and for each node pair i and j is 

defined as:
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= Γ × Γ‖ ‖ ‖ ‖s (3)ij
PA

i j

where ||Γi|| indicates the number of neighbors of node i.
•	 Common Neighbors (CN): For each node pair i and j, this index counts the number of neighbors that are 

common between them and is defined based on the assumption that node pairs with more common neigh-
bors are more likely to make connection. It is defined as:

∩= Γ Γs (4)ij
CN

i j

•	 CAR: This measure considers both common neighbors of each node pair and the number of connections 
between the common neighbors, and is computed as below:

= ⋅s s s (5)ij
CAR

ij
CN

ij
LCL

where sij
CN  is the number of common neighbors between (i, j) and sij

LCL is the number of links between nodes in 
the common neighbors set35.
•	 CJC: This measure is a modified version of Jacard measure and is defined as below:

∪Γ Γ
=s

s

(6)
ij
CJC ij

CAR

i j

where sij
CAR is the similarity measure CAR defined above and ∪Γ Γi j  is total number of neighbors of nodes i and j35.

•	 Hyperbolic distance (HP): This measure computes the hyperbolic distance (Eq. (8)) of each node pair i and j 
based on Hypermap method. HyperMap is based on Maximum Likelihood Estimation. It finds the radial and 
angular coordinates ri, θi for all nodes i ≤ N, which maximizes the likelihood:

∏= −α α
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where the product is computed over all node pairs i, j and xij is defined as the hyperbolic distance between pair i, j:
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and p(xij) is the Fermi-Dirac connection probability:
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where R ~ lnN. The estimated radial coordinate of node i is based on its degree in the network (ki) via 
ri ~ lnN − lnki. Therefore, if node degrees are correlated in different layers so will be the radial coordinates36.

Proposed measures.  Node degree or popularity plays an important role in defining the similarity measures and 
many of them are based on common neighbors and preferential attachment. The underlying principle behind 
preferential attachment is that new connections are mainly made to more popular nodes. However, Papadopoulos 
et al.23 showed that popularity is just one aspect of attractiveness, while similarity could be considered as another 
aspect. They developed a framework where new connections consider a trade-off between popularity and 
similarity.

We know that the degree distribution of many real networks follow power-law distribution. However, as it can 
be seen in As real multilayer networks, we consider six networks (see Table 1). The multilayer networks are con-
verted to multiplex networks by assuming that all layers have the same number of nodes (the maximum number 
of nodes of all layers). Explanation of these networks is as follow:

Table 1, the degree distribution of the multiplex networks with small size do not follow power-law distribution. 
The previous experimental results indicated that HP’s performance was better in the networks with power-law 
distribution and less good in those that does not obey power-law degree distribution7. The reason for that would 
be the way the nodes’ radial coordinates are calculated. Because one of the parameters which is considered in 
HyperMap method to estimate the radial coordinates is the power-law exponent of the network. Therefore, if the 
network does not have a power-law degree distribution, the link-prediction accuracy of HP decreases. In order 
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to overcome this shortcoming and benefit the advantages of both popularity and similarity features of nodes, we 
proposed two approaches that are detailed in the following.

•	 Weighted Common neighbors (WCN): We generate a weighted version of CN that computes the weight of 
common neighbors considering the hyperbolic distance of them with the target node pairs. There are some 
studies about converting the original similarity measure to the weighted one, however it has been shown that 
that such conversion may reduce the prediction performance37. The pseudo-code of the proposed method is 
as follows:

	 1.	 Approximate the hyperbolic coordinates of each node.
	 2.	 Compute the matrix H of hyperbolic distance of the existing links in the network.
	 3.	 h = average of H
	 4.	 Γij = list of common neighbors of node pair (i, j) in the test list of missing or spurious link prediction.
	 5.	 for each k ∈ Γij

if H(i, j) < h
node pair (i, k) is a strong tie and has more weight
WCN(i, j) = WCN(i, j) + 1 + 1/H(i, k);

else
node pair (i, k) is a weak tie and takes the weight as CN
WCN(i, j) = WCN(i, j) + 1;

	 6.	 Repeat step 5 for node pair (k, j)
	 7.	 Sort all links in the test list in decreasing (for missing link prediction) or increasing (for spurious link 

prediction) order

•	 Ranking CN and HP (CN-HP)

This method benefits the advantages of both CN and HP measures. It uses a ranking method to combine the 
prediction given by both of these measures. In order to do that, one of the well-known classical rank aggregation 
methods, Borda’s method is used38. It is based on absolute positioning of the ranked elements rather than their 
relative rankings. A Borda score for each element is calculated based on the ranking of it in the aggregated list. For 
a set of full list L = [L1, L2, L3, …., Ln], the Borda’s score for element x and list Lk is given by:

= | < ∈B count y L y L x y L{ ( ) ( ) ( )& } (11)L x i i i( )i

and the total Borda’s score of element x is:

∑=
=

B x B( )
(12)i

n

L x
1

( )i

i N |E| 〈k〉 S H Γ T

Vicker

1 29 240 16.5 0.59 1.09 3.5 0.75

2 29 126 8.69 0.31 1.27 3.5 0.85

3 29 152 10.48 0.37 1.25 2.64 0.75

Lazega

1 71 717 20.19 0.28 1.16 3.5 0.75

2 69 399 11.56 0.17 1.31 3.5 0.5

3 71 726 20.45 0.29 1.16 3.5 0.8

CKM

1 215 480 2.23 0.02 1.61 3.04 0.55

2 231 565 2.44 0.021 1.44 3.5 0.45

3 227 504 2.22 0.019 1.33 3.5 0.35

CElegans

1 253 516 4.07 0.016 2.15 3.13 0.65

2 260 888 6.83 0.026 1.78 3.35 0.85

3 278 1703 12.25 0.044 1.67 2.79 0.85

Rattus
1 2035 3014 1.48 0.001 5.86 2.62 0.35

2 1017 1093 1.07 0.002 3.99 2.14 0.25

SacchPomb

1 971 1686 1.73 0.003 2.72 2.92 0.9

2 347 404 1.16 0.006 1.93 2.85 0.9

3 2402 7502 3.12 0.002 3.92 2.68 0.25

Table 1.  The topological features of six real multiplex networks. In the table, i is the number of layers, N is the 
number of nodes and E is the number of edges in each layer. 〈k〉 represents the average degree, S is the density of 
each layer based on =

−( )S E
N N

2
( 1)

 and H is the degree heterogeneity obtained as 

 =



H k

k

2

2
, T is the 

temperature and γ is the power-law coefficient.
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The advantage of Borda ranking method is that we can aggregate different kinds of measures with different 
categories and values and obtain a rank-based score. Also the computational complexity of this method is linear; 
however it does not satisfy the Condorcet criterion. In the proposed method, two lists of CN and HP scores for 
any node pair are constructed, and the final score for each node pair is computed by aggregating their ranking 
score using Borda method, i.e. in the case of missing/spurious link prediction the aggregated scores of CN and 
HP of all node pairs are computed based on Eq. (12) and are sorted descending/ascending. The top-k elements of 
the final list are the predicted links (k is the number of expected missing/spurious links).

Impact of layer relevance.  In the case of HP as a similarity measure, the procedure of mapping each layer to its 
hyperbolic space can be done in different directions. One direction would be to jointly embed the different layers 
of a given multiplex and infer single radial and angular coordinates for each node. A second direction would 
be to aggregate the different layers using different operations such as those proposed in39, and then embed the 
aggregated network to infer single coordinates for nodes. Finally, a third direction would be to infer the node 
coordinates in each layer independently as considered here.

As it was mentioned above, we map each layer of each real multiplex to its hyperbolic space using the 
HyperMap method6,24. The method takes the network adjacency matrix and the network parameters T, γ. It then 
approximates the angular and radial coordinates of all nodes in the network. Parameter γ is the power law degree 
distribution exponent which is approximated separately for layers using the method introduced by Clauset et al.40,  
and T is the temperature. To estimate the values of T, the Nonuniform Popularity × Similarity Optimization 
N-PSO model is used27. The N-PSO model grows synthetic complex networks and it is equivalent to the hyper-
bolic H2 model. The inputs to this model are the final network size N, the average node degree k, power-law 
coefficient γ and the network parameters T. The N-PSO model is used to construct synthetic networks with the 
same size N and average degree k and power-law exponent γ, using different values for T. The estimated values 
of T are then the values that best match the degree distribution and average clustering between the layer and the 
corresponding synthetic network.

In order to test whether this measure can be a good one for the link prediction, we classify the hyperbolic 
distance of all node pairs, and compute the probability of the existence of a link between the pairs in each bin. To 
this end, first the hyperbolic distances of all node pairs are sorted in ascending order and divided to k bins. Bin bi 
contains the node pairs with the hyperbolic distance in the range of [di, di+1]. Then, the probability pi of having 
a link between the node pairs of each bin is computed based on the network topology. The results are shown in 
Fig. 1. As it is shown, the probability of existing a link between each node pairs decreases, while their hyperbolic 
distance increases. Two nodes have a smaller hyperbolic distance as much as they are popular or similar to each 
other, in this case the probability of existing a connection between them increases. Thus, this measure can be a 
candidate for the similarity score for the link prediction problem. It is worth noting that the behavior of different 
layers are almost the same in all multiplex networks, with being more similar in the bigger networks including 
Rattus and SacchPomb.

Figure 1.  Probability of existing a link between node pairs based on their hyperbolic distance in different layers 
of multiplex networks denoted by L1, L2 and L3.
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In order to employ the interlayer information, for node pair (i, j) in target layer α, we first calculate its similar-
ity within each layer based on the proposed methods above. This enables us to compare prediction performance 
of the algorithms. In order to compare the prediction performance of the proposed prediction framework, we 
exploit different algorithms for quantifying the relevance between layers including link overlap, Pearson corre-
lation, Spearman correlation and hyperbolic angular correlation12. The results show that the link overlap has the 
best effect on the link prediction performance. It is defined in the following.
•	 Link Overlap (LO): This measure identifies the ratio of common links in two layers, i.e. if α and β are two 

layers in a multiplex network, LO is the fraction of the same node pair that connects in both layers α and β 
and is defined as:

=
∑ ∑ .

∑ ∑ + ∑ ∑
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α β
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Where A[α] is the adjacency matrix of layer α that takes value of 0 for each disconnected node pair and 1 for each 
connected node pair, and N is the number of nodes. The value of Oα,β is in the range of [0, 1], where 0 indicates 
that the layers are completely irrelevant and 1 indicates that the layers are quite relevant. The similarity measure 
is defined as:

∑ ημ α β∀ ∈ = + ≠α

β

αβ β

=
i j V S s s, : ( )

(14)
ij ij

M

ij
1

where αsij  is the similarity index of target layer α and βsij  is the similarity index of any other layer β. μαβ represents 
the correlation between layers α and β (link overlap), which can be explained as the weight of interlayer informa-
tion involved from any layer β in link prediction in layer α and η is the tunable parameter. The correlations 
between different layers are shown in the Fig. 2. As it is shown, for all networks the link overlap correlation 
between different layers is positive. Furthermore, the highest layer relevance belongs to the Vicker network and 
the lower relevance belongs to larger and sparser networks. Our experiments show that LO is mostly consistent 
with other correlation metrics, but it has the most positive effect in the extent the interlayer information can 
improve the link prediction performance.

Results
We perform experiments on four single-layer synthetic networks to evaluate the similarity measures and six real 
multilayer networks to investigate the impact of interlayer information. The synthetic networks are evolved based 
on N-PSO model described above and their structural features and the precision of spurious and missing link 
prediction methods are presented in Figs 3 and 4. In the N-PSO model, the true node coordinates are generated 
for the networks. In the case of missing link prediction, we remove a fraction of edges using k-fold decomposition 
in each iteration and regenerate the node coordinates of the new network using the Hypermap method. Similarly, 
in the case of spurious link prediction, we add a fraction of nonexistent links to the network in each iteration 
and regenerate the node coordinates of the new network using the Hypermap method. There is no restriction 
in selecting the parameters for N-PSO model. It is preferred to generate networks with features that are near to 
real networks (large and sparse with power-law degree distribution) and temperature is chosen to be 0.3 and 0.6. 

Figure 2.  Link Overlap of different layers of six real multiplex networks.

https://doi.org/10.1038/s41598-019-49001-7


7Scientific Reports |         (2019) 9:12604  | https://doi.org/10.1038/s41598-019-49001-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Since the two parameters λ and T of Hypermap are set manually, so the approximation of hyperbolic coordinates 
is more accurate in synthetic networks.

Based on these reasons as it can be seen, in all cases the performance of hyperbolic distance (HP) is better 
than the other measures and the precision of the proposed methods (Weighted Common Neighbors (WCN) 
and Rank-HP-CN) is the highest in most cases. Thus, hyperbolic distance and its derived methods can be good 
choices as similarity measures for link prediction.

As real multilayer networks, we consider six networks (see Table 1). The multilayer networks are converted to 
multiplex networks by assuming that all layers have the same number of nodes (the maximum number of nodes 
of all layers). Explanation of these networks is as follow:

	(1)	 Vicker41: It is a 3 layer multiplex network with 29 nodes representing the students of a school in Australia. 
The layers are defined as the contact relationship, co-working and best friends.

	(2)	 Lazega42,43: This multilayer network represents the partnership of corporate law between associates and 
partners. The layers correspond to co-working, friendship and advice relationship.

	(3)	 CKM44: This multilayer network represents the interactions between physicians. It contains 3 layers that 
correspond to friendship, discussion and asking for advice.

	(4)	 CElegans45,46: It is a biological multilayer network in which nodes represent neurons and layers correspond 
to chemical monadic, chemical polyadic and electric interactions.

	(5)	 Rattus47,48: It is a multiplex genetic and protein interactions network of the Rattus Norvegicus. It contains 
two main layers of physical association and direct interaction.

	(6)	 SacchPomb47,48: It is a multiplex genetic and protein interactions network of the Saccharomyces Pombe. It 
includes three kinds of relationships, including direct interaction, colocalization and physical association.

The experimental results of the proposed link prediction methods on six real networks is presented in this 
section. For each multiplex network, the layer with the most density is chosen as the target layer. In the case of 
missing link prediction, 15% of links in the target layer are considered to be hidden and based on k-fold decom-
position method, the performance of the similarity measures are examined over 20 independent experiments. For 
spurious link prediction, random links are added to the network and the performance of the similarity measures 

Figure 3.  The missing link prediction performance of the synthetic networks based on N-PSO model, with 
(a) N = 500, m = 4, λ = 3, T = 0.3, (b) N = 500, m = 4, λ = 3, T = 0.6, (c) N = 1000, m = 4, λ = 3, T = 0.3, (d) 
N = 1000, m = 4, λ = 3, T = 0.6. Different similarity measures are used, including Preferential Attachment (PA), 
Common Neighbors (CN), Hyperbolic Distance (HP), CAR, CJC, Weighted Common Neighbors (WCN) and 
Rank-CN-HP. The results show the mean values over 20 independent experiments.

Figure 4.  The spurious link prediction performance of the synthetic networks based on N-PSO model, with 
(a) N = 500, m = 4, λ = 3, T = 0.3, (b) N = 500, m = 4, λ = 3, T = 0.6, (c) N = 1000, m = 4, λ = 3, T = 0.3, (d) 
N = 1000, m = 4, λ = 3, T = 0.6. Different similarity measures are used, including Preferential Attachment (PA), 
Common Neighbors (CN), Hyperbolic Distance (HP), CAR, CJC, Weighted Common Neighbors (WCN) and 
Rank-CN-HP. The results show the mean values over 20 independent experiments.
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are examined over 20 independent experiments. In order to evaluate the impact of employing the layer relevance 
and the extra information of other layers, we separately study the performance of the algorithms on single-layer 
(when only information of the target layer is considered) and multiplex (when inter-layer information is also 
considered) fashions. We employ the layer correlation based on link overlap and compute the similarity measures 
based on Eq. (14).

Figure 5 shows the precision of missing link prediction of different similarity measures. For each measure 
there are two bars. The left bar shows the performance of the similarity measure while considering only the intra-
layer information of the target layer and the right bar is the performance of the similarity measure while using 
both intralayer and interlayer information. As it can be seen, in all cases incorporating the interlayer information 
improves performance of the missing link prediction and this is more pronounced in CElegans. The proposed 
similarity measures Rank-CN-HP has the best performance in most cases.

Figure 6 shows the performance of the algorithms on spurious link prediction. For this problem, we also 
consider the cases when only intralayer information of the target layer is considered and when both intralayer 
and interlayer information are considered. As it can be seen, in most cases, including the interlayer information 
in the prediction process improves the performance. Furthermore, predictions based on PA similarity measures 
have the worst performance in most cases. In contrast to the missing link prediction, in this case Rank-CN-HP is 
not better than CN or HP in some of the networks, but WCN has the best performance in all multiplex networks. 
Our experiments show that in small networks, in the case of HP, the approximated radial coordinates of nodes in 
hyperbolic space for both true positive (correctly predicted) links and false negative links are almost in the same 
range. But the average degree of true positive links is significantly higher than the false negatives. It means that 
the radial coordinates of nodes which corresponds to their popularity are not precisely approximated, since the 
degree distribution of the target layers do not obey the power-law. HP mostly represents the similarity of node 
pairs, and thus it is not expected in most cases to have high performance. Therefore, combining this similarity 
measure with CN in different ways help to overcome the shortcoming of HP in covering the popularity attribute 
of each node. On the other hand, in large networks and especially in those with scale-free degree distribution, 
approximating the underlying hyperbolic geometry is more precise, but these networks are mostly sparse and 
similarity measures such as CN, CAR and CJC may not be quite successful in link prediction. Thus, in such 
cases combining the popularity-based measures with HP can improve the link prediction. The Rank-CN-HP 
and WCN methods both use CN as the popularity factor, and HP as the similarity factor. The difference is that 
in Rank-CN-HP the proposed similarity measure uses CN and HP independently, i.e. these two measures are 
first computed independently for each node pair, and then ranked based on Borda rank aggregating algorithm to 
achieve the final score that considers both CN and HP with the same weight. Whereas in the WCN method, we 
compute HP-distance for the common neighbors of each node pair and compare them with a threshold. If the 
HP-distance is less than the threshold, that node pair is assumed to have a strong tie, i.e. they are more similar to 

Figure 5.  The missing link prediction performance of the multiplex networks based on different similarity 
measures. The results are based on the mean values over 20 independent experiments. ‘Single-Layer 
Information” corresponds to the case when only intralayer information of the target layer is considered. 
“Multiplex Information” corresponds to the case when both intralayer information of the target layer and 
interlayer information of other layers are considered.
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each other, and thus a fraction of HP-distance is added to the weight of that common neighbor; otherwise it is 
computed as the original CN. Therefore, in the WCN method the two similarity measures are dependent to each 
other.

Discussion
In this work, two novel methods based on the hyperbolic geometry of the multiplex networks are proposed 
to discover spurious and missing links in multiplex networks. The hyperbolic underlying of complex networks 
considers two parameters of popularity and similarity of nodes that both play important role in link prediction 
problem. Since the common local similarity measures mostly consider only the node degree (popularity), we sug-
gest to enhance their predictability by adding the similarity feature to them. As we can see, in the case of missing 
link prediction specifically in social networks, each node is more likely to connect to nodes with similar features 
(his friends) as well as popular nodes (influencers). Another hypothesis is that interlayer relevance can be helpful 
in link prediction. Based on this hypothesis, recently a new method was proposed that considered the existing 
similarity measures in both target layer and other layers and combined the similarity measures via a correlation 
metric (Link Overlap) and obtained a multiplex-based similarity measure for spurious link prediction21. Based 
on this research, new measures are proposed based on the hyperbolic geometry of the network. First, a number of 
existing similarity measures which are widely used for the link prediction are chosen and then new measures are 
proposed to solve the spurious and missing link prediction problem. Our experimental results on four synthetic 
networks and six real-world multiplex networks shows that the new proposed measures outperform in all cases 
and also incorporating the interlayer information can improve the prediction performance compared with the 
case that only intralayer information is considered.
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