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Abstract

The protective immunity of natural killer (NK) cells against malarial infections is thought to be due to early production of
type II interferon (IFN) and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis
was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes.
A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites
particularly modulated genes involved in IFN-a/b signaling as well as molecules involved in the activation of interferon
regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was
entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-c- and TREM-1-related genes were
over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on
the transcriptome of human primary NK cells. IFN-a-related genes are the prominent molecules induced by parasites on NK
cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

Citation: Grangeiro de Carvalho E, Bonin M, Kremsner PG, Kun JFJ (2011) Plasmodium falciparum-Infected Erythrocytes and IL-12/IL-18 Induce Diverse
Transcriptomes in Human NK Cells: IFN-a/b Pathway versus TREM Signaling. PLoS ONE 6(9): e24963. doi:10.1371/journal.pone.0024963

Editor: Dominik Hartl, Ludwig-Maximilians-Universität München, Germany

Received April 29, 2011; Accepted August 24, 2011; Published September 16, 2011

Copyright: � 2011 Grangeiro de Carvalho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: elisandragc@gmail.com

{ Deceased.

Introduction

Infections caused by malaria parasites, especially by the species

Plasmodium falciparum, remain a serious world health concern. The

innate and adaptive arms of the immune system are involved in

immunity to malaria, however, the engaged macrophages,

dendritic cells, cd T cells, natural killer (NK) cells, and NKT

cells fail to fully eliminate the infection [1,2].

Characterized by cytotoxicity and cytokine secretion, NK cells

play a critical role as the front line of defence against pathogens

and tumor cells. Within the setting of malaria, several studies

have elucidated the interactions between NK cells, infected

erythrocytes (iRBCs) and other immune cells leading to specific

NK responses to P. falciparum [3–5]. Experiments performed with

NK cells derived from malaria-naive or infected individuals

showed that these cells have cytolytic activity against P. falciparum-

iRBCs that is possibly mediated by FAS and Granzyme B [6,7].

The DBL-alpha domain of P. falciparum-infected erythrocyte

membrane protein 1 (PFEMP1) was identified as the molecule

through which NK cells recognize iRBCs [8]. MYD88-associated

IL18R in NK cells was shown to be the major indirect sensor for

P. falciparum infection [9].

Experimental evidence suggested that, in addition to their up-

regulation of CD69 and CD25 after contact with iRBCs, NK are

one of the first cells to produce IFN-c in response to P. falciparum

infection [3,5]. This event was described to be dependent on cross-

talk with accessory cells either via direct or indirect interactions.

The possible bidirectional interplay between ICAM and LFA-1 on

NK cells and macrophages was shown to be important for NK cell

up-regulation of CD69 and IFN-c secretion [10]. Indirectly, the

production of cytokines by accessory cells, especially IL-12, IL-18,

IFN-alpha and IL-2, was shown to boost NK cell activation and

IFN-c release in response to iRBCs [11].

However, the magnitude of IFN-c release by NK cells is known

to be heterogeneous among individuals, possibly influencing

susceptibility to disease [5]. In this line, qualitative and

quantitative differences in NK subsets found in malaria patients

were linked to the severity of the disease [3]. In addition,

correlations between KIR genotype and NK cell responsiveness to

iRBCs have been reported [4].

Microarray techniques have been widely used for research as

well as for diagnostic purposes. Therefore, applications pertinent

to host-microorganism interactions may be a good predictor of the

biological processes thereby involved. In this study, Affymetrix

oligonucleotide microarrays were used to examine the gene

expression profile of primary NK cells from three healthy donors

that were co-cultured with P. falciparum parasites. This pattern of

gene expression was compared to the same NK cells following

stimulation with IL-12+IL-18.

The response of NK cells to malaria has been the topic of

several studies over the previous few years, but there is still a lack

of information regarding the impact of P. falciparum on NK cells at

a transcriptional level. A greater understanding of the NK cell

mechanisms of sensing and responding to iRBCs is needed seeking
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the advantages of NK cell-targeted vaccines development against

malaria.

Materials and Methods

Ethics statement
The three healthy individuals who served as NK cell donors are

themselves authors of this study. Therefore, acquisition of verbal

informed consent was considered sufficient by the ethics

committee for the study approval. Verbal consent was obtained

in the presence of a witness unrelated to the study, who has

attested to its voluntary character in a signed document. The study

was approved by the Ethics Committee of the University of

Tübingen, Germany.

P. falciparum culture
The P. falciparum laboratory strain 3D7 was maintained in

continuous culture as described elsewhere [12] and frequently

tested for mycoplasma contamination by PCR prior to co-

cultivation with NK cells. Parasites were constantly synchronized

with 5% sorbitol. Mature schizont-iRBCs were harvested by

magnetic cell sorting with LD columns (MACS; Miltenyi Biotec,

Berg. Gladbach, Germany). Schizonts’ purity (.90%) and red

blood cell integrity were confirmed by Giemsa stain.

PBMCs preparation
Venous blood was collected and immediately processed. Three

healthy adults (donors E, K and V) with no prior exposure to

Plasmodium parasites were used in this study. Samples were

collected into 9 ml ammonium heparin tubes (16I.U. heparin/

ml blood; S. Monovette) and diluted 1:1 with RPMI 1640 (Sigma

Aldrich). Peripheral blood mononuclear cells (PBMCs) were

isolated by density gradient centrifugation with Ficoll Paque TM

plus (GE Healthcare). The cells were washed twice with 2% FBS

in RPMI 1640; resuspended in culture medium (RPMI 1640)

containing 5% autologous serum, 1% 1006PenStrep (Invitrogen)

and 2 mM L-Glutamine (Invitrogen); transferred to 24-well flat-

bottomed plates (Nunc); and cultured as described below.

PBMC/parasite co-incubation
Freshly isolated mononuclear cells from donors E and K were

incubated under four different conditions: in culture medium

alone (CM or untreated); with a mixture of IL-12 and IL-18

(Peprotech and MBL, respectively; 200 ng/106 cells each); or with

schizont-iRBCs or with uninfected erythrocytes (uRBCs) at a ratio

of three RBCs for each mononuclear cell. PBMCs from donor V

were incubated under two different conditions: with iRBCs and

with culture medium. Co-cultures were maintained at 37uC and

5% CO2 for 24 hours. After the incubation, NK cells were

isolated from PBMCs, checked for purity by FACS, and subjected

to RNA extraction as described below. The experiment was

repeated three times (1–3 weeks apart) for each one of the three

donors.

To evaluate the activation pattern of each donor’s NK cells,

PBMCs were likewise incubated with schizont-iRBCs (1 PBMC : 3

iRBC), with iRBCs together with human IFN-alpha2b (Myltenyi

Biotec; 500 U/106 cells), or with a mixture of IL-12 and IL-18

(200 ng/106 cells each) and also kept in culture medium alone.

After 24 hours at 37uC and 5% CO2, cells were harvested, iRBCs

were lysed and PBMCs were stained for flow cytometry.

Cell surface and intracellular staining for flow cytometry
The following antibodies were used for flow cytometric staining:

CD56-FITC, CD3-PE, CD3-APC, CD69-PE, intracellular IFN-c-

PE, 7AAD and the appropriate isotype controls (all from BD

biosciences). Extracellular staining of cells was performed

according to the manufacturer’s instructions. For intracellular

staining of IFN-c, Brefeldin A solution (Biolegend) was added

4 hours before the end of the incubation period and cells were

fixed and permeabilized with Cytofix/Cytoperm Fixation/Per-

meabilization Kit (BD Biosciences) according to the manual

instructions.

Isolation of NK cells
After 24 hours of co-incubation, cells were harvested, separately

treated with BD Pharm Lyse lysing buffer (BD) for RBC rupture,

and washed twice with auto-MACS Rinsing Solution (Miltenyi

Biotec). NK cells were enriched from PBMCs by negative selection

with the NK Cell isolation Kit (Miltenyi Biotec) according to the

manufacturer’s instructions. NK cells were counted and tested for

viability with trypan blue, and purity was determined by flow

cytometry. A purity of $93% CD56+CD32 cells was considered

acceptable (Figure S1).

RNA extraction and Microarrays
Total cellular RNA was isolated from the enriched NK cells

with RNeasy Mini Kit (Qiagen, Hilden, Germany). The quality of

each specimen was checked using an Agilent BioAnalyzer 2100

(Agilent, Germany). RNA was processed for Affymetrix Gene

Chips using the Affymetrix Whole Transcript Sense Target

Labeling Kit (Affymetrix, Santa Clara, USA). Fragmented and

labeled cDNA were hybridized onto human HuGene1.0 ST Gene

Chips (Affymetrix). The staining of biotinylated cDNA and

scanning of arrays were performed according to the manufactur-

er’s recommendations. The complete microarray data is deposited

at the Gene Expression Omnibus (GEO) of the National Center

for Biotechnology Information (NCBI) under the series number

GSE24791. Validation of the method was performed by RT-PCR.

Rea- time PCR
cDNA was synthesized from total RNA using the Quantitec

Reverse Transcription kit (Qiagen) with the elimination of

Genomic DNA according to the manufacturer’s instructions.

Amplification of IFIT1, IFIT3 and IFI44L genes was carried out

in duplicates using the Rotor Gene Syber Green PCR Kit

(Qiagen) with Quantitec Primer Assay (both from Qiagen).

Cycling conditions for fast two-step RT-PCR on Rotor-Gene

cycles were applied according to the Primer Assay Handbook

(Qiagen). Levels of target mRNA expression were determined

using the 22DDCT method with GAPDH as the endogenous

reference gene and the CM samples as calibrators.

NK cells expansion and co-culture with parasites for
growth inhibition assay

PBMCs and NK cells from donor E were respectively purified

and isolated as described above. NK cells ($93% CD56+CD32)

were cultured in IMDM medium (Sigma) with 5% autologous

serum, 200 U/ml IL-2 (Peprotech) and irradiated JY cells at a

1:3–3:1 ratio (NK:JY). Purified NK cells expanded for 2–4 weeks

(eNK) were co-incubated at 37uC with ring stage 3D7-iRBCs in

parasite growth medium at a 1:3 or 5:1 ratio (NK:3D7) in parasite

atmosphere. Additionally, IFN-alpha2b (500 U/106 cells) or a

mixture of IL-12 and IL-18 (200 ng/106 cells each) were added to

the system. Parasites were cultured alone as a control and the

initial parasitemia was set as 0,05% in 1,5% hematocrit. After 24 h

and 48 h of incubation, culture samples were frozen at 220uC,

then thawed and inhibition of parasite growth was quantified by a
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Histidine-Rich Protein 2 (HRP2) ELISA assay performed as

described elsewhere [13].

Bioinformatic analysis
Raw CEL-files were imported into Expression Console 1.0

(Affymetrix, Santa Clara). RMA16 was used for array normaliza-

tion and signal calculation. Normalized signal values were

imported into Genespring 11 (Agilent Technologies). Significance

was calculated using a t-test without multiple testing correction,

selecting all the transcripts with a minimum change in expression

level of 1.5-fold together with a p-value of ,0.05. Subsequently,

transcripts in common for all donors in each treatment were

compiled and gene network analysis and functional categorization

was performed with Ingenuity Pathway Analysis (IPA) (www.

ingenuity.com). The p-value associated with a biological process or

pathway annotation for IPA is a measure of its statistical

significance with respect to the Functions/Pathways/Lists Eligible

molecules for the dataset and a reference set of molecules (which

define the molecules that could possibly have been Functions/

Pathways/Lists Eligible). The p-value is calculated with the right-

tailed Fisher’s Exact Test. The ratio is calculated by taking the

number of genes from the dataset that participate in a Canonical

Pathway, and dividing it by the total number of genes in that

Canonical Pathway. The ratio indicates the percentage of genes in

a pathway that were also found in the uploaded gene list (or the

Functions/Pathways/Lists Eligible genes if a cut off was specified)

and is therefore useful for determining which pathways overlap

with most of the genes in the dataset.

Results

P. falciparum-iRBCs induce the up-regulation of type I
interferon-related genes in NK cells

Affymetrix microarrays were used to evaluate the gene

expression profile of NK cells isolated from PBMCs (purity

$93%; Figure S1) that were incubated with iRBCs to detect the

changes that Plasmodium-iRBCs impose on the gene repertoire of

NK cells. The analysis showed that 192 genes were commonly

modulated for all donors in response to iRBCs contact. Of those

genes, nine were down-regulated and 183 were up-regulated in

comparison to untreated cells (Table S1). The expression profile

was characterized by the induction/suppression of genes mainly

related to immune response and response to virus (IFIT1, IFIT3,

OAS3, KLRG1), chemotaxis (CXCL10, CCR1, CCL4L1), signal

transduction (CD38, IFITM1, FAS), regulation of transcription

(STAT2, IRF7 STAT3), intracellular signaling pathway (JAK,

RASGRP3, RASGRP2), and NK cytotoxicity (SLAMF7), among

others. A summary of the most highly up- and down-regulated

genes is depicted in Table 1. A portion of the most highly up-

regulated genes (fold change $10) encode proteins mostly related

to interferon signaling (IFIT1, IFIT3, IFI44L, IFIT2, IFI6, and

IFI44), especially via IFN-a. The most highly down-regulated

genes (fold change #21.5) are mainly involved in chromatin

assembly, receptor activity in the immune response and signal

transduction. Three representative genes were chosen for micro-

array validation by RT-PCR (Figure 1).

Top Networks and Pathways related to iRBCs-induced
genes

Ingenuity Systems generated top networks, with a score higher

than 40, based on the analysis of the iRBCs-regulated NK genes.

Antimicrobial/Inflammatory Responses and Infection Mechanism are the

main functions associated with the top-scoring networks (Table 2

and Table S2). Moreover, Interferon signaling (p = 2,17E-14) and

Activation of IRF by cytosolic pattern recognition receptors (p = 2,9E-09) were

identified as the top canonical pathways linked to the modulated

genes (Figure 2A and Table S3). The highest strength of association

was found with the Interferon Signaling canonical pathway. Eleven of

the 30 molecules that compose the pathway were regulated on NK

cells by co-culture with parasites (ratio: 0.367). The pathway and the

modulated genes are depicted in Figure 3.

Table 1. Top up/down-regulated genes on NK cells due to
co-culture with P.falciparum-iRBCs.

Symbol Aff. ID FC Location Type

IFIT1 7929065 34,50 Cytoplasm other

RSAD2 8040080 21,55 unknown enzyme

IFIT3 7929052 19,71 Cytoplasm other

OAS3 7958895 15,48 Cytoplasm enzyme

MX1 8068713 15,42 Nucleus enzyme

IFI44L 7902541 15,33 unknown other

IFIT2 7929047 12,47 unknown other

IFI6 7914127 12,10 Cytoplasm other

OAS1 7958884 11,60 Cytoplasm enzyme

IFI44 7902553 11,32 Cytoplasm other

MX2 8068697 11,00 Nucleus enzyme

CBX7 8076185 21,79 Nucleus other

KLRG1 7953835 21,83 Plasma MB other

RASGRP2 7949104 21,91 Cytoplasm other

SYNE1 8130211 21,92 Nucleus other

HERC1 7989516 21,96 Cytoplasm other

CMKLR1 7966089 22,03 Plasma MB GPCR

AHNAK 7948667 22,27 Nucleus other

FGR 7914112 22,49 Nucleus kinase

PTGDR 7974363 22,58 Plasma MB GPCR

iRBCs-infected erythrocytes; Aff. ID-affymetrix identification; FC-fold change;
MB-membrane; GPCR-G protein coupled receptor.
doi:10.1371/journal.pone.0024963.t001

Figure 1. Validation of the microarray results by RT-PCR. Three
representative iRBCs-induced NK genes are depicted. Values represent
the mean of the relative fold change obtained for each replicate per
donor. Levels of target mRNA expression were determined using the
22DDCT method with GAPDH as the endogenous reference gene and
the untreated samples (CM) as calibrators.
doi:10.1371/journal.pone.0024963.g001
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Type II interferon-induced NK genes are up-regulated by
IL-12 and IL-18

To compare patterns of NK cell activation, PBMCs were also

treated with IL-12 and IL-18, well-described NK cell stimulators.

Treatment with the cytokine mix resulted in the regulation of 576

NK genes in both donors E and K. Down-regulated genes totalled

160, whereas 416 genes were up-regulated (Table S4). Modulated

genes included those related to the immune response (IFN-c,

CD25), signal transduction (P2RX5, MT2A, KLRF1), complement

activation (CD55), antigen presentation (CD83), chemotaxis (CCR4,

CXCL10, CX3CR1), DNA replication/repair (CHEK1, TYMS),

transcription (IRF8, MYC), and cytokines (IL26, IL6), among

others. The most up and down-regulated genes share similar

molecular as well as biological functions such as receptor activity

and signal transduction/immune response, respectively (Table 3;

fold change $12 and fold change #25.5).

Top Networks and Pathways related to IL-12 and IL-18-
induced genes

The highest score upon analysis of the IL-12 and IL-18

modulated genes was given to the network that listed Gene

Expression, Infection Mechanism, RNA Post-Transcriptional Modification as

associated functions (score: 50; Table 2 and Table S5). The most

significant canonical pathways obtained from Ingenuity analysis

were TREM1 Signaling (p = 2,69E-07) and the Protein Ubiquitination

Pathway (p = 3,38E-07; Table S6). The former canonical pathway

is composed of 69 molecules and 13 out of those were found to be

modulated in NK cells, resulting in a high strength of association

(ratio: 0,188; Figure 2B). The top canonical pathway and its

modulated genes are depicted in Figure S2.

Gene expression similarities between iRBCs- and IL mix-
treated NK cells

There were about 400 additional transcripts regulated by IL-12

and IL-18 in comparison to iRBCs-induced genes. In total, only

40 were modulated by both treatments. Among those are

transmembrane receptors (IL2RA, CCR1, IL12RB2), cytokines

(CXCL10, CCL3), transcription regulators (STAT3, LBA1) and

enzymes (PTPN2, HSPA8).

For a general overview, members of the Interferon signaling

pathway, TREM-1 signaling pathway and other genes that play a role

in immune response were arranged in a heatmap (Figure 4). The

image depicts the comparison of the gene fold change between the

three different donors in response to the treatment type. It is clear

that, although the same pattern of gene regulation is generally

maintained among the donors within the different treatments,

parasites and IL-12/IL-18 affect the transcription of NK genes in

a different manner.

Influence of uninfected erythrocytes on NK cells
Since the RBCs and the NK cells used in this study are from

different donors, PBMCs from donor E and K were incubated

with uRBCs in order to control the allogeneic responses that might

affect gene expression in NK cells. This analysis showed that in

total only nine genes were modulated due to uRBCs treatment.

NK cells from donor E up-regulated six genes, whereas donor K

cells showed up-regulation of three different genes. The biological

processes or molecular functions of some of these genes have not

been described (RNU5E, SNORD47), and others are known to play

a role in RNA splicing (SNRPN) and translation (EEF1A1).

Patterns of NK activation and inhibition of parasite
growth by expanded NK cells

The activation characteristics of NK cells from the three donors

studied were next examined. NK cell up-regulation of the CD69

membrane surface protein and production of IFN-c were

examined in response to incubation with iRBCs, iRBCs plus

IFN-a, IL-12 and IL-18, and culture medium alone. All the

donors’ NK cells up-regulated CD69 due to iRBCs incubation,

although the strength of the responses differed among donors

(Figure 5A). In response to parasite stimulation, only 10.7% of the

NK cells from donor K up-regulated CD69, while 16.9% and

39.5%, respectively, of the NK cells from donors V and E

responded. The addition of IFN-a to the system contributed to

NK activation by increasing the percentage of cells that up-

regulated CD69 for all donors. IL-12/IL-18 treatment induced

around 80% of the donors’ cells to express CD69. None of the co-

culture conditions induced IFN-c release by NK cells to a large

extent, except for the IL-12/IL-18 treatment (Figure 5B).

To further examine the cytotoxic characteristics of the cells used

in the study, we co-cultured expanded NK cells (eNK) from donor

E with 3D7-iRBCs. Neither the 24 h/48 h co-culture time nor the

different 3D7:eNK ratios (1:5; 3:1) appeared to have a significant

Table 2. Top networks and functions associated with 3D7- or IL-12/IL-18-induced transcripts on NK cells.

NW ID Network functions related to 3D7-induced transcripts Score

1 Antimicrobial Response, Inflammatory Response, Infection Mechanism 61

2 Antimicrobial Response, Inflammatory Response, Infection Mechanism 54

3 Infection Mechanism, Organismal Injury and Abnormalities, RNA Damage and Repair 44

4 Infection Mechanism, Antimicrobial Response, Inflammatory Response 40

5 Post-Translational Modification, Protein Folding, Cell Morphology 31

NW ID Network functions related to IL-12/IL-18-induced transcripts Score

1 Gene Expression, Infection Mechanism, RNA Post-Transcriptional Modification 50

2 Cell Death, Post-Translational Modification, Protein Folding 43

3 DNA Replication, Recombination, and Repair, Cellular Growth and Proliferation 40

4 Cell Death, Genetic Disorder, Immunological Disease 37

5 Cell Morphology, Hematological System Development and Function, Cancer 36

NW ID-network identification; IL-interleukin.
doi:10.1371/journal.pone.0024963.t002
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effect on parasitemia. Additionally, parasite growth was not

affected by the addition of IFN-a and IL-12/IL-18 to the system

(Figure 6).

Discussion

The objective of this study was to observe the transcriptional

changes that malaria parasites impose on NK cells in order to gain

a deeper knowledge of the mechanisms behind such interaction.

An in vitro approach was used to investigate the specific immune

response to malaria. Such an approach is widely used in research

especially in diseases where primary material is difficult to access.

The gene expression profile and activation characteristics of NK

cells incubated with iRBCs at a 1:3 ratio (PBMCs:iRBCs) were

examined at one time point (24 h) after co-culture. These

conditions were chosen based on prior observations showing that

optimal NK cell IFN-c production occurs at either 16106 or

16107 iRBCs per 106 PBMCs and that the peak of IFN-c release

occurs between 15 and 24 hours after stimulation [3].

First, these results demonstrate that all donors’ NK cells have a

very similar pattern of gene regulation for each different

treatment. An interferon signaling gene expression signature is

Figure 2. Top canonical pathways associated with 3D7- and IL-12/IL-18-induced NK cell genes. Canonical pathways were obtained using
the Ingenuity System upon analysis of the genes differentially modified in NK cells. Top canonical pathways are indicated by the grey bars on the x-
axis. The association of the data set with the given pathway is depicted in the y-axes and was determined based on the p-value and on the ratio
(strength of the association - black line). The threshold (dashed black line) is shown at p,0.05. A. 3D7-induced: IS: Interferon Signaling; IRF:
Activation of Interferon Regulatory Factor family of transcription factors by Cytosolic Pattern Recognition Receptors; PRR: Role of Pattern Recognition
Receptors in Recognition of Bacteria and Viruses; PMS: Pathogenesis of Multiple Sclerosis; RMAS: Retinoic acid Mediated Apoptosis Signaling; RIG1-LR:
Role of Retinoic Acid Inducible gene 1-like receptors in Antiviral Innate Immunity; DNK: Crosstalk between Dendritic Cells and Natural Killer Cells. B.
IL-12+IL-18-induced: TREM1: Triggering Receptor Expressed in Myeloid Cell 1 Signaling; PUP: Protein Ubiquitination Pathway; OCP: One carbon
Pool by Folate; CMLS: Chronic Myeloid Leukemia Signaling; SCLCS: Small Cell Lung Cancer Signaling; A-tRNA: Aminoacyl-tRNA Biosynthesis; TCD: T
Helper Cell Differentiation.
doi:10.1371/journal.pone.0024963.g002
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induced by iRBCs on NK cells, in which genes involved in a pro-

inflammatory response, mainly mediated by type I interferon were

modulated. A recent microarray study has described the up-

regulation of IFIT1, IFIT3, and CXCL10 (after 1 h of activation)

and IFI44, IFIT2, and ISG20 (after 18 h of activation) in IFN-a-

treated whole PBMCs from healthy donors. Arrays performed

with isolated cell subsets (NK cells, monocytes and T cells) showed

the up-regulation of OAS2, OASL, ISG20 and IFI44 [14]. Another

group has reported the up-regulation of TNFSF10 (TRAIL), IFIT

and OAS genes in NK cells isolated from IFN-a-2b-stimulated

PBMCs from five healthy donors [15]. The expression profile of

IFN-a-treated cells in these studies was very similar to the profile

detected in iRBCs-activated NK cells in the current study, which

did not utilize IFN-a. Therefore, such similarities provide support

of a clear iRBCs-induced type I interferon-related response in NK

cells. Moreover, the regulated molecules were linked to top

canonical pathways, all belonging to the ‘‘cellular immune

response’’ category. Some of the regulated genes were not yet

assigned to a clear role in this category, but most genes were linked

to well-known biological functions, mainly in infection control and

inflammation. As in systemic lupus erythematosus (LE) [16,17],

such inflammatory components were recently detected as

increased IFN-a/b-inducible genes in the blood of patients with

Tuberculosis (TB), especially in their purified neutrophils [18]. Its

correlation with disease severity provided primary data supporting

a role for type I IFN in the pathogenesis of human disease. Here,

we have observed that mostly the same transcripts found in the

mentioned studies were overexpressed in our NK cells due to

parasite co-incubation. It is difficult to extrapolate the LE/TB

findings to malaria without confirmation with longitudinal studies;

however, it is possible that the role of type I interferon signaling in

diseases caused by intracellular pathogens will be a marker of

disease progression and immune response development.

In this study, the IFIT family was found to be among the most

highly up-regulated NK genes induced by parasites. To date, little

is known about their function. Most of the evidence characterizes

these proteins as inhibitors of cellular and viral processes such as

protein translation [19]. Recent findings indicate that IFIT

proteins are substantially induced during infection possibly

reflecting a functional role. A complex formed by IFIT1, 2 and

3 was observed to exert antiviral activity by physically engaging

microbial triphosphorylated-RNA suggesting that these proteins

possibly have the ability to bind to various types of nucleic acids of

other diverse microbes [20]. Plasmodium DNA, therefore, could be

one target. In fact, DNA sensing and its relation to type I

interferons have recently been revealed to be important in innate

immunity to malaria [21]. Plasmodium genomic DNA, rich in AT

motifs, was shown to generate type I interferon through two

suggested innate pathways (a TLR9- and a STING- driven) which

converge on the IRFs to regulate IFN gene transcription.

Interferon type I, in turn, could possibly influence the outcome

of the disease.

Instead of IFN-a/b-related genes though, we expected to

observe a direct up-regulation of the IFN-c gene in all donors

treated with iRBCs (as was detected with the IL-12/IL-18 treated

NK cells). To our surprise, NK cells from only one donor (donor

Figure 3. Type I interferon transcripts are induced by parasites on NK cells. Ingenuity Pathways Analysis identified the canonical pathway
‘‘Interferon Signaling’’ as highly associated with the 3D7-regulated genes on NK cells. Mainly IFN-ab transcripts are induced. The differentially-
regulated genes are marked in red (up-regulation) or green (down-regulation).
doi:10.1371/journal.pone.0024963.g003
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K) up-regulated the IFN-c gene, and the fold change was much

lower than that induced by IL-12 and IL-18. Nevertheless, it is

very likely that this 3D7-mediated induction of type I-related genes

reflects the first steps of a cascade of events leading to IFN-c
release. In the case of a viral infection, there is consensus that the

activation of NK cells is critically dependent on type I IFN

signaling in vivo and that this activation is achieved by its direct

action on NK cells [22]. Others have shown that type I IFNs are

an early and critical regulator of NK cell number, activation and

antitumor activity and that, in combination with IL-18, type I IFN

plays an important role in inducing IFN-c production by NK cells

[23,24]. In addition to overlapping with type II interferon at

multiple levels of the JAK/STAT signaling pathway, type I

interferons have unique regulatory mechanisms for both their own

signaling as well as IFN-c signaling [25]. A very recent report

showing the responses of human PBMCs to stimulation with type I

and II interferons, among other cytokines, is in agreement with

this co-induction concept. The authors describe the responses to

IFN-c as being restricted to a subset of type I interferon-inducible

genes whereas responses to type I interferon were highly

stereotyped and resulted in the up-regulation of genes such as

OAS1-3, MX1/2, CXCL10, STAT1/2, IRF2/7 and IFIT1-5.

However, after four hours of IFN-a treatment, transcripts of type

II interferon itself were induced, which the authors suggested

might play a role in the initiation of an IFN-c-dependent

transcriptional programs in type I IFN-treated cells [26]. Along

these lines, L. major-induced IFN-a/b was suggested to mediate key

events of the innate response to the parasite. NK cell cytotoxicity

and IFN-c secretion early in infection were shown to be decreased

in the event of type I interferon blockage in mice [27]. In a recent

study with L. mexicana infection, type I interferon was also

described to promote the early IFN-c and IL10 expression [28].

P. falciparum-mediated IFN-a responses have been previously

reported by few in vivo and in vitro studies [29–31]. In accordance

with our findings, new microarray evidence show that expression

profiling of PBMCs derived from patients with P. falciparum

malaria show elevated expression of interferon-inducible genes

(ISGs) [21]. The study further confirms that PBMCs stimulated

with iRBCs induce IFN-a at the protein level and IFN-b mRNA,

suggesting a possible role for type I interferons in malaria.

Although their gene expression profiling was performed with a

mixed group of cells and hence cannot be traced to one specific

cell population, the NK cells in the present study appear to

respond in concert with PBMCs from malaria-infected individuals

in that previous study. Furthermore, human plasmatocytoid

Table 3. Top up/down-regulated genes on NK cells due to
treatment with IL-12 and IL-18.

Symbol Aff. ID FC Location Type(s)

IFNG 7964787 92,46 Extr. Space cytokine

IL2RA 7931914 37,33 Plasma MB Tmb R

MIR155HG 8068022 34,30 unknown other

SLC27A2 7983650 20,71 Cytoplasm transporter

DPP4 8056222 17,57 Plasma MB peptidase

CD274 8154233 16,19 Plasma MB other

CDC6 8007071 14,25 Nucleus other

MYO1B 8047127 13,25 Cytoplasm other

P2RX5 8011415 13,10 Plasma MB ion channel

TNFSF4 7922343 13,05 Extr. Space cytokine

PTGDR 7974363 25,54 Plasma MB GPCR

YPEL1 8074780 25,56 Nucleus enzyme

FGFBP2 8099471 25,63 Extr. Space other

PIK3IP1 8075483 25,78 unknown other

KLHL24 8084219 25,79 unknown other

AHNAK 7948667 25,96 Nucleus other

CX3CR1 8086344 26,68 Plasma MB GPCR

FAIM3 7923917 27,37 unknown other

SH2D1B 7921900 27,56 unknown other

KLRF1 7953892 210,20 Plasma MB Tmb R

IL7R 8104901 211,12 Plasma MB Tmb R

IL-interleukin; Aff. ID-affymetrix identification; FC-fold change; MB-membrane;
Extr.-extracellular; Tmb R-transmembrane receptor; GPCR-G protein coupled
receptor.
doi:10.1371/journal.pone.0024963.t003

Figure 4. Comparison of the gene expression patterns between
donors and treatments. Members of the Interferon signaling
pathway, the TREM-1 signaling pathway, and other genes that play a
role in the immune response were selected. The image depicts the log
of the fold change of NK genes regulated due to co-culture with 3D7-
infected erythrocytes (iRBCs) or with the cytokines IL-12 andIL-18. The
expression profile is shown for the three different donors (E, K, and V).
doi:10.1371/journal.pone.0024963.g004
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dendritic cells (pDCs) were suggested to produce IFN-a in

response to P. falciparum-schizonts, which in turn promote cd T

cell proliferation and IFN-c production [32]. Microarray analysis

of whole-blood cells from P. chabaudi-infected mice [33] demon-

strated that the predominant responses at about 16 h to 24 h post-

infection were dominated by interferon-induced genes and that

after 32 hours there was a dramatic change in the regulated

transcripts. However, there are contradictory studies regarding the

importance of IFN-a in the immune response against malaria. A

recent study has described that neither pDCs nor IFN-a/b were

essential for parasite clearance as mice depleted of pDCs or IFN-

a/b receptor knock-out mice could control P. chabaudi infection

[34]. In contrast, experimental evidence suggested that IFN-a
treatment of P. berghei-infected mice has a protective effect on the

evolution of cerebral malaria and inhibits the development of P.

yoelli blood-stage infections in mice [35,36]. In addition,

polymorphisms in the IFN-a receptor 1 were associated with

protection against cerebral malaria in humans [37]. High titers of

antiviral activity have been reported to be due to IFN-a, and a

positive correlation between degree of parasitemia, interferon

titers and NK cell activity was observed in acutely ill P. falciparum-

infected children [29]. IFN-a, in combination with iRBCs, boosted

the up-regulation of CD69 on NK cells but did not up-regulate

IFN-c in the present study. Additionally, when testing the

cytotoxicity of expanded NK cells from Donor E against

Plasmodium, no significant interference in parasite growth was

observed, even with the addition of IFN-a. Such lack of

cytotoxicity was likely due to donor-related characteristics (low

IFN-c responder) but it will be important to determine the reason

that expanded NK cells treated with IL-12/IL-18 (which lead to

IFN-c release) did not inhibit parasite growth. As mentioned

before, others have described that the peak of IFN-c induction

occurs around 15–24 h after co-culture with parasites and that this

response is dependent on cross-talk with other cells. Thus, it would

be worth observing whether HPR2 is suppressed at earlier time

points than 24 h and 48 h after co-culture and whether the

addition of accessory cells to the system would interfere with

parasite growth. To further investigate the importance of IFN-a
on the NK response against parasites, 3D7-iRBCs were co-

cultured with NK92 (NK cell line) in which IRF9, STAT1 or

STAT2 were knocked down by siRNA and RT-PCR was used to

verify the suppression of EBA-175 and BAEBL/EBA-140, which

are vital parasite genes involved in invasion (our unpublished

observations). However, no differences were observed in cytotox-

icity of the siRNA -transfected cells against 3D7. One potential

explanation for this is the fact that, due to the difficulties in

obtaining large amounts of fresh NK cells, these experiments were

performed with an NK cell line, which might not reflect

physiological conditions. Another reason could be the choice to

evaluate cytotoxicity by the NK population, although there is still

considerable debate regarding the importance of NK and T cells

in immunity to malaria. A very recent study with P. chaubadi-

infected mice shows that the suppression of infection is dependent

on cd T cells and independent of NK cells [38]. Conversely, a

study with a large cohort of malaria-naive donors shows that the

majority of IFN-c+ T cells are ab and not cd T cells. Moreover,

the authors of that study observed that NK cells dominate the

early IFN-c response (around 18 h), that NK and T cells

contribute equally to the response at 24 h, and that T cells

dominate from there-after [39].

The combination of IL-12 and IL-18 augments NK cell activity

and stimulates NK production of IFN-c, a cytokine suggested to

control P. falciparum infection [3–5]. PBMCs stimulation with high

doses of IL-12 and IL-18 (as performed in this study) was

previously shown to up-regulate NK cell expression of CD69 and

CD25, and to stimulate the release of IFN-c [5]. We were

interested in determining whether there were similarities between

the transcripts induced by IL-12/IL-18 and iRBCs. However, this

was not the case. IL-12/IL-18 treatment induced genes strongly

correlated to the signaling pathway triggered by TREM 1, an

immune regulatory molecule that plays a role in innate and

adaptive immune response [40]. The molecule is expressed on

monocytes/macrophages, dendritic cells, NK cells, and neutro-

phils [41,42] and its activation triggers molecules involved in cell-

to-cell signaling/interactions and inflammatory responses (includ-

ing CD83, IL-6 and TNF among others). NK cells induced by

iRBCs in our study also modulated some genes related to this

pathway although not as strongly as the IL-12/IL-18 treatment.

The second strongest gene association was found with the protein

ubiquitination pathway, which consists of a concerted action of

enzymes indispensable for the rapid removal of proteins, the

regulation of gene transcription, translational quality control and

immune surveillance, to mention some of the functions. A

prominent molecule in immune surveillance is IFN-c, which was

found to be the top molecule (FC = 92,460) up-regulated by IL-

12/IL-18 treatment in this study. The ubiquitin-proteasome

system is essential for antigen presentation on MHC class I

Figure 5. Regulation of CD69 and IFN-c on NK cells. PBMCs from the three donors were incubated with 3D7 schizont-infected erythrocytes
(iRBCs), with iRBCs plus human IFN-a or with a mixture of IL-12 and IL-18, or were leftuntreated in culture medium (CM) for 24 hours and analyzed by
flow cytometry. The gating strategy for NK cells (CD56+CD32 lymphocytes) and the percentages of CD69+ (A) and IFN-c+ (B) cells for each treatment
are depicted. Upper rows: donor V; middle rows: donor E; lower rows: donor K.
doi:10.1371/journal.pone.0024963.g005

Figure 6. The influence of expanded NK cells and IFN-a on
parasite growth. Expanded NK cells (eNK) from donor E were co-
cultured with 3D7 ring-infected erythrocytes (iRBCs), with iRBCs plus
human IFN-a, or with a mixture of IL-12 and IL-18. Parasites were
incubated alone as a control. After 24 h and 48 h, culture samples were
frozen at 220uC, thawed and inhibition of parasite growth was tested
by HRP2 ELISA assay. Values represent the mean of three different
experiments. Ratios are depicted as 3D7:eNK (1:3 and 5:1).
doi:10.1371/journal.pone.0024963.g006
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molecules and this process is enhanced by IFN-c. This cytokine

induces immune cells to express immunoproteasomes that impose

changes on the normal cascade of actions of the pathway,

consequently leading to the stimulation of host defence [43].

Overall, this study provides evidence that P. falciparum parasites

induce IFN-a-associated transcripts in human NK cells within the

first 24 hours of interaction. This study also demonstrated that the

NK transcriptional changes induced by IL-12 and IL-18 are

diverse from those induced by 3D7. Whether both patterns of

expression converge at one stage and whether IFN-a-related

transcripts result in IFN-c signaling, should be further investigated

by microarrays and functional studies at different time points. The

role of IFN-a in malaria is still controversial and understudied.

This study suggests inherent regulatory molecules of the NK

response to parasites that might be potential targets to be

considered in malaria vaccine development.

Supporting Information

Figure S1 Purity of the isolated NK cells measured by
FACS. Values represent the percentage of pure NK cells

(CD56+CD32) before and after isolation within the four different

co-culture conditions: CM: culture medium only; iRBCs: +infect-

ed erythrocytes; uRBCs: +uninfected erythrocytes; IL-12+IL-18:

IL-12 and IL-18. E1, E2 and E3 represent the three replicates for

donor E; K1, K2 and K3 represent the three replicates for donor

K and V1, V2 and V3 represent the three replicates for donor V.

(TIF)

Figure S2 IL-12/IL-18 treatment of NK cells induces
transcripts related to the TREM-1 signaling pathway.
The ‘‘Triggering receptor expressed in myeloid cell 1’’ (TREM-1)

signaling pathway was identified by the Ingenuity Pathways

knowledge base as highly associated with the IL-12/IL-18-

regulated genes on NK cells. Up-regulated genes are highlighted

in red and the down-regulated genes are highlighted in green.

(TIF)

Table S1 Complete list of P. falciparum-iRBCs induced
genes.
(XLS)

Table S2 Complete list of Networks related to P.
falciparum-iRBCs induced genes.
(XLS)
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to P. falciparum-iRBCs induced genes.
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18-induced genes.
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