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The endeavor to understand the brain involves multiple collaborating research fields.

Classically, synaptic plasticity rules derived by theoretical neuroscientists are evaluated

in isolation on pattern classification tasks. This contrasts with the biological brain

which purpose is to control a body in closed-loop. This paper contributes to bringing

the fields of computational neuroscience and robotics closer together by integrating

open-source software components from these two fields. The resulting framework allows

to evaluate the validity of biologically-plausibe plasticity models in closed-loop robotics

environments. We demonstrate this framework to evaluate Synaptic Plasticity with Online

REinforcement learning (SPORE), a reward-learning rule based on synaptic sampling, on

two visuomotor tasks: reaching and lane following. We show that SPORE is capable

of learning to perform policies within the course of simulated hours for both tasks.

Provisional parameter explorations indicate that the learning rate and the temperature

driving the stochastic processes that govern synaptic learning dynamics need to be

regulated for performance improvements to be retained. We conclude by discussing

the recent deep reinforcement learning techniques which would be beneficial to increase

the functionality of SPORE on visuomotor tasks.

Keywords: neurorobotics, synaptic plasticity, spiking neural networks, neuromorphic vision, reinforcement

learning

1. INTRODUCTION

The brain evolved over millions of years for the sole purpose of controlling the body in a
goal-directed fashion. Computations are performed relying on neural dynamics and asynchronous
communication. Spiking neural network models base their computations on these computational
principles. Biologically plausible synaptic plasticity rules for functional learning in spiking neural
networks are regularly proposed (Pfister et al., 2006; Urbanczik and Senn, 2014; Neftci, 2017; Kaiser
et al., 2018; Zenke and Ganguli, 2018). In general, these rules are derived to minimize a distance
(referred to as error) between the output of the network and a target. Therefore, the evaluation
of these rules is usually carried out on open-loop pattern classification tasks. By neglecting the
embodiment, this type of evaluation disregards the closed-loop dynamics the brain has to handle
with the environment. Indeed, the decisions taken by the brain have an impact on the environment,
and this change is sensed back by the brain. To get a deeper understanding of the plausibility
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of these rules, an embodied evaluation is necessary. This
evaluation is technically complicated since spiking neurons
are dynamical systems that must be synchronized with the
environment. Additionally, as in biological bodies, sensory
information, and motor commands need to be encoded and
decoded respectively.

In this paper, we bring the fields of computational
neuroscience and robotics closer together by integrating
open-source software components from these two fields. The
resulting framework is capable of learning online the control of
simulated and real robots with a spiking network in a modular
fashion. This framework is demonstrated in the evaluation of
the promising neural reward-learning rule SPORE (Kappel et al.,
2014, 2015, 2018; Yu et al., 2016) on two closed-loop robotic
tasks. SPORE is an instantiation of the synaptic sampling scheme
introduced in Kappel et al. (2018, 2015). It incorporates a policy
sampling method which models the growth of dendritic spines
with respect to dopamine influx. Unlike current state-of-the-art
reinforcement learning methods implemented with conventional
neural networks (Lillicrap et al., 2015; Mnih et al., 2015, 2016),
SPORE learns online from precise spike-time and is entirely
implemented with spiking neurons. We evaluate this learning
rule in a closed-loop reaching and a lane following (Kaiser et al.,
2016; Bing et al., 2018a) setup. In both tasks, an end-to-end
visuomotor policy is learned, mapping visual input to motor
commands. In the last years, important progress have been
made on learning control from visual input with deep learning.
However, deep learning approaches are computationally
expensive and rely on biologically implausible mechanisms such
as dense synchronous communication and batch learning. For
networks of spiking neurons learning visuomotor tasks online
with synaptic plasticity rules remains challenging. In this paper,
visual input is encoded in Address Event Representation with
a Dynamic Vision Sensor (DVS) simulation (Lichtsteiner et al.,
2008; Kaiser et al., 2016). This representation drastically reduces
the redundancy of the visual input as only motion is sensed,
allowing more efficient learning. It agrees with the two pathways
hypothesis which states that motion is processed separately than
color and shape in the visual cortex (Kruger et al., 2013).

The main contribution of this paper is the embodiment of
SPORE and its evaluation on two neurorobotic tasks using
a combination of open-source software components. This
embodiment allowed us to identify crucial techniques to regulate
SPORE learning dynamics, not discussed in previous works
where this learning rule was only evaluated on simple proof-of-
concept learning problems (Kappel et al., 2014, 2015, 2018; Yu
et al., 2016). Our results suggest that an external mechanism such
as learning rate annealing is beneficial to retain a performing
policy on advanced lane following task.

This paper is structured as follows. We provide a review
of the related work in section 2. In section 3, we give a brief
overview of SPORE and discuss the contributed techniques
required for its embodiment. The implementation and evaluation
on the two chosen neurorobotic tasks is carried out in section
4. Finally, we discuss in section 5 how the method could
be improved.

2. RELATED WORK

The year 2015 marked a significant breakthrough in deep
reinforcement learning. Artificial neural networks of analog
neurons are now capable of solving a variety of tasks ranging
from playing video games (Mnih et al., 2015), to controlling
multi-joints robots (Lillicrap et al., 2015; Schulman et al.,
2017), and lane following (Wolf et al., 2017). Most recent
methods (Lillicrap et al., 2015; Schulman et al., 2015, 2017;
Mnih et al., 2016) are based on policy-gradients. Specifically,
policy parameters are updated by performing ascending gradient
steps with backpropagation to maximize the probability of taking
rewarding actions. While functional, these methods are not
based on biologically plausible processes. First, a large part of
neural dynamics are ignored. Importantly, unlike SPORE, these
methods do not learn online—weight updates are performedwith
respect to entire trajectories stored in rollout memory. Second,
learning is based on backpropagation which is not biologically
plausible learning mechanism, as stated in Bengio et al. (2015).

Spiking network models inspired by deep reinforcement
learning techniques were introduced in Bellec et al. (2018)
and Tieck et al. (2018). In both papers, the spiking networks
are implemented with deep learning frameworks (PyTorch
and TensorFlow, respectively) and rely on automatic
differentiation. Their policy-gradient approach is based on (PPO;
Schulman et al., 2017). As the learning mechanism consists of
backpropagating the Proximal Policy Optimization (PPO) loss
(through-time in the case of Bellec et al., 2018), most biological
constraints stated in Bengio et al. (2015) are still violated.
Indeed, the computations are based on spikes (4), but the
backpropagation is purely linear (1), the feedback paths require
precise knowledge of the derivatives (2) and weights (3) of the
corresponding feedforward paths, and the feedforward and
feedback phases alternate synchronously (5) (the enumeration
refers to Bengio et al., 2015).

Only a small body of work focused on reinforcement
learning with spiking neural networks, while addressing the
previous points. Groundwork of reinforcement learning with
spiking networks was presented in Florian (2007), Izhikevich
(2007), and Legenstein et al. (2008). In these works, a
mathematical formalization is introduced characterizing how
dopamine modulated spike-timing-dependent plasticity (DA-
STDP) solves the distal reward problem with eligibility traces.
Specifically, since the reward is received only after a rewarding
action is performed, the brain needs a form of memory to
reinforce previously chosen actions. This problem is solved
with the introduction eligibility traces, which assign credit to
recently active synapses. This concept has been observed in the
brain (Frey and Morris, 1997; Pan et al., 2005), and SPORE
also relies on eligibility traces. Fewer works evaluated DA-STDP
in an embodiment for reward maximization—a recent survey
encompassing this topic is available in Bing et al. (2018b).

The closest previous work related to this paper are Daucé
(2009), Kaiser et al. (2016), and Bing et al. (2018a). In Kaiser et al.
(2016), a neurorobotic lane following task is presented, where
a simulated vehicle is controlled end-to-end from event-based
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vision to motor command. The task is solved with an hard-
coded spiking network of 16 neurons implementing a simple
Braitenberg vehicle. The performance is evaluated with respect to
distance and orientation differences to the middle of the lane. In
this paper, these performancemetrics are combined into a reward
signal which the spiking network maximizes with the SPORE
learning rule.

In Bing et al. (2018a), the authors evaluate DA-STDP (referred
to as R-STDP for reward-modulated STDP) in a similar lane
following environment. Their approach outperforms the hard-
coded Braitenberg vehicle presented in Kaiser et al. (2016). The
two motor neurons controlling the steering receive different
(mirrored) reward signals whether the vehicle is on the left or
on the right of the lane. This way, the reward provides the
information of what motor command should be taken, similar to
a supervised learning setup. Conversely, the approach presented
in this paper is more generic since a global reward is distributed
to all synapses and does not indicate which action the agent
should take.

A similar plasticity rule implementing a policy-gradient
approach is derived in Daucé (2009). Also relying on eligibility
traces, this reward-learning rule uses a “slow” noise term to drive
the exploration. This rule is demonstrated on a target reaching
task comparable to the one discussed in section 4.1.1 and achieves
impressive learning times (in the order of 100s) with proper
tuning of the noise term.

In Nakano et al. (2015), a spiking version of the free-energy-
based reinforcement learning framework proposed in Otsuka
et al. (2010) is introduced. In this framework, a spiking Restricted
Boltzmann Machine (RBM) is trained with a reward-modulated
plasticity rule which decreases the free-energy of rewarding
state-action pairs. The approach is evaluated on discrete-
actions tasks where the observations consist of MNIST digits
processed by a pre-trained feature extractor. However, some
characteristics of RBM are biologically implausible and make
their implementation cumbersome: symmetric synapses and
clocked network activity. With our approach, network activity
does not have to be manually synchronized into observation
and action phases of arbitrary duration for learning to
take place.

In Gilra and Gerstner (2017), a supervised synaptic learning
rule named Feedback-based Online Local Learning Of Weights
(FOLLOW) is introduced. This rule is used to learn the
inverse dynamics of a two-link arm—the model predicts control
commands (torques) for a given arm trajectory. The loop is closed
in Gilra and Gerstner (2018) by feeding the predicted torques
as control commands. In contrast, SPORE learns from a reward
signal and can solve a variety of tasks.

3. METHODS

In this section, we give a brief overview of the reward-
based learning rule SPORE. We then discuss how SPORE
was embodied in closed-loop, along with our modifications to
increase the robustness of the learned policy.

3.1. Synaptic Plasticity With Online
Reinforcement Learning (SPORE)
Throughout our experiments we use an implementation of the
reward-based online learning rule for spiking neural networks,
named synaptic sampling, that was introduced in Kappel et al.
(2018). The learning rule employs synaptic updates that are
modulated by a global reward signal to maximize the expected
reward. More precisely, the learning rule does not converge to
a local maximum θ

∗ of the synaptic parameter vector θ , but
it continuously samples different solutions θ ∼ p∗(θ) from a
target distribution that peaks at parameter vectors that likely
yield high reward. A temperature parameter T allows to make
the distribution p∗(θ) flatter (high exploration) or more peaked
(high exploitation).

SPORE (Kappel et al., 2017) is an implementation of the
reward-based synaptic sampling rule (Kappel et al., 2018), that
uses the NEST neural simulator (Gewaltig and Diesmann, 2007).
SPORE is optimized for closed-loop applications to form an
online policy-gradient approach.We briefly review here the main
features of the synaptic sampling algorithm.

We consider the goal of reinforcement learning to maximize
the expected future discounted reward V(θ) given by

V(θ) =
〈 ∫ ∞

0
e−

τ
τe r(τ ) dτ

〉

p(r|θ)
, (1)

where r(τ ) denotes the reward at time τ and τe is a time constant
that discounts remote rewards.We consider non-negative reward
r(τ ) ≥ 0 at any time such that V(θ) ≥ 0 for all θ . The
distribution p(r|θ) denotes the probability of observing the
sequence of reward r under a given parameter vector θ . Note that
computing this expectation involves averaging over a number of
experimental trials and network responses.

As proposed in Kappel et al. (2018) we replace the standard
goal of reinforcement learning tomaximize the objective function
in Equation (1) by a probabilistic framework that generates
samples from the parameter vector θ according to some target
distribution θ ∼ p∗(θ).Wewill focus on sampling from the target
distribution p∗(θ) of the form

p∗(θ) ∝ p (θ) × V(θ) , (2)

where p (θ) is a prior distribution over the network parameters
that allows us, for example, to introduce constraints on the
sparsity of the network parameters. It has been shown in Kappel
et al. (2018) that the learning goal in is achieved, if all synaptic
parameters θi obey the stochastic differential equation

dθi = β

(

∂

∂θi
log p (θ) +

∂

∂θi
logV(θ)

)

dt +
√

2βT dWi ,

(3)
where β is a scaling parameter that functions as a learning
rate, dWi are the stochastic increments and decrements of a
Wiener process, and T is the temperature parameter. ∂

∂θi
denotes

the partial derivative with respect to the synaptic parameter
θi. The stochastic process in generates samples of θ that are
with high probability close to the local optima of the target
distribution p∗(θ).
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It has been further shown in Kappel et al. (2018) that can
be implemented using a synapse model with local update rules.
The state of each synapse i consists of the dynamic variables yi(t),
ei(t), gi(t), θi(t), and wi(t). The variable yi(t) is the pre-synaptic
spike train filtered with a post-synaptic-potential kernel. ei(t) is
the eligibility trace that maintains a brief history of pre-/post
neural activity. gi(t) is a variable to estimate the reward gradient,
i.e., the gradient of the objective function in Equation (1) with
respect to the synaptic parameter θi(t). wi(t) denotes the weight
of synapse i at time t. In addition each synapse has access to the
global reward signal r(t). The variables ei(t), gi(t), and θi(t) are
updated by solving the differential equations:

dei(t)

dt
= −

1

τe
ei(t) + wi(t) yi(t) (zposti (t)− ρposti (t)) (4)

dgi(t)

dt
= −

1

τg
gi(t) + r(t) ei(t) (5)

dθi(t) = β

(

cp(µ − θi(t))+ cg gi(t)

)

dt +
√

2Tθβ Wi , (6)

where zposti (t) is a sum of Dirac delta pulses placed at the firing
times of the post-synaptic neuron,µ is the prior mean of synaptic
parameters [p (θ) in Equation 2] and ρposti (t) is the instantaneous
firing rate of the post-synaptic neuron at time t. The constants
cp and cg are tuning parameters of the algorithm that scale the
influence of the prior distribution p (θ) against the influence of
the reward-modulated term. Setting cp = 0 corresponds to a
non-informative (flat) prior. In general, the prior distribution is
modeled as a Gaussian centered around µ: p (θ) = N (µ, 1

cp
) .

We used µ = 0 in our simulations. The variance of the
reward gradient estimation (Equation 5) could be reduced by
subtracting a baseline to the reward as introduced in Williams
(1992), although this was not investigated in this paper.

Finally the synaptic weights are given by the projection

wi(t) =
{

w0 exp(θi(t)− θ0) if θi(t) > 0

0 otherwise
, (7)

which scaling and offset parameters w0 and θ0, respectively.
In SPORE the differential equations Equations (4) to (6) are

solved using the Euler method with a time step of 1 ms. The
dynamics of the post-synaptic term yi(t), the eligibility trace ei(t),
and the reward gradient gi(t) are updated at each time step. The
dynamics of θi(t) and wi(t) are updated on a coarser time grid
with step width 100 ms for the sake of simulation speed. The
synaptic weights remain constant between two updates. Synaptic
parameters are clipped at θmin and θmax. Parameter gradients gi(t)
are clipped at±1θmax. The parameters used in our evaluation are
stated in Tables 1–3.

3.2. Closed-Loop Embodiment
Implementation
Usually, synaptic learning rules are solely evaluated on open-
loop pattern classification tasks (Pfister et al., 2006; Urbanczik
and Senn, 2014; Neftci, 2017; Zenke and Ganguli, 2018). An
embodied evaluation is technically more involved and requires a

TABLE 1 | NEST parameters.

Time-step/resolution 1 ms

Synapse update interval 100 ms

(reaching) exploration noise 35 Hz

(reaching) noise to exploration exc. 750.0

(reaching) visual to exploration inh. N (−500, 50)

(reaching) exploration to motor exc. 10.0

TABLE 2 | SPORE parameters.

Visual to motor exc. N (0.8, 0.6) (clipped at 0)

Visual to motor mul. 10

Temperature (T ) 0.1

Initial learning rate (β) 1 × 10−7

Learning rate decay (λ) 8.5 × 10−5

Integration time 50 s

Max synaptic parameter (θmax ) 5.0

Min synaptic parameter (θmin) −2.0

(reaching) episode length 1 s

(lane following) episode length 2 s

TABLE 3 | ROS-MUSIC parameters.

MUSIC time-step 1 ms . . . 3 ms

DVS adapter time-step 1 ms

Decoder time constant 100 ms

closed-loop environment simulation. A core contribution of this
paper is the implementation of a framework allowing to evaluate
the validity of bio-plausibe plasticity models in closed-loop
robotics environments.We rely on this framework to evaluate the
synaptic sampling rule SPORE (Kappel et al., 2017), as depicted
in Figure 1. This framework is tailored for evaluating spiking
network learning rules in an embodiment. Visual sensory input is
sensed, encoded as spikes, processed by the network, and output
spikes are converted to motor commands. The motor commands
are executed by the agent, which modifies the environment.
This modification of the environment is sensed by the agent.
Additionally, a continuous reward signal is emitted from the
environment. SPORE tries to maximize this reward signal online
by steering the ongoing synaptic plasticity processes of the
network toward configurations which are expected to yield more
overall reward. Unlike classical reinforcement learning setup, the
spiking network is treated as a dynamical system continuously
receiving input and outputting motor commands. This allows
us to report learning progress with respect to (biological)
simulated time, unlike classical reinforcement learning which
reports learning progress in number of iterations. Similarly, we
reset the agent only when the task is completed (in the reaching
task) or when the agent goes off-track (in the lane following task).
We do not enforce finite-time episodes and neither the agent nor
SPORE are notified of the reset.

This framework relies on many open-source software
components: As neural simulator we use NEST (Gewaltig
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FIGURE 1 | Implementation of the embodied closed-loop evaluation of the reward-based learning rule SPORE. (Left) Our asynchronous framework based on

open-source software components. The spiking network is implemented with the NEST neural simulator (Gewaltig and Diesmann, 2007), which communicates spikes

with MUSIC (Ekeberg and Djurfeldt, 2008; Djurfeldt et al., 2010). The reward is streamed to all synapses in the spiking network learning with SPORE (Kappel et al.,

2017). Spikes are encoded from address events and decoded to motor commands with ROS-MUSIC tool-chain adapters (Weidel et al., 2016). Address events are

emitted by the DVS plugin (Kaiser et al., 2016) within the simulated robotic environment Gazebo (Koenig and Howard, 2004), which communicates with ROS (Quigley

et al., 2009). (Right) Encoding visual information to spikes for the lane following experiment, see section 4.1.2 for more information. Address events (red and blue

pixels on the rendered image) are downscaled and fed to visual neurons as spikes.

and Diesmann, 2007) combined with the open-source
implementation of SPORE (Kappel et al., 2018)1. The
robotic simulation is managed by Gazebo (Koenig and
Howard, 2004) and ROS (Quigley et al., 2009) and visual
perception is realized using the open-source DVS plugin for
Gazebo (Kaiser et al., 2016)2. This plugin emits polarized
address events when variations in pixel intensity cross a
threshold. The robotic simulator and the neural network
run in different processes. We rely on MUSIC (Ekeberg
and Djurfeldt, 2008; Djurfeldt et al., 2010) to communicate
and transform the spikes and we employ the ROS-MUSIC
tool-chain by Weidel et al. (2016) to bridge between the two
communication frameworks. The latter also synchronizes ROS
time with spiking network time. Most of these components
are also integrated in the Neurorobotics Platform (NRP)
Falotico et al. (2017), except for MUSIC and the ROS-
MUSIC tool-chain. Therefore, the NRP does not support
streaming a reward signal to all synapses, required in
our experiments.

As part of this work, we contributed to the Gazebo DVS
plugin by integrating it to ROS-MUSIC, and to the SPORE
module by integrating it with MUSIC. These contributions
enable researchers to design new ROS-MUSIC experiments
using event-based vision to evaluate SPORE or their own
biologically-plausible learning rules. A clear advantage of this
framework is that the robotic simulation can be substituted
for a real robot seamlessly. However, the necessary human
supervision in real robotics coupled with the many hours
needed by SPORE to learn a performing policy is currently
prohibitive. The simulation of the whole framework was
conducted on a Quad core Intel Core i7-4790K with 16GB RAM
in real-time.

1https://github.com/IGITUGraz/spore-nest-module
2https://github.com/HBPNeurorobotics/gazebo_dvs_plugin

3.3. Learning Rate Annealing
In the original work presenting SPORE (Kappel et al., 2014, 2015,
2018; Yu et al., 2016), the learning rate β and the temperature
T were kept constant throughout the learning process. Note
that in deep learning, learning rates are often regulated by the
optimization processes (Kingma and Ba, 2014). We found that
the learning rate β of SPORE plays an important role in learning
and benefit from an annealingmechanism. This regulation allows
the synaptic weights to converge to a stable configuration and
prevents the network to forget previous policy improvements.
For the lane following experiment presented in this paper, the
learning rate β is decreased over time, which also reduces the
temperature (random exploration), see Equation (3). Specifically,
we decay the learning rate β exponentially with respect to time:

dβ(t)

dt
= −λβ(t). (8)

The learning rate is updated following this equation every
10 min. Independently decaying the temperature term T was
not investigated, however we expect a minor impact on the
performance because of the high variance of the reward gradient
estimation, intrinsically leading the agent to explore.

4. EVALUATION

We evaluate our approach on two neurorobotic tasks: a reaching
task and the lane following task presented in Kaiser et al. (2016)
and Bing et al. (2018a). In the following sections, we describe
these tasks and the ability of SPORE to solve them. Additionally,
we analyze the performance and stability of the learned policies
with respect to the prior distribution p (θ) and learning rate β

(see Equation 3).

4.1. Experimental Setup
The tasks used for our evaluation are depicted in Figure 2.
In both tasks, a feed-forward all-to-all two-layers network of
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FIGURE 2 | Visualization of the setup for the two experiments. (Left) Reaching experiment. The goal of the task is to control the ball to the center of the plane. Visual

input is provided by a DVS simulation above the plane looking downward. The ball is controlled with Cartesian velocity vectors. (Right) Lane following experiment. The

goal of the task is to keep the vehicle on the right lane of the road. Visual input is provided by a DVS simulation attached to the vehicle looking forward to the road. The

vehicle is controlled with steering angles.

spiking neurons is trained with SPORE to maximize a task-
specific reward. Previous work has shown that this architecture
was sufficient for the task complexity considered (Daucé, 2009;
Kaiser et al., 2016; Bing et al., 2018a). The network is end-to-
end and maps the address events of a simulated DVS to motor
commands. The parameters used for the evaluation are presented
in Tables 1–3. In the next paragraphs, we describe the tasks
together with their decoding schemes and reward functions.

4.1.1. Reaching Task

The reaching task is a natural extension of the open-loop blind
reaching task on which SPORE was evaluated in Yu et al. (2016).
A similar visual tracking task was presented inDaucé (2009), with
a different visual input encoding. In our setup, the agent controls
a ball of 2 m radius which has to move toward the 2 m radius
center of a 20 × 20 m plane enclosed with walls. Sensory input
is provided by a simulated DVS with a resolution of 16x16 pixels
located above the center which perceives the ball and the entire
plane. There is one visual neuron corresponding to each DVS
pixel—we make no distinctions between ON and OFF events.
We additionally enhance the input space with an axis feature
neuron for each row and each column. These neurons fire for
each spikes in the respective row or column of neurons they
cover. Both 16x16 visual neurons and 2x16 axis feature neurons
are connected to all 8 motor neurons with 10 plastic SPORE
synapses, resulting in 23,040 learnable parameters. The network
controls the ball with instantaneous velocity vectors through the
Gazebo Planar Move Plugin. Velocity vectors are decoded from
output spikes with the linear decoder:

v =
[

ẋ
ẏ

]

=
[

cos(β1) cos(β2) . . . cos(βN)
sin(β1) sin(β2) . . . sin(βN)

]











a1
a2
...
aN











βk =
2kπ

N
,

(9)

with ak the activity of motor neuron k obtained by applying a
low-pass filter on the spikes with time constant τ . This decoding
scheme consists of equally distributing N motor neurons on a
circle representing their contribution to the displacement vector.

For our experiment, we set N = 8 motor neurons. We add
an additional exploration neuron to the network which excites
the motor neurons and is inhibited by the visual neurons. This
neuron prevents long periods of immobility. Indeed, when the
agent decides to stay motionless, it does not receive any sensory
input as the DVS simulation only senses change. Since the
network is feedforward, the absence of sensory input causes the
neural activity to drop, leading to more immobility.

The ball is reset to a random position on the plane if it has
reached the center. This reset is not signaled to the network—
aside from the abrupt change in visual input—and does not mark
the end of an episode. Let βerr denote the absolute value of the
angle between the straight line to the goal and the direction
taken by the ball. The agent is rewarded if the ball moves in
the direction toward the goal βerr < βlim at a sufficient velocity
v > vlim. Specifically, the reward r(t) is computed as:

r(t) = 35
√
rv(rβ + 1)5

rβ =
{

1− βerr
βlim

, if βerr < βlim

0, otherwise

rv =
{

|v|, if |v| > vlim

0, otherwise
.

(10)

This signal is smoothed with an exponential filter before being
streamed to the agent. This formulation provides a continuous
feedback to the agent, unlike delivering a discrete terminal
reward upon reaching the goal state. In our experiments, discrete
terminal rewards did not suffice for the agent to learn performing
policies in a reasonable amount of time. On the other hand, distal
rewards are supported by SPORE through eligibility traces, as
was demonstrated in Yu et al. (2016) and Kappel et al. (2018),
for open-loop tasks with clearly delimited episodes. This suggests
that additional mechanisms or hyperparameter tuning would be
required for SPORE to learn from distal rewards online.

4.1.2. Lane Following Task

The lane following task was already used to demonstrate spiking
neural controllers in Kaiser et al. (2016) and Bing et al. (2018a).
The goal of the task is to steer a vehicle to stay on the right
lane of a track. Sensory input is provided by a simulated DVS
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with a resolution of 128x32 pixels mounted on top of the
vehicle showing the track in front. There are 16x4 visual neurons
covering the pixels, each neuron responsible for a 8x8 pixel
window. Each visual neuron spikes at a rate correlated to the
amount of events in its window (see Figure 1). The vehicle starts
driving on a fixed starting point with a constant velocity on the
right lane of the track. As soon as the vehicle leaves the track, it is
reset to the starting point. As in the reaching task, this reset is not
explicitly signaled to the network and does not mark the end of a
learning episode.

The network controls the angle of the vehicle by steering it,
while its linear velocity is constant. The output layer is separated
into two neural populations. The steering commands sent to
the agent consist of the difference of activity between these two
populations. Specifically, steering commands are decoded from
output spikes as a ratio between the following linear decoders:

aL =
N/2
∑

i=1

ai,

aR =
N

∑

i=N/2

ai,

r =
aL − aR

aL + aR
.

(11)

The first N/2 neurons pull the steering on one side, while the
remaining N/2 neurons pull steering to the other side. We
set N = 8 so that there are 4 left motor neurons and 4
right motor neurons. The steering command is obtained by
discretizing the ratio r into five possible commands: hard left
(–30◦), left (–15◦), straight (0◦), right (15◦), and hard right
(30◦). The decision boundaries between these steering angles

are r = {−10,−2.5, 2.5, 10}, respectively. This discretization is
similar than the one used in Wolf et al. (2017). It yielded better
performance than directly using r (multiplied with a scaling
constant k) as a continuous-space steering command as in Kaiser
et al. (2016).

The reward signal delivered to the vehicle is equivalent to
the performance metrics used in Kaiser et al. (2016) to evaluate
the policy. As in the reaching task, the reward depends on two
terms—the angular error βerr and the distance error derr. The
angular error βerr is the absolute value of the angle between the
right lane and the vehicle. The distance error derr is the distance
between the vehicle and the center of the right lane. The reward
r(t) is computed as:

r(t) = e−0.03 β2
err × e−70 d2err . (12)

The constants are chosen so that the score is halved every 0.1m
distance error or 5◦ angular error. Note that this reward function
is comprised between [0, 1] and is less informative than the
error used in Bing et al. (2018a). In our case, the same reward
is delivered to all synapses, and a particular reward value does
not indicate whether the vehicle is on the left or on the right
of the lane. The decay of the learning rate is λ = 8.5× 10−5

(see Table 2).

4.2. Results
Our results show that SPORE is capable of learning policies
online for moderately difficult embodied tasks within some
simulated hours (see Supplementary Video). We first discuss
the results on the reaching task, where we evaluated the impact
of the prior distribution. We then present the results on the
lane following task, where the impact of the learning rate
was evaluated.

FIGURE 3 | Results for the reaching task. (Left) Comparing the effect of different prior configurations on the overall learning performance. The results were averaged

over eight trials. The performance is measured with the rate at which the target is reached (the ball moves to the center and is reset at a random position). (Right)

Development of the synaptic weights over the course of learning for two trials: no prior (cp = 0, top) and strong prior (cp = 1, bottom). In both cases, the number of

weak synaptic weights (below 0.07) increases significantly over time.
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4.2.1. Impact of Prior Distribution

For the reaching task, a flat prior cp = 0 yielded the policy with
highest performance (see Figure 3). In this case, the performance
improves rapidly within a few hours of simulated time, and the
ball reaches the center about 90 times every 250 s. Conversely,
a strong prior (cp = 1) forcing the synaptic weights close to 0
prevented performing policies to emerge. In this case, after 13h
of learning, the ball reaches the center only about 10 times on
average every 250 s, a performance comparable to the random
policy. Less constraining priors also affected the performance
of the learned policies compared to the unconstrained case, but
allowed learning to happen. With cp = 0.25, the ball reaches
the center about 60 times on average every 250 s. Additionally,

the number of retracting synapses increases over time—even
in the flat prior case—reducing the computational overhead,
important for a neuromorphic hardware implementation (Bellec
et al., 2017). Indeed, for cp = 0, the number of weak synaptic
weights (below 0.07) increased from 3,329 to 7,557 after 1h
of learning to 14,753 after 5 h of learning (out of 23,040
synapses in total). In other words, only 36% of all synapses
are active. The weight distribution for cp = 0.25 is similar
to the no-prior case cp = 0. The strong prior cp = 1
prevented strong weights to form, trading-off performance.
The same trend is observed for the lane following task, where
only 33% of all synapses are active after 4 h of learning
(see Figure 5).

FIGURE 4 | Policy development for selected points in time in a single trial. On the top (A), the performance over time for a single, well-performing trial is depicted. The

red lines indicate certain points in time, for which the policies are shown in (B–G). Each policy plot consists of a 2d-grid representing the DVS pixels. Hereby, every

pixel contains a vector, which indicates the motion corresponding to the contribution of an event emitted by this pixel. The magnitude of the contribution (vector

strength) is indicated by the outer pixel area. The inner circle color represents the assessment of the vector direction (angular correctness).
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The analysis of a single trial with cp = 0.25 is depicted in
Figure 4. The performance does not converge and rather rise
and drop while the network is sampling configurations. On
initialization (Figure 4B), the policy employs weak actions with
random directions.

After over 4.750 s of learning (Figure 4C), the first local
maximum is reached. Vector directions have largely turned
toward the grid center (see inner pixel colors). Additionally, the
overall magnitude of the weights has largely increased, as could
be expected from the weight histogram in Figure 3. In particular,
patterns of single rows and columns emerge, due to the 2x16 axis
feature neurons described in section 4.1.1. One drawback of the
axis feature neurons can be seen in the center column of pixel.
The axis feature neuron responsible for this column learned to
push the ball down, since the ball mostly visited the upper part of
the grid. However, at the center, the correct direction to push the
ball toward the center is flipped.

At 7.500 s (Figure 4D), the performance has further increased.
The policy, as shown in the second peak has grown even
stronger for many pixels which also point in the right direction.
The pixels pointing in the wrong direction mostly have a low
vector strength.

After 9.250 s (Figure 4E), the performance drops to half its
previous performance. As we can see from the policy, the weights
grew even stronger. Some strong pixels vectors pointing toward
each other have emerged, which can lead to the ball constantly
moving up and down, without receiving any reward.

After this valley, the performance rises slowly again and at
20 000 s of simulation time (Figure 4F) the policy has reached
the maximum performance of this trial. Around the whole grid,
strong motion vectors push the ball toward the center, and the
ball reaches the center around 140 times every 250 s.

Just before the end of the trial, the performance drops again
(Figure 4G). Most vectors still point toward the right direction,
however, the overall strength has largely decreased.

4.2.2. Impact of Learning Rate

For the lane following experiment, we show that the learning
rate β plays an important role for retaining policy improvements.

Specifically, when the learning rate β remains constant over the
course of learning, the policy does not improve compared to
random (see Figure 5). In the random case, the vehicle remains
about 10 s on the right lane until triggering a reset. After
about 3 h of learning, the learning rate β decreased to 40%
of its initial value and the policy starts to improve. After 5 h
of learning, the learning rate β approaches 20% of its initial
value and the performance improvements are retained. Indeed,
while the weights are not frozen, the amplitude of subsequent
synaptic updates are drastically reduced. In this case, the policy
is significantly better than random and the vehicle remains on
the right lane about 60 s on average.

5. CONCLUSION

The endeavor to understand the brain spans over multiple
research fields. Collaborations allowing synaptic learning rules
derived by theoretical neuroscientists to be evaluated in closed-
loop embodiment are an important milestone of this endeavor.
In this paper, we successfully implemented a framework allowing
this evaluation by relying on open-source software components
for spiking network simulation (Gewaltig and Diesmann, 2007;
Kappel et al., 2017), synchronization and communication
(Ekeberg and Djurfeldt, 2008; Quigley et al., 2009; Djurfeldt et al.,
2010; Weidel et al., 2016), and robotic simulation (Koenig and
Howard, 2004; Kaiser et al., 2016). The resulting framework
is capable of learning online the control of simulated and
real robots with a spiking network in a modular fashion.
This framework is used to evaluate the reward-learning rule
SPORE (Kappel et al., 2014, 2015, 2018; Yu et al., 2016) on
two closed-loop visuomotor tasks. Overall, we have shown that
SPORE was capable of learning shallow feedforward policies
online for moderately difficult embodied tasks within some
simulated hours. This evaluation allowed us to characterize
the influence of the prior distribution on the learned policy.
Specifically, constraining priors deteriorate the performance of
the learned policy but prevent strong synaptic weights to emerge
(see Figure 3). Additionally, for the lane following experiment,
we have shown how learning rate regulation enabled policy

FIGURE 5 | Results for the lane following task with a medium prior (cp = 0.25). (Left) Comparing the effect of annealing on the overall learning performance. The

results were averaged over six trials. Without annealing, performance improvements are not retained and the network does not learn to perform the task. With

annealing, the learning rate β decreases over time and performance improvements are retained. (Right) Development of the synaptic weights over the course of

learning for a medium prior of cp = 0.25 with annealing. The number of weak synaptic weights (below 0.07) increases from 41 to 231 after 1h of learning to 342 after

4 h of learning (out of 512 synapses in total).
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improvements to be retained. Inspired by simulated annealing,
we presented a simple method decreasing the learning rate
over time. This method does not model a particular biological
mechanism, but seems to work better in practice. On the other
hand, novelty is known to modulate plasticity through a number
of mechanisms (Hamid et al., 2016; Rangel-Gomez and Meeter,
2016). Therefore, a decrease in learning rate after familiarization
with the task is reasonable.

On a functional scale, deep learning methods still outperform
biologically plausible learning rules such as SPORE. For future
work, the performance gap between SPORE and deep learning
methods should be tackled by taking inspiration from deep
learning methods. Specifically, the online learning method
inherent to SPORE is impacted by the high variance of the
policy evaluation. This problem was alleviated in policy-gradient
methods by introducing a critic trained to estimate the expected
return of a given state. This expected return is used as a baseline
which reduces the variance of the policy evaluation. Decreasing
the variance could also be achieved by considering an action-
space noise as in Daucé (2009) instead of a parameter-space noise
implemented by the Wiener process in . Lastly, an automatic
mechanism to regulate the learning rate β is beneficial for more
complex task. Such a mechanism could be inspired by trust-
region methods (Schulman et al., 2015), which constrains weight
updates to alter the policy little by little. These improvements
should increase SPORE performance so that more complex
tasks such as multi-joint effector control and discrete terminal
rewards—supported by design by the proposed framework—
could be considered.
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