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Abstract: A new spectrophotometric technique for the determination of both ordinary and extraor-
dinary complex refractive indices (CRIs) of a stretched polyethylene terephthalate (Mylar) film is
proposed. The sample was placed between two identical polarizers, and the transmission spectra
of two different configurations (incident polarization parallel and perpendicular to the Mylar film
optical axis) were recorded. Ordinary and extraordinary complex refractive indices are then extracted
by fitting the experimental spectra with a theoretical model that we had elaborated in advance. A
new formula for transmittance dispersion, based on the Fresnel’s coefficients formalism and using the
Cauchy model, was derived to describe n and κ wavelength dependence. The suggested theoretical
model succeeded in reproducing the Mylar transmission spectra across the entire visible spectral
range (400, 750 nm) for both configurations, and the retrieved dispersion curves of the refractive
indices, extinction coefficients, and the birefringence are comparable to results found in the literature.
The proposed method is fast, straightforward, easy to set up, and cost-effective. It proved to be an
excellent alternative to more conventional methods such as spectroscopic ellipsometry.

Keywords: transmittance spectrophotometry; complex refractive index; extinction coefficient; birefringence;
diattenuation; dichroism; Cauchy model; dispersion

1. Introduction

Polymer films such as biaxially stretched polyethylene terephthalate (PET), commer-
cially known as Mylar, have been subjected to extensive studies, owing to their various
applications in optoelectronics, such as organic light-emitting devices (OLED) and displays.
In addition to their lightness, flexibility, and low cost, their optical properties can be pre-
cisely tuned to satisfy specific display requirements. Mylar transparent films are typically
used in liquid crystal displays (LCD) as optical spacers [1,2] or as a retardation plate to
compensate the birefringence of the liquid crystal layer and obtain a wide viewing angle [1].
It is crucial to measure the different optical properties of Mylar films in order to optimize
the display’s characteristics and obtain high performances, such as high contrast ratio and
low color shift. Moreover, knowing the optical properties of these materials offers a better
insight into the effect of uniaxial or biaxial stress, applied during the manufacturing process,
on the orientation of polymeric molecular chains and the morphologies induced by various
treatment techniques and conditions [3,4]. One of the most useful optical properties of such
materials is the complex refractive index (CRI) denoted by ň: a quantity that characterizes
interactions between the polymer film sample and incident light. Its real part n, called
refractive index, informs about the change of incident light direction (refraction), and its
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imaginary part κ, called extinction coefficient, describes the light intensity loss due to ab-
sorption and scattering. Furthermore, stretched polymer films exhibit uniaxial anisotropy
in their optical properties; therefore, they have two different complex refractive indices cor-
responding to two principal polarization states: extraordinary (ECRI) and ordinary (OCRI)
indices. The difference in the real parts of (ECRI) and (OCRI) gives rise to the birefringence,
and the discrepancy in their imaginary parts leads to the determination of the diattenuation.
It has been reported [5,6] that birefringence in linear retarders, such as Mylar films, is
generally accompanied by some amount of diattenuation, due to the difference between
the extraordinary and ordinary absorption coefficients (dichroism) and to a discrepancy
in the Fresnel’s coefficient of reflection and transmission at the interfaces. Knowing the
extraordinary and ordinary CRIs of Mylar films, for any given wavelength in the visible
range, is essential to achieve a more precise and efficient birefringence compensation in
(LCD) devices. On the other hand, the measurement of the CRI will enable the calculation
of the dielectric function tensor in the corresponding spectral region, which gives access to
a large number of fundamental physical properties.

Several experimental works have suggested various techniques for the determination
of the CRI spectral dispersion of stretched PET films in various regions of the electromag-
netic spectrum. Loewenstein and Smith [7] used a Fourier spectroscopic interferometry
to analyze both reflection and transmission channeled spectra of a Mylar film in the far-
infrared range. The real part of the CRI was extracted from the fringes’ positions and
the imaginary part from the fringes’ intensities. Another approach suggested by Sergides
et al. [8] and based on mid-infrared spectroscopic reflectometry conducted on a PET sample
consisted of measuring the ratio of p-polarized light reflectance to the s-polarized light
reflectance for two different incident angles. Then, n and κ were calculated, for each
wavelength, by matching the measured data with a constructed theoretical model. Ouchi
et al. [9] recorded the reflection spectra of uniaxially drawn PET films in the far-ultraviolet
and used the Kramers–Kronig formula to calculate the absorption spectra. The refractive
index and the absorption coefficient were calculated in a next step, using Fresnel’s formulae.
Seres et al. [10] measured the transmittance of various commercial type-D Mylar sheets
with different thicknesses and for a discrete number of visible wavelengths. Absorption
and reflection coefficients were then obtained by fitting the thickness dependence function
with Beer’s transmittance formula. Among all proposed techniques for semi-transparent
polymer films optical characterization, ellipsometry remains by far the most successful
one. It owes its usefulness to its ability to extract both sample thickness and CRI. Various
ellipsometric methods have been proposed in the literature; among them, three are worth
mentioning. In the work of Zhang et al. [11], the spectroscopic ellipsometry technique
combined with the ray-tracing method was employed to measure the complex refractive
index of amorphous PET samples in the broadband 0.4–2 µm. Losurdo et al. [12] used a
variable angle spectroscopic ellipsometry to retrieve the CRI dispersion curves of conju-
gated polymeric films in the 1.5 eV–5 eV range. Using the Lorentzian dispersion function,
they succeeded in modeling the sample spectral dependence of in-plane and out-of-plane
CRIs and estimate both its birefringence and dichroism. Another ellipsometric technique
proposed by Kostruba et al. [13] allowed the independent determination of strongly corre-
lated refractive index and thickness of transparent ultrathin films of thicknesses ranging
between 1 nm to 20 nm.

Despite these previous works and employed methods, we noticed a lack of data re-
garding extraordinary and ordinary components of Mylar CRI in the visible range of the
spectrum. Light attenuation through polymer films is generally attributed to absorption
induced by infrared molecular vibrations and electronic transitions in the short wavelength
ultraviolet region [14]. Thus, their extinction coefficients are usually smaller in the visible
to near-infrared bands and larger in the mid-infrared to the far-infrared band. Transmission
and reflection methods described in the references [7,8] are particularly applicable in the
infrared region and cannot provide a direct accurate measurement of the extinction coeffi-
cient in the visible band. Moreover, these methods are generally used in conjunction with a
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Kramers–Kronig (KK)-based calculation [15–18] which requires, in principle, information
over the whole spectrum, while measurements provided by these methods are unavoidably
finite. Many strategies were proposed to overcome this serious practical limitation, such
as the use of Roessler’s approximation [19], extending the integration to infinity by an
a priori choice of asymptotic behavior outside the measured data range [20], or through
the modified Multiply Subtractive Kramers–Kronig formula [21], but these solutions are
either heuristic [19,20] and could lead to erroneous results or require the knowledge of
extra discrete values of CRI to be obtained from independent measurement [21]. In this
work, we report a spectrophotometric method to obtain the CRI dispersion function of a
Mylar film from a single measurement of its transmission spectrum in the visible band.
Recorded experimental transmittances are then fitted to a theoretical model based on
Fresnel’s equations [22–24] and the Cauchy dispersion formula [15]. Ordinary and extraor-
dinary transmittance spectra are recorded for two different configurations where incident
light is linearly polarized parallel and perpendicularly to the sample’s principal axis, allow-
ing a simultaneous determination of the OCRI and ECRI. During this study, the Mylar film
will be treated, in a first approximation, as a plane-parallel plate of a uniaxial medium with
its optical axis parallel to its surface. Compared to the previously described techniques, this
method is simple and easy to set up, as it only requires a spectrophotometer and polarizers,
and provides significant savings in work and time.

2. Theoretical Background
2.1. Optical Properties of Uniaxial Materials

The optical properties of transparent linear anisotropic media depend on the direction
of propagation and polarization of incident light. In other words, the refractive index
describing the dielectric properties of the material is a tensor quantity for which there
always exists a system of eigenvectors

〈
ux, uy, uz

〉
, called the system of principal axes,

in which this tensor is diagonal with three different eigenvalues corresponding to the
principal refractive indices nx,y,z. In the particular situation of uniaxial material, one of the
three principal axes (x for instance) is a symmetry axis and defines a privileged direction
called the optical axis. As a result, y and z axes are physically equivalent with ny = nz = no
and nx = ne. Here no and ne are called ordinary and extraordinary indices, respectively,
and ∆n = ne − no is known as birefringence [25–27]. This property introduces a velocity
difference between light polarized along the two different principal axes of the uniaxial
material. Note that in the case of a positive uniaxial medium where ne > no, such as
stretched PET films exhibiting molecular orientation [28], the direction of the optical axis
is often referred to as the slow axis. If we consider a linearly polarized light ray with a
direction defined by the wave vector k along the z-axis propagating at normal incidence
through a uniaxial plane-parallel plate with its optical axis (x-axis) lying in the plate plane,
the incident and transmitted lights are defined by two transverse electric fields as follows:

Eincident = E = E0 ei(ωt−kz)
∣∣∣
z=0

= E0eiωt =
(
E0xux + E0yuy

)
eiωt (1)

Etransmitted = E′ = E′0 ei(ωt−kz)
∣∣∣
z=L

= E′0ei(ωt−kL) =
(

E′0xux + E′0yuy

)
ei(ωt−φ) (2)

where L is the plate thickness and φ = 2πnL
λ is the introduced phase at the exit interface

due to propagation. In the special case of uniaxial waveplates [27,29], the impinging light is
decomposed into an e-ray component polarized parallel to the plate optical axis and traveling
with the phase velocity ve =

c
ne

and an o-ray vibrating along the y-axis with a phase velocity
vo =

c
no

. Each polarization state is defined by a different electric field as follows:{
E′x = E′e = E′0xei(ωt−φe) ux

E′y = E′o = E′0yei(ωt−φo) uy
(3)
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In addition, if the medium is non-lossy then, E′0x = E0x and E′0y = E0y, which gives:{
E′x = Exe−iφe

E′y = Eye−iφo (4)

Consequently, the propagation of the light wave through the uniaxial waveplate
induces a phase retardation ∆ between the components of the electric field defined by:

∆ = φe− φo =
2π∆nL

λ
(5)

Using the Jones calculus formalism [30], incident and transmitted light waves can be
modeled by two Jones vectors [E] and [E′], and the linear retardation effect of the uniaxial
plane-parallel plate is described using a 2× 2 Jones matrix [J] defined by:

[E] =
[

Ex
Ey

]
;
[
E′
]
=

[
E′x
E′y

]
; [J] =

[
e−iφe 0

0 e−iφo

]
=

[
e−

2πi
λ ne L 0
0 e−

2πi
λ no L

]

and the below matricial equation:[
E′x
E′y

]
= [J]·

[
Ex
Ey

]
=

[
e−

2πi
λ ne L 0
0 e−

2πi
λ no L

]
·
[

Ex
Ey

]
=

[
Exe−

2πi
λ ne L

Eye−
2πi
λ no L

]
(6)

The situation just described is ideal in the sense that we have considered a non-
lossy perfectly transparent material. In reality, besides change of phase velocity due to
the dielectric polarizability, the propagation of the light through such media is generally
accompanied by optical attenuation [15]. This means that light wave loses a part of its
energy due to various damping mechanisms, such as electronic transition absorption in the
ultraviolet band, scattering of visible light mainly caused by imperfections and irregularities
within the polymer, and phonon vibrational absorption in the infrared. In such cases, it is
more convenient to use a complex refractive index (CRI) depicted by ñ and defined as:

ñ = n− iκ (7)

where its real part n is the medium refractive index and its imaginary part κ is the extinction
coefficient representing the light wave absorbency of the lossy medium. In the particular
case of a dichroic material, the absorption is different for light linearly polarized along the
fast and slow axes and two distinct extinction coefficients, κe and κo, are to be considered
for each principal direction. As a result, one has to consider a different CRI for each of these
directions as:

ñe,o = ne,o − iκe,o (8)

Using the complex notation, the Jones matrix of the lossy uniaxial waveplate be-
comes [31]:

[J] =

[
e−

2πi(ne−iκe)
λ L 0

0 e−
2πi(no−iκo)

λ L

]
=

[
e−2πκe

L
λ e−i2πne

L
λ 0

0 e−2πκo
L
λ e−i2πno

L
λ

]

Or simply,

[J] =
[

tee−iφe 0
0 toe−iφo

]
(9)

where te = e−2πκe
L
λ and to = e−2πκo

L
λ represent the principal amplitude transmittances of

the uniaxial plane-parallel plate, respectively, in the extraordinary (x-axis) and ordinary
(y-axis) directions. It is important to note that both te and to decay exponentially with
the distance propagated, which corresponds to an attenuated wave traveling along the
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z direction. Another quantity, commonly used in spectrophotometry, to describe light
absorbency of semi-transparent materials is the absorption coefficient α relating the trans-
mitted light intensity I′ after crossing a thickness L and the incident intensity I through the
Beer–Lambert law [32]:

I′ = Ie−αL (10)

Considering that light intensity is defined by the square of the magnitude of the Jones
vector, transmitted intensities for both principal directions are calculated as:

I′e =
∣∣[E′e]∣∣2 = |[J]·[Ee]|2 where [Ee] =

[ √
I

0

]

I′o =
∣∣[E′o]∣∣2 = |[J]·[Eo]|2 where [Eo] =

[
0√

I

]
Equation (10) can be rewritten for both directions by defining two different absorption

coefficients αe and αo as:

I′e = Ie−αe L = |[J][Ee]|2 =

∣∣∣∣∣
[

e−2πκe
L
λ e−i2πne

L
λ 0

0 e−2πκo
L
λ e−i2πno

L
λ

]
.
[ √

I
0

]∣∣∣∣∣
2

= Ie−4πκe
L
λ

I′o = Ie−αo L = |[J][Eo]|2 =

∣∣∣∣∣
[

e−2πκe
L
λ e−i2πne

L
λ 0

0 e−2πκo
L
λ e−i2πno

L
λ

]
.
[

0√
I

]∣∣∣∣∣
2

= Ie−4πκo
L
λ

This enables one to derive the following relation between the absorption coefficients
and the extinction coefficients:

αe,o =
4π

λ
κe,o (11)

2.2. Transmission and Reflection Coefficients

The analytical modeling described in the previous section takes into account the atten-
uation due to absorption inside the material without considering all successive multiple
reflections happening at the interfaces as predicted by the boundary conditions. The ex-
pressions of the amplitude transmittances te and to presented in Equation (9) need to be
modified to include Fresnel’s coefficients. The intensity reflectance and transmittance of a
plane wave at the interface between air and a partially absorbing dielectric plane-parallel
plate at normal incidence can be found in any standard optics textbook and evaluated by
replacing the refractive index in the expression of the Fresnel’s coefficients with its complex
counterpart [33]:

Rint =

∣∣∣∣ ñ− 1
ñ + 1

∣∣∣∣2 =

∣∣∣∣n− iκ − 1
n− iκ + 1

∣∣∣∣2 =
(n− 1)2 + κ2

(n + 1)2 + κ2
Interface intensity reflectance (12)

Tint = 1− Rint = 1− (n− 1)2 + κ2

(n + 1)2 + κ2
=

4n

(n + 1)2 + κ2
Interface intensity transmittance (13)

Note that in the above equations we assumed no absorption at the interfaces (as
opposed to absorption in the bulk due to propagation) and adopted the hypothesis of
an ideally flat plate surface to eliminate any diffuse reflectance or transmittance from the
interfaces, which implies that Rint and Tint should necessarily sum up to 1. Considering the
plate faces to be two perfectly identical semi-reflective surfaces, the entire intensity reflection
and transmission coefficients R and T can be calculated from Equations (12) and (13) with
infinite summations over the multi-reflected contributions of the faces. Moreover, in the case
of an absorbing medium, any internal reflection is necessarily preceded by a penetration



Polymers 2022, 14, 1805 6 of 24

through the plate, and, therefore, a light intensity damping factor per penetration equal to
(e−αd) has to be considered in this calculation (see Figure 1):

R = Rint + RintT2
inte
−2αd + R3

intT
2
inte
−4αd + R5

intT
2
inte
−6αd + . . .

T = T2
inte
−αd + T2

intR
2
inte
−3αd + T2

intR
4
inte
−5αd + T2

intR
6
inte
−7αd + . . .

A = Tint

(
1− e−αd

)
+ RintTinte−αd

(
1− e−αd

)
+ R2

intTinte−2αd
(

1− e−αd
)
+ . . .
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Figure 1. Multiple ray reflections and transmissions of a normally incident light beam inside an
optically thick plane-parallel dielectric plate.

It is immediately seen from the previous formulae that R, T, and A expressions repre-
sent the infinite sums of geometric series with a common ratio q = [Rinte−αd]

2
for R, T and

q′ =
[

Rinte−αd
]

for A:

R = Rint + RintT2
inte
−2αd

∞

∑
k=0

[
Rinte−αd

]2k

T = T2
inte
−αd

∞

∑
k=0

[
Rinte−αd

]2k

A = Tint

(
1− e−αd

) ∞

∑
k=0

[
Rinte−αd

]k

With the convergence condition |q| < 1 being met, these sums lead to the formulae:

R = Rint +
RintT2

inte
−2αd

1−
(

Rinte−αd
)2 (14)

T =
T2

inte
−αd

1−
(

Rinte−αd
)2 (15)

A =
Tint

(
1− e−αd

)
1− Rinte−αd (16)
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By adding the above three expressions, using some mathematical manipulations, and
recalling that Rint + Tint = 1, it can be verified that the energy conservation requirement is
fulfilled:

R + T + A = 1

It is important to mention that the above summations could not be achieved without
the use of the slab approximation for which the plane-parallel plate is assumed to be
optically thick. In other words, the optical path length nd through the plate is much larger
than the incident light coherence length Lc defined by the formula [34,35]:

Lc =
λ2

2π∆λ
(17)

where ∆λ represents the wavelength resolution (bandwidth) of the spectrophotometer
radiation source. In the case where nd� Lc, the phases of the internal multiple reflected
light waves are randomized, leading to incoherent summations of waves that will be
averaged out and, hence, cannot interfere with each other [33–35].

Using the previous rigorous formulation taking into account both interfaces and bulk
contributions, the principal intensity transmittances of the absorbing uniaxial slab could be
derived by substituting Equations (12) and (13) into Equation (15) as follows:

|to,e|2 =To,e =

(
4no,e

(no,e+1)2+κ2
o,e

)2
e−(

4πd
λ )κo,e

1−
(

(no,e−1)2+κ2
o,e

(no,e+1)2+κ2
o,e

)2
e−2( 4πd

λ )κo,e

(18)

2.3. Cauchy Model of Dispersion

The visible band dispersion curve observation of various typical transparent materials
used in optics and photonics shows a common characteristic of normal dispersion for
which the index of refraction decreases as the wavelength increases with a lower rate of
decrease at higher wavelengths [36], which could be mathematically expressed as follows:

dn
dλ

< 0 and
d2n
dλ2 > 0 (19)

Several empirical models have been suggested to formulate the normal dispersion
property and describe the wavelength-dependent response of dielectric media for light
propagation. Among these, the Cauchy formula is widely in use due to its simplicity,
intuitiveness, and success in accurately modeling most of the known transparent material
visible dispersion. It is commonly stated in the following form [15,36,37]:

n(λ) = A +
B
λ2 +

C
λ4 (20)

where A, B, and C are constants characteristic of the material. In this model, the constant A
defines the index amplitude, while B and C add curvature to produce normal dispersion.
With wavelength units in nanometers, the typical range for B and C is [18]:

103 < B
(

nm2
)
< 5.104 and− 109 < C

(
nm4

)
< 5.109 (21)

The Cauchy dispersion equation was originally used for material with no optical
absorption, and, in general, it works best far from any absorption band. However, in the
case of weakly absorbing dielectrics, the formula can be extended to cover the absorbing
regime [37], using an additional formula for κ(λ):
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n(λ) = An +
Bn

λ2 +
Cn

λ4 (22a)

κ(λ) = Aκ +
Bκ

λ2 +
Cκ

λ4 (22b)

Recently reported spectroscopic ellipsometry measurement of PET films in the visible
range [11] has revealed a normal dispersion behavior of the extinction coefficient which
justifies the use of the “Cauchy absorbing” model in the present work. Note that the
coefficients of Equation (22b) are analogous and behave similarly to those in (22a), with a
typical range of [37]:

−104 < Bκ

(
nm2

)
< 104 and− 109 < Cκ

(
nm4

)
< 109 (23)

3. Materials and Methods
3.1. The Sample

The studied sample is a 1 × 2 cm2 rectangular sheet cut from a commercially available
Mylar film (Mylar® X6739, Gauge 750, Teijin-Dupont, Chester, VA, USA) such that one
side of the rectangle was parallel to the optical axis direction. A higher accurate value of
sheet thickness estimated to d = (166 ± 1) µm was obtained using a white-light Michelson
interferometric method described elsewhere [38,39]. Mylar is the trade name of a well-known
family of polyester films made from biaxially oriented polyethylene terephthalate (BOPET).
Its chemical structure is described in (Figure 2) with a phenyl ring and an ester group.
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Figure 2. 3D model of the PET molecular structure. The polymeric chain is formed by linking
successively this monomer (repeat unit) about 100 times on average. The model was produced by the
Avogadro molecule editor [40].

At the beginning of the manufacturing process, the PET film has a semicrystalline
structure composed of both crystalline and amorphous phases [1,4,41]. The size of these
crystallites, commonly called spherulites, is generally of the same order of magnitude
as the wavelength of visible light, which causes it to scatter at the boundaries between
these crystallites and the amorphous regions, resulting in its poor transparency [41]. The
PET film is then biaxially stretched along the machine direction (MD) and the transverse
direction (TD) through a simultaneous or sequential drawing process with a typical draw
ratio of about 3 to 4 in both directions [3,42,43]. The drawing has two main effects on the
structure and morphology of the PET film; on the one hand, the randomly distributed
PET polymeric chains tend to preferentially align along the stretch direction [43], which
induces anisotropy in its mechanical and optical properties. On the other hand, stretching
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reduces the dimensions of the spherulites [41], which significantly improves the PET film
transparency and stiffness but enhances its commercial value.

3.2. Transmission Spectroscopy Setup

The Mylar film is placed between two identical dichroic sheet polarizers (P) and (A) in
two different configurations (see Figure 3): (1) polarizer and analyzer transmission axes and
the Mylar optical axis are all oriented along the x-direction (extraordinary transmittance
configuration); (2) polarizer and analyzer orientation is kept the same, while the Mylar
sample optical axis is aligned along the y-direction (ordinary transmittance configuration).
To ensure transmittance and thickness uniformity, (P) and (A) were cut from the same
original Polaroid sheet. We used the XP38 Polaroid from Edmund Optics [44] with an
extinction ratio up to 7500:1 in the visible range. The intensity transmittance spectra
were recorded using a Perkin-Elmer Lambda 950 double beam and dual monochromator
UV/VIS/NIR spectrophotometer in the wavelength interval from 400 nm to 750 nm with
steps of 5 nm.
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Figure 3. Experimental setup with the ordinary and extraordinary transmittance measurement
configurations. The system Polarizer-Mylar-Analyzer (PMA) is placed in the sample compartment of
the spectrophotometer.

As depicted schematically in (Figure 4), a white light radiation emitted from a halogen
lamp (HL) is directed by reflective mirrors through the entrance slit of the primary monochro-
mator (MCH1) then dispersed by a first holographic grating (G1) with 1440 lines/mm blazed
at 240 nm. During the scanning operation, the monochromator slewing mechanism selects
a specific wavelength segment from the dispersed light and reflects it through the exit slit
of (MCH1) in the form of a near-monochromatic radiation beam. In order to achieve high
spectral purity with an extremely low stray light, the beam exiting (MCH1) is redirected
to the entrance slit of a secondary monochromator (MCH2) for further spectral refinement.
The output beam from (MCH2) is then split by a chopper (CHP) with a 46 Hz cycle rotating
mechanism into a reference beam (RB) and a sample beam (SB). After crossing the sample
compartment, the light intensities of both beams are alternately measured by a high sensibility
R6872 photomultiplier detector (PHM). It should be noted that white light emitted from the
halogen lamp was initially unpolarized by nature. However, it becomes partially polarized
because of the multiple interactions that it undergoes with the spectrophotometer’s optical
components (diffraction by the monochromators’ slits and gratings, reflections by mirrors). To
overcome this shortcoming, a depolarizer drive accessory [45] is mounted at the entrance of
the sample compartment, thereby ensuring a depolarization efficiency greater than 98% for
both reference and sample beams.
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3.3. Polarizer Transmittance

The first step of the experimental procedure is to determine the transmittance of
the used polarizers over the working spectral range. To achieve this, both (P) and (A)
are placed in the Lambda 950 sample compartment without the Mylar sheet, and their
intensity transmittance spectra T‖(λ) and T⊥(λ) corresponding, respectively, to the parallel
and crossed configurations are recorded (see Figure 5). Dichroic polymer polarizers are
known to be non-ideal. Consequently, they are characterized by two principal intensity
transmittances Tx and Ty. Assuming x-axis to be the polarizer transmitting direction, we
have [47]:
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Tx =
1√
2

[(
T‖ + T⊥

) 1
2
+
(

T‖ − T⊥
) 1

2
]

(24)

Ty =
1√
2

[(
T‖ + T⊥

) 1
2 −

(
T‖ − T⊥

) 1
2
]

(25)

It can be seen from Figure 5b that instead of a zero transmittance as in an ideal pair
of crossed polarizers, one still detects some amount of transmitted light that could be
neglected (T⊥ � T‖). This approximation enables simplifying Equations (24) and (25)
without appreciable loss of accuracy, leading to:

Tx =
(

2T‖
) 1

2 (26)

Ty = 0 (27)

3.4. Modeling and Fitting

Using the partially absorbing uniaxial waveplate model described in Section 2.1, the
system Polarizer-Mylar-Analyzer (PMA) for each configuration can be described by the
below Jones matrices:

[Jo
PMA] = [JA].

[
Jo
Mylar

]
.[JP] Ordinary transmittance configuration

[Je
PMA] = [JA].

[
Je
Mylar

]
.[JP] Extraordinary transmittance configuration

where



[
Jo
Mylar

]
=

[
toeiϕo 0

0 teeiϕe

]
[

Je
Mylar

]
=

[
teeiϕe 0

0 toeiϕo

]
[JP] = [JA] =

[ √
Tx 0
0 0

]
Combining the above expressions leads to:

[Jo
PMA] =

[
Txtoeiϕo 0

0 0

]
(28a)

[Je
PMA] =

[
Txteeiϕe 0

0 0

]
(28b)

According to the Jones calculus [48], intensity transmittance of unpolarized light
through an optical system described with its Jones matrix [J] is given by:

J =
[

J11 J21
J12 J22

]
⇒ Tunpolarized =

1
2 ∑

ij

∣∣Jij
∣∣2 =

1
2

(
|J11|2 + |J21|2 + |J12|2 + |J22|2

)
(29)

Using Equation (29), one can easily derive the intensity transmittance of the PMA
system in both configurations and obtains:

To
PMA =

1
2

∣∣∣Txtoeiϕo
∣∣∣2 =

T2
x |to|2

2
=

T2
x

2
To (30a)

Te
PMA =

1
2

∣∣∣Txteeiϕe
∣∣∣2 =

T2
x |te|2

2
=

T2
x

2
Te (30b)
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Mylar sample ordinary and extraordinary intensity transmittance dispersion curves
could be finally extracted from the recorded spectra as follows:

Texp
o (λ) =

2To
PMA(λ)

[Tx(λ)]
2 (31a)

Texp
e (λ) =

2Te
PMA(λ)

[Tx(λ)]
2 (31b)

The polarizer principal transmittance dispersion curve Tx(λ) shown in Figure 6 was
calculated using Equation (26). The two dispersion spectra To

PMA(λ) and Te
PMA(λ) of the

system Polarizer-Mylar-Analyzer were recorded using the experimental setup described in
Section 3.2 and shown in Figure 7.
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Figure 7. Ordinary and extraordinary intensity transmittances of the Polarizer-Mylar-Analyzer system.

Finally, the ordinary and extraordinary transmittances were calculated using Equation (31a,b)
and plotted in the same graph (Figure 8). It should be noted that the used spectrophotometer
secures a spectral resolution of ∆λ = 5 nm over the visible range, resulting in a coherence length
ranging between 5 µm and 18 µm as defined in the Formula (17). Therefore, the thick slab
approximation can be reasonably used to model the 166 µm thick Mylar sample as explained
previously.
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The spectrophotometric technique presented in the current work is based on a curve-
fitting approach conducted over the entire wavelength range between the measured sample
transmittances Texp

o,e (λ) and the analytical model defined in Equation (18). In this formula,
the transmittance wavelength dependence is achieved through the use of the Cauchy
dispersion formula for both n(λ) and κ(λ). Now, by substituting Equation (22) into
Equation (18), one obtains:

To,e(λ) =

 4
(

Ao,e
n +

Bo,e
n

λ2 +
Co,e

n
λ4

)
(

Ao,e
n +1+ Bo,e

n
λ2 +
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n

λ4

)2
+
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Ao,e

κ +
Bo,e

κ
λ2 +
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κ

λ4

)2


2
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4πd
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κ
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κ
λ4 )
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e−2( 4πd
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κ +
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κ
λ2 +

Co,e
κ

λ4 )

(32)

All data fits were performed using the commercial package Mathematica [49] through
its NonlinearModelFit [50] built-in function. The non-linear fitting aims to estimate the
values of the Cauchy equation parameters Ao,e

n,κ , Bo,e
n,κ , and Co,e

n,κ defined in the Formula (32)
which best describe the experimental intensity transmittance dispersion curves Texp

o,e (λ).
NonlinearModelFit uses a standard Non-Linear Least-Squares Fitting (NLSF) algorithm
consisting of iteratively computing and minimizing the deviations (variance) of the theoret-
ical curves from the experimental data points described by the quantity chi-squared (χ2).
Note that in the present work, minimizations were conducted under the assumption that
experimental data were independently and normally distributed with the same standard
deviation, leading to all experimental data points with the same statistical weight, set to 1,
which gives a more simplified formula for χ2, commonly called residual sum of squares
(RSS) and defined as:

χ2 =
750

∑
λi=400

[
Texp

o,e (λi)− To,e(λi)
]2

(33)

Additional constraints were added to the fitting function in order to obtain physi-
cally acceptable solutions, guaranteeing normal dispersion for both no,e(λ) and κo,e(λ), as
defined in Equation (19), along with a positiveness for the quantities ∆n(λ) and ∆κ(λ)
over the whole working spectral range. During each iteration, NonlinearModelFit uses a
standard Wolfram constrained optimization procedure [51] that automatically selects the
best method to be used to adjust the values of the 12 fitting parameters. Depending on the
closeness of the initial estimates to the optimal desired solution, the Wolfram optimization
procedure switches between the Levenberg–Marquardt [52] and the Quasi-Newton [53]
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methods to ensure a fast, reliable, and optimal convergence [54]. This iterative process
completes (converges) when the difference between two consecutive calculated χ2 is less
than a preset tolerance value defined as the convergence criterion. It is worth mentioning
that (NLSF) optimizations are highly sensitive to the choice of the initial guess values. In
other words, convergence to optimal solutions is only obtained for a narrow range of guess
values. This disadvantage was overcome by repeating the fit several times while varying
the initial parameters through a marching procedure to find the best fit. In order to ensure
a fitting convergence to an acceptable solution with a reduced number of iterations, the
starting guess parameters were estimated using a three-step procedure described in detail
in Appendix A.

In addition to a minimal value of χ2, the goodness of fit was evaluated by two other
indicators: the root mean-square error (RMSE) and R2 value, also known as the coefficient
of determination (COD). Let us recall that a better fit is indicated by a high value (close
to 1) of R2 and a low value (close to 0) of both χ2 and (RMSE).

4. Results and Discussion

Table 1 presents the obtained fitting results of both Texp
o (λ) and Texp

e (λ) spectra and
their corresponding goodness-of-fit indicators (GFI). It is immediately visible that the
values of the 12 parameters Ao,e

n,κ , Bo,e
n,κ , and Co,e

n,κ fall well within the experimental ranges
previously defined in Equations (21) and (23). The theoretical intensity transmittances of
the partially absorbing uniaxial slab model in Equation (18) display a good agreement with
the experimental curves for both ordinary and extraordinary configurations as shown in
Figure 9, and this is attested by the obtained values of χ2, R2, and RMSE (see Table 1).

Table 1. Fitting parameters of Mylar sheet intensity transmittances To(λ) and Te(λ).

Best Fit Parameters

An Bn Cn Aκ Bκ Cκ

To(λ) 1.52388 15,249.2 1.52556 × 109 1.322 × 10−8 −2.152090 3.989 × 106

Te(λ) 1.56911 17,856.4 1.52566 × 109 9.832 × 10−7 −0.088029 3.993 × 106

Goodness of fit indicators

χ2 R2 RMSE

5.13419× 10−5 0.999917 6.85588 × 10−3

The units of the Cauchy’s coefficients Bo,e
n,κ and Co,e

n,κ are nm2 and nm4, respectively.

Polymers 2022, 14, x FOR PEER REVIEW 14 of 24 
 

 

closeness of the initial estimates to the optimal desired solution, the Wolfram optimization 
procedure switches between the Levenberg–Marquardt [52] and the Quasi-Newton [53] 
methods to ensure a fast, reliable, and optimal convergence [54]. This iterative process 
completes (converges) when the difference between two consecutive calculated 𝜒ଶ is less 
than a preset tolerance value defined as the convergence criterion. It is worth mentioning 
that (NLSF) optimizations are highly sensitive to the choice of the initial guess values. In 
other words, convergence to optimal solutions is only obtained for a narrow range of 
guess values. This disadvantage was overcome by repeating the fit several times while 
varying the initial parameters through a marching procedure to find the best fit. In order 
to ensure a fitting convergence to an acceptable solution with a reduced number of itera-
tions, the starting guess parameters were estimated using a three-step procedure de-
scribed in detail in Appendix A. 

In addition to a minimal value of 𝜒ଶ, the goodness of fit was evaluated by two other 
indicators: the root mean-square error (RMSE) and 𝑅ଶ value, also known as the coeffi-
cient of determination (COD). Let us recall that a better fit is indicated by a high value 
(close to 1) of 𝑅ଶ and a low value (close to 0) of both 𝜒ଶ and (RMSE). 

4. Results and Discussion 
Table 1 presents the obtained fitting results of both 𝑇௢௘௫௣(𝜆) and 𝑇௘௘௫௣(𝜆) spectra and 

their corresponding goodness-of-fit indicators (GFI). It is immediately visible that the val-
ues of the 12 parameters 𝐴௡,఑௢,௘ , 𝐵௡,఑௢,௘, and 𝐶௡,఑௢,௘ fall well within the experimental ranges pre-
viously defined in Equations (21) and (23). The theoretical intensity transmittances of the 
partially absorbing uniaxial slab model in Equation (18) display a good agreement with 
the experimental curves for both ordinary and extraordinary configurations as shown in 
Figure 9, and this is attested by the obtained values of 𝜒ଶ, 𝑅ଶ, and RMSE (see Table 1). 

Table 1. Fitting parameters of Mylar sheet intensity transmittances 𝑇௢(𝜆) and 𝑇௘(𝜆). 

Best Fit Parameters 
 𝑨𝒏 𝑩𝒏 𝑪𝒏 𝑨𝜿 𝑩𝜿 𝑪𝜿 𝑻𝒐(𝝀) 1.52388 15,249.2 1.52556 × 109 1.322 × 10−8 −2.152090 3.989 × 106 𝑻𝒆(𝝀) 1.56911 17,856.4 1.52566 × 109 9.832 × 10−7 −0.088029 3.993 × 106 

Goodness of fit indicators 𝜒ଶ 𝑅ଶ RMSE 
5.13419× 10−5 0.999917 6.85588 × 10−3 

The units of the Cauchy’s coefficients 𝐵௡,఑௢,௘ and 𝐶௡,఑௢,௘ are nmଶ and nmସ, respectively. 

 
Figure 9. Fitted versus experimental ordinary and extraordinary intensity transmittances of Mylar 
sample. 
Figure 9. Fitted versus experimental ordinary and extraordinary intensity transmittances of Mylar sample.



Polymers 2022, 14, 1805 15 of 24

It is important to remember that Cauchy’s coefficients Ao,e
n,κ , Bo,e

n,κ , and Co,e
n,κ are indepen-

dently adjustable parameters used to empirically describe the sample dispersion function
and, therefore, have no physical meaning. While coefficient Ao,e

n,κ defines the range of ne,o(λ)
and κe,o(λ) and should be necessarily positive, Bo,e

n,κ , and Co,e
n,κ adjust the curvature and,

hence, may be negative numbers. Figure 9 illustrates a typical increase of transmittances
with the wavelength. The Mylar sample has maximum transparency in the direction of the
NIR region of the spectrum, with a maximum transmittance of about 0.9. It gradually tends
to become translucent for the smaller wavelengths, with a minimum transmittance around
0.4. This dispersion behavior is observed for both ordinary and extraordinary polarized
incident lights, with a negative differential transmittance also known as diattenuation
(∆T = Te − To < 0).

The diattenuation |∆T| order of magnitude is remarkably significant, roughly ranging
between 0.02 and 0.04 and corresponding to an average ratio of about 4.6%. This amount of
discrepancy could not solely be explained by the birefringence (∆n) of the Mylar sample but
also requires considering non-negligible extinction coefficients. An approximate estimation
of |∆T| can be obtained (see Appendix B), assuming a non-lossy sample leading to the
following upper bound:

|∆T| ≤ 0.25× ∆n (34)

Recent spectroscopic works on Mylar films [1,2,55] reported a birefringence value be-
tween 0.04 and 0.06 in the (400, 750) nm spectral band. Using the condition in Equation (34)
and the experimental range of ∆n, the expected value of |∆T| is estimated to be ranging
between 0.01 and 0.015, which is nearly half of the observed value. It was this discrepancy
between observed and expected values of the diattenuation that led us, in the first place, to
suggest the partially absorbing uniaxial slab model with a complex refractive index in this
research study. In a second step, the refractive indices dispersion curves no(λ) and ne(λ)
along with the birefringence ∆n(λ) are calculated and plotted using the best fit parameters
Ao,e

n , Bo,e
n , and Co,e

n presented in Table 1. As can be seen from Figure 10, the calculated
indices show normal dispersion with values ranging between 1.55 and 1.75. On the other
hand, the comparison depicted in Figure 11 shows that values of ∆n(λ) obtained by our
method are slightly larger than those reported in the literature [1,2]. It is conceivable that
analyzed PET samples in these different experimental works received different drawing
ratios during their biaxial stretching process and, hence, acquired different amounts of
birefringence as proven by Cakmak et al. [56].
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experimental results [1,2].

The extinction coefficients dispersion curves are, finally, deduced from the six remain-
ing best fit parameters of Table 1. The wavelength dependence of κo and κe presented
in Figure 12 shows a normal dispersion curvature for both ordinary and extraordinary
polarizations, with values decreasing from 15× 10−5 to 1.0× 10−5.
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Figure 12. Ordinary and extraordinary extinction coefficients dispersion curves calculated using
Cauchy model and the best fit parameters.

In addition, a very small positive extinction coefficient difference ∆κ = κe − κo anal-
ogous to the birefringence is observed. In turn, the shift ∆κ exhibits normal dispersion
and ranges between 5.0× 10−6 and 15× 10−6 as shown in Figure 13. The reported dis-
crepancy ∆κ is a proof that stretched PET films display a small amount of dichroism that
contributes with the birefringence ∆n to the observed diattenuation |∆T| between ordinary
and extraordinary transmittances.
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These findings enable further simplifications of Formula (18) employing reasonable
approximations (see Appendix C) as follows:

T(λ) =
16n2

(n + 1)4 e−(
4πd

λ )κ (35)

The last equation shows that Mylar film transmittance for a given wavelength is the
product of two terms corresponding to the contribution of real and imaginary parts of the
complex refractive index and defined, respectively, as:

Tn(λ) =
16n2

(n + 1)4 Tκ(λ) = e−(
4πd

λ )κ (36)

The extinction coefficients values of the current study were compared to the results
obtained by spectroscopic ellipsometry in reference [11] and plotted together on a logarith-
mic scale (see Figure 14). It can be immediately seen that values of κ(λ) of this work are
approximately two orders of magnitude larger than those reported in [11]. The difference
could be explained by the use of different types of Mylar sheets in the two experiments.
Commercially available Mylar polyester sheets present different degrees of transmission
haze, defined as the percentage of diffusely transmitted light scattered at larger angles
(> 2.5◦) [41].
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Depending on their type, some films are completely transparent and transmit visible
light very similar to window glass, such as Mylar type-D sheets [57] with thickness of
70 µm to 250 µm (0% < haze < 2%), while others are extremely hazy, such as Mylar type-A
sheets [58] with thickness of 250 µm and above (90% < haze < 100%). It should be noted that
the difference in haze level is attributed to two factors that increase the photon scattering
at interfaces [59]: the surface roughness of the film and the discontinuities of refractive
index between spherulites due to the semicrystalline structure of PET films. As mentioned
previously, the Mylar® X6739 sheet (Chester, VA, USA) used in the current work has a
thickness of 166 µm. Therefore, according to reference [60], its haze value should be around
20%, which makes it slightly translucent and gives it a milky appearance in visible light.
According to the reported κ(λ) order of magnitude in reference [11], it can be assumed that
a PET sample with higher transparency was used in that experiment, such as Mylar type-D
or type-C (haze about 5%). Based on this assumption, the visible light transmittance ratio
of the two experiments is expected to be around 95 : 80 ≈ 1.2.

To confirm this interpretation, the PET sample transmittance T11(λ) of reference [11]
was calculated for each value of the wavelength using the Formula (35) and the dispersion
functions n(λ) and κ(λ) reported in the same reference. T11(λ) values are then compared
with the fitted transmittances To(λ) and Te(λ) of the current study. As can be seen in
Figure 15, the dispersion curve T11(λ) is nearly constant across the working visible range,
with an average value around 0.9. Very similar transmittance curves were reported for
Mylar type-C and type-D in Dupont Teijin datasheets [61], confirming our assumption.
Moreover, the average ratios T11(λ) : To(λ) and T11(λ) : Te(λ) were calculated and found
close to the predicted value of 95:80 and, respectively, equal to 1.23 and 1.29.
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and Te(λ) of the current work.

These findings suggest that visible light extinction through a stretched PET film is
primarily due to the effect of haze. Our calculations revealed that Mylar sheet’s extinction
coefficient is dominantly controlled by the amount of diffusively transmitted light and that
the visible light absorption effect is negligible compared to scattering. To our knowledge,
no experimental or theoretical works have reported, so far, any correlation between incident
light polarization and haze value. This leads us to admit that ∆κ is only attributable to the
difference of absorption coefficient between the two principal polarizations. The influence
of dichroism in stretched PET films cannot simply be ignored, even if its impact on the
extinction coefficient value has been deemed insignificant.

Finally, it should be noted that the proposed method gives reliable results only in
the absence of coherent superposition of multiple internally reflected and transmitted
waves. This condition is guaranteed by using an optically thick sample for which the
coherence length Lc is small enough compared to the thickness d. It is essential to define
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a lower limit dmin of sample thickness below which the transmission Formula (18) has to
be modified to include the interference terms. The minimum allowable thickness dmin is
mainly determined by a couple of factors: first, the spectral bandwidth ∆λ of the used
spectrophotometer, depending essentially on the physical width of the monochromator
slits; second, the wavelength working range and, more precisely, its highest value λmax. A
thickness criterion can be established based on definition (17) of the coherence length that
has to be at least one order of magnitude smaller than d as follows:

dmin = 10× λmax

2π∆λ
Or simply dmin ∼

λmax

∆λ
(37)

Condition (37) shows that for larger wavelengths, in the IR region of the spectrum, the
critical thickness dmin increases in a way that limits the range of allowable thicknesses. In
that case, the technique has to be modified in order to take into consideration both coherent
and incoherent superpositions.

5. Conclusions

In this work, we have developed a new technique to extract the dispersion curves of a
Mylar film’s ordinary and extraordinary complex refractive indices (CRIs) in the visible
band. The suggested method is fast, straightforward, and easy to set up and presents
the advantage of using low-cost instrumentation (double-beam spectrophotometer). It
enables the determination of both the refractive index and extinction coefficient of a uniaxial
sample with known thickness by fitting a recorded transmittance spectrum obtained by
spectrophotometry with a theoretical model that we had elaborated in advance. We used a
set of two spectra corresponding to ordinary and extraordinary transmittances, allowing
a simultaneous determination of the ordinary and extraordinary CRIs. We derived a
new generalized formula for transmittance dispersion based on the Fresnel’s coefficients
formalism and using the Cauchy model to describe n and κ wavelength dependence. Our
model was able to reproduce the Mylar transmission spectra in both configurations, and the
retrieved dispersion curves no,e(λ), κo,e(λ), and ∆n(λ) are comparable to corresponding
ones found in the literature. Our experimental approach demonstrated its ability to detect
and estimate the discrepancy ∆κ(λ) of highly transparent media such as Mylar films
across the visible band, often inaccessible through other techniques such as spectroscopic
ellipsometry. With the obtained values of ∆κ(λ), we have proved that, in addition to
the birefringence, Mylar films exhibit a very small amount of dichroism. Using several
approximations, we succeeded in further simplifying the transmission dispersion formula
and confirmed that the Mylar sheet extinction coefficient is dominantly controlled by the
amount of haze due to diffusively transmitted light. Finally, it is important to note that
Mylar is found to exhibit a similar birefringence dispersion over a wide spectral range to
liquid crystals, employed for display applications, which makes our method applicable for
liquid crystal optical anisotropy investigation.
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Appendix A

To estimate a set of initial guess parameters reasonably close to the optimal solution,
the following procedure was used:

Step 1:

- Adopting a non-lossy sample approximation allowed us to reduce the number of
fitting parameters to three instead of six. This choice was motivated by the very small
experimental values of κ(λ) (five to six orders of magnitude smaller than the values
of n(λ)) as reported elsewhere [11]. With this approximation, and as explained in
Appendix B, the transmittance expression is reduced to:

T(λ) ∼=
16n2(λ)

[n(λ) + 1]4 − [n(λ)− 1]4
=

2n(λ)
n2(λ) + 1

which results in the below equation:

n2(λ)− 2n(λ)
T(λ)

+ 1 = 0 (A1)

- In a second step, three equidistant data points were chosen from the experimental
transmission spectrum (400, T(400)) , (575, T(575)), (750, T(750)) then substituted
one by one in Equation (A1) to obtain three values: n(400),n(575), and n(750), which
ultimately led to the below system of linear equations:

A + B
4002 +

C
4004 = n(400)

A + B
5752 +

C
5754 = n(575)

A + B
7502 +

C
7504 = n(750)

- Solving the last system analytically gave the initial set of guess values (A0, B0, C0).

Step 2:

- Using the guess values (A0, B0, C0) of step 1, a theoretical guess function based on
Cauchy model of dispersion was constructed

no(λ) = A0 +
B0

λ2 +
C0

λ4

- A Mathematica script employing the FindRoot built-in function was implemented
and used to numerically solve Equation (18) for a lossy material.

T =

(
4n

(n+1)2+κ2

)2
e−(

4πd
λ )κ

1−
(

(n−1)2+κ2

(n+1)2+κ2

)2
e−2( 4πd

λ )κ

- The script combines the guessed values no(λ) previously obtained with the experimen-
tal spectral measurements T(λ) for each value of λ ∈ (400, 750 nm), which allowed
the calculation of κ0(λ) over the entire spectral range.

Step 3:
The final step was to conduct a simple fitting of κ0(λ) to obtain the remaining three

initial guess values relative to κ.
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Appendix B

When assuming the Mylar film to be a weakly absorbing medium with a negligible
extinction coefficient, one could omit the term κ in the Equations (12), (13) and (15) for a
given wavelength using the following approximations:

κ � n ⇒ Rint(n, κ) =
(n− 1)2 + κ2

(n + 1)2 + κ2
∼= Rint(n) =

(n− 1)2

(n + 1)2

κ � n ⇒ Tint(n, κ) =
4n

(n + 1)2 + κ2
∼= Tint(n) =

4n

(n + 1)2

αd =
4πκd

λ
� 1 ⇒ e−αd ∼= e−2αd ∼= 1

which leads to the simplified formula:

T(n) ∼=
16n2

(n + 1)4 − (n− 1)4 =
2n

n2 + 1

An estimation of the first derivative dT(n)
dn enables approximate evaluation of the

vertical shift |∆T| expected value for a given difference ∆n as follows:

dT(n)
dn

=
d

dn

(
2n

n2 + 1

)
= −

2
(
n2 − 1

)
(n2 + 1)2

Knowing that n > 1, the following bound can be established for dT(n)
dn after some

mathematical manipulations:

− 0.25 ≤ dT(n)
dn

= −
2
(
n2 − 1

)
(n2 + 1)2 < 0

This finally leads to the following inequality:∣∣∣∣∆T
∆n

∣∣∣∣ ≤ 0.25⇒ |∆T| ≤ 0.25× ∆n

Appendix C

Results presented in Figures 10 and 12 show that n is four to five orders of magnitude
larger than κ, which allows us to ignore the term κ2 as follows:{

(n + 1)2 + κ2 ∼= (n + 1)2

(n− 1)2 + κ2 ∼= (n + 1)2

⇒ T ∼=
16n2e−(

4πd
λ )κ

(n + 1)4 − (n− 1)4e−(
8πd

λ )κ

Moreover, we can estimate the range of each term in the denominator of the last
expression as follows:

Knowing that 1.5 < n < 1.75 and 1.10−5 < κ < 15.10−5, we have:

39.06250 < (n + 1)4 < 57.19141

0.0625× e−8π× 166,000
400 ×(15×10−5) < (n− 1)4e−(

8πd
λ )κ < 0.31640× e−8π× 166,000

750 ×(1×10−5)
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that is:
0.01307 < (n− 1)4e−(

8πd
λ )κ < 0.29928

The numerical estimation of the ranges enables one to neglect the second term without
introducing a significant error. With these simplifications, Equation (18) becomes:

T(λ) =
16n2

(n + 1)4 e−(
4πd

λ )κ
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