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Evaluation of two semi‑supervised 
learning methods and their 
combination for automatic 
classification of bone marrow cells
Iori Nakamura1, Haruhi Ida1, Mayu Yabuta1, Wataru Kashiwa2, Maho Tsukamoto1, 
Shigeki Sato3, Syuichi Ota4, Naoki Kobayashi4, Hiromi Masauzi5, Kazunori Okada5, 
Sanae Kaga5, Keiko Miwa5, Hiroshi Kanai6 & Nobuo Masauzi5,6*

Differential bone marrow (BM) cell counting is an important test for the diagnosis of various 
hematological diseases. However, it is difficult to accurately classify BM cells due to non-uniformity 
and the lack of reproducibility of differential counting. Therefore, automatic classification systems 
have been developed in which deep learning is used. These systems requires large and accurately 
labeled datasets for training. To overcome this, we used semi-supervised learning (SSL), in which 
learning proceeds while labeling. We used three methods: self-training (ST), active learning (AL), and 
a combination of these methods, and attempted to automatically classify 16 types of BM cell images. 
ST involves data verification, as in AL, before adding them to the training dataset (confirmed self-
training: CST). After 25 rounds of CST, AL, and CST + AL, the initial number of training data increased 
from 425 to 40,518; 3682; and 47,843, respectively. Accuracies for the test data of 50 images for 
each cell type were 0.944, 0.941, and 0.976, respectively. Data added with CST or AL showed some 
imbalances between classes, while CST + AL exhibited fewer imbalances. We suggest that CST + AL, 
when combined with two SSL methods, is efficient in increasing training data for the development of 
automatic BM cells classification systems.

Bone marrow cell differential counting is a basic and important test for the diagnosis of various hematological 
diseases, such as myelodysplastic syndrome and leukemia1–3. However, it requires a lot of skill for testing and 
expertise to acquire the skill. Despite the difficulties involved in the test, there is non-uniformity and low 
reproducibility in inter and intra-observer results3–6. The morphological characteristics of immature or malignant 
blood cells differ both within a patient and among different patients. In addition, the conditions of staining may 
vary between specimens and facilities7. Furthermore, the characteristics of blood cell morphology are still defined 
using non-quantitative descriptions8.

To overcome these issues, we attempted to develop an automatic classifier for bone marrow blood cells using 
a deep learning system. However, a substantial amount of correctly labeled training data is required to train 
neural networks using deep learning (DL). Correctly labeling a large amount of data requires a significant amount 
of work by experts, and is time-consuming as well9. To overcome these difficulties, we used semi-supervised 
learning, which is a method for efficient labeling10.

Many studies have been conducted to classify bone marrow blood cells using artificial intelligence11. In 
early research, studies first analyzed and quantified morphological characteristics and then detected their 
differences with a discriminator such as Support vector machine (SVM)12,13, random binary tree (RBT)14–17, or 
other methods18,19. Subsequently, as the superiority of image recognition using deep learning became clear, an 
increasing number of studies using the technique has been reported in recent years7,20–26. However, DL requires 
preparation of a substantial amount of correctly labeled teacher data9, which involves a significant amount of 
work by experts and is time-consuming as well9,25. This was a major issue in system development. To solve this 
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problem, semi-supervised learning has been developed to efficiently increase the number of teacher data using 
the estimation results of the model trained with a small number of teacher data10. Although several methods have 
been proposed to increae teacher data in semi-supervised learning, such as self-training (ST)27 or active learning 
(AL)28,29, an optimal method for classifying bone marrow blood cells has not yet been reported. Therefore, in 
this study we aimed at clarifying which semi-supervised learning technique is most useful in the classification 
of bone marrow blood cells.

Results
The number of training data collected for confirmed self-training (CST), which is our newly improved method 
based on the original ST, AL, and a combination of CST and AL (CST + AL) methods, after 25 times of semi-
supervised learning was 40,518, 3682, and 47,843, respectively. Table 1 and Fig. 1 show the history of an increase 
in the number of training data and the transition of the predicted accuracy of the test data for each learning by 
the semi-supervised learning method.

The total number of newly labeled teacher datasets added to 17 classes of cell types after 25 rounds of semi-
supervised learning (1st row of Table 2; mean ± standard error of mean: SEM; the minimum number–the 
maximum number) was 2383.41 ± 326.03 (384–5179; n = 17) for CST, 216.59 ± 35.06 (62–548; n = 17) for AL, and 
2814.29 ± 419.22 (477–6309; n = 17) for CST + AL, respectively, among which that for AL was the smallest. The 
rate of increase in the total number of newly labeled teacher data by the nth round of semi-supervised learning 
in each class (A; 2nd row of Table 2), which was defined as the value obtained by dividing the nth number of (A) 
by the (n−1)th number of (A), was 1.27186 ± 0.03720 (mean ± SEM) for CST (n = 408: 17 classes × 24 rounds), 
1.09893 ± 0.01268 for AL (n = 408), and 1.29402 ± 0.04291 for CST + AL (n = 408), respectively, among which 
there were significant differences (p < 0.0001; one-way ANOVA). The rate of increase for AL was also the smallest 
(Table 2). The difference of (A) between nth and (n-1)th round also significantly differed (p < 0.0001; one-way 
ANOVA) among the three methods, and that for AL (7.982843 ± 0.628302; n = 408) was the smallest (3rd row 
of Table 2). The rate of increase in teacher data was defined as the value obtained by dividing the number of 
increases in the data after the nth round of semi-supervised learning by 25, which was the initial number of 
teacher data. The average of this increasing rate by the nth round of semi-supervised learning (mean ± SEM) was 
3.9307 ± 0.1599 (n = 408) for CST, 0.3193 ± 0.039 (n = 408) for AL, and 4.6488 ± 0.4281 (n = 408) for CST + AL 
(4th row of Table 2), respectively, among which there were significant differences (p < 0.0001; one-way ANOVA). 
The rate of increase in teacher data for AL was also the smallest. There were significant differences between CST 

Table 1.   Added data counts and accuracies after each iteration of semi-supervised learning.

Times of semi-
supervised 
learning

CST + AL CST AL

Accuracy_
CST + AL

DATA_Count_
CST + AL Accuracy_CST

DATA_Count_
CST Accuracy_AL DATA_Count_AL

1 0.83500 425 0.82250 425 0.80875 425

2 0.85000 1694 0.86000 1603 0.81375 828

3 0.86850 3298 0.85500 2719 0.83125 876

4 0.90125 4881 0.87250 3985 0.87375 1150

5 0.91000 6236 0.88625 5487 0.87750 1227

6 0.93125 7901 0.89125 7187 0.90000 1355

7 0.92875 8783 0.86875 8852 0.88000 1597

8 0.93750 10,804 0.90125 10,082 0.90750 1701

9 0.93625 11,981 0.89375 11,572 0.91875 1814

10 0.94000 13,624 0.89750 13,332 0.91375 1909

11 0.92875 14,907 0.88750 15,079 0.91750 1963

12 0.93250 16,966 0.92250 16,619 0.92125 2172

13 0.94125 19,558 0.89500 18,227 0.91125 2250

14 0.94750 21,903 0.90875 19,889 0.92000 2420

15 0.95375 23,774 0.89375 21,470 0.93000 2593

16 0.96000 26,231 0.91375 23,284 0.92250 2711

17 0.95875 31,603 0.91750 25,163 0.92000 2791

18 0.95750 33,787 0.92000 26,997 0.90875 2843

19 0.95625 36,585 0.91500 28,886 0.91875 2974

20 0.97500 38,465 0.92625 30,930 0.94000 3073

21 0.96625 40,778 0.91750 32,493 0.94125 3178

22 0.96875 43,232 0.93750 34,766 0.94125 3304

23 0.96125 45,112 0.93000 36,761 0.93250 3395

24 0.97250 46,006 0.93750 38,051 0.93000 3574

25 0.97625 47,843 0.94375 40,518 0.93500 3682
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and AL (p < 0.0001, Tukey–Kramer’s HSD test), and between CST + AL and AL (p < 0.0001, Tukey–Kramer’s 
HSD test).

The total of newly labeled data by CST + AL (47,843) was more than the sum of those (40,518 + 3682 = 44,200) 
added only by CST and only by AL (1st row of Table 2). The average increase rate by 1 round concerning the ini-
tial number of teacher data for CST + AL (4.63746 ± 0.22121, n = 408) was larger (p < 0.0001, Tukey–Kramer’s HSD 
test) than the simple summation of those of CST and AL (CSL & AL; 2.125 ± 0.07764, n = 408; 4th row of Table 2).

The number of newly labeled teacher data (C in the 1st row of Table 3) and their differences (D in the 3rd 
row of Table 4) by 1 round among 17 classes and 25 rounds was significantly different (p < 0.0001, chi-square 
test) in each of the three methods (Table 3). The increase rate vs 25 (the first number of teacher data) in all 
classes was significantly different among the three methods, 25 rounds, and 17 classes (p < 0.0001 for all) based 
on multi-variable linear regression analysis (4th row of Table 3). The learning curves presented by learning and 
validation accuracy in the 1st, 5th, 10th, 15th, and 25th semi-supervised learning iteration with CST, AL, and 
CST + AL are illustrated in Fig. 2.

The mean accuracy of CST + AL (0.93579 ± 0.007498, n = 25) for the test data (5th row of Table 2) was signifi-
cantly higher (p = 0.001, One-way ANOVA, p = 0.0019 for CST; p = 0.0065 for AL, Tukey–Kramer’s HSD test) 
than that of CST (0.9006 ± 0.0058, n = 25) and AL (0.9046 ± 0.00751, n = 25) during 25 rounds of semi-supervised 
training. Yet, there was no significant difference in accuracy between CST and AL. The best value of accuracy for 
the test data of CST, AL, and CST + AL was 0.94375, 0.94125, and 0.97625, respectively, such that the accuracy 
for CST + AL was the best.

The confusion matrix obtained from the CST + AL classification system after the 25th training, which had 
the best accuracy, is shown in Fig. 3. The average recall and average precision for the test data were 0.97625 and 
0.97684, respectively. In the confusion matrix (Fig. 3), many misjudgments were observed among metamyelocyte 
(MMC), band-formed neutrophils (Band), and segmented neutrophils (Seg). The average recall, average 
precision, and accuracy for these three classes were 0.9067, 0.92136, and 0.91892, respectively, which were 
smaller than those for all 17 classes and those for 14 classes except for three classes (Fig. 3).

Discussion
The number of training data added by AL, CST, and AL + CST after 25 rounds of semi-supervised learning 
iterations increased in the order AL + CST (47,843), CST (40,518), and AL (3682). CST added approximately 
11 times as many data as AL; nonetheless, the accuracy was comparable to each other. This result suggests that 
increasing the teacher data does not necessarily contribute to the improvement of accuracy. It is presumed that 
the independence of morphological futures of teacher data is an important factor. The details of the added data 
for each of the three methods are shown in Supplementary Tables S1–S3.

Even in the model by CST + AL that showed the best accuracy (0.97625) in this study, the accuracy (0.93478) 
for MMC and Band (Fig. 3) was lower than that (0.98164) of the class excluding them. To investigate the cause 
of this difference in accuracy, we searched for the number of MMC and Band images added to the teacher 
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Figure 1.   History of added data counts and accuracy for test data. In all three methods, an upward trend in 
accuracy was observed with an increasing number of rounds. At the 25th time of semi-supervised learning, CST 
had 11 times more data as compared to AL; nonetheless, the accuracy was similar. However, the accuracy was 
improved in CST + AL, which is a combination of the two methods. CST, confirmed self-training; AL, active 
learning; DATA, addition data.
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data by each method. The mean number of metamyelocytes added by CST (62.875 ± 84.940) was smaller than 
the average (98.267 ± 18.700) of all classes (Supplementary Table S1). This is probably because there were few 

Table 2.   Increasing number and rate of teacher data by class and accuracy.

CST AL CST+AL 
Sum of CST & 

AL
ANOVA

mean of 17 classes 2383.41 216.5882 2814.29 2600

SEM 326.0278 35.05817 419.2152 346.41435

total final number 40518 3682 47843 44200

Max final number 5179 548 6309 5410

Min final number 384 62 477 446

n 17 17 17 17

<-- p<0.0001 -->

<--     p<0.0001     -->

total number of newly 

labeled teacher data in 

17 classes after 25 

epochs of semi-

authorized learning
Tukey-Kramer's 

HSD test
<-- p<0.0001 -->

<0.0001

mean 1.27186 1.098926 1.294021 1.2069629

SEM 0.037196 0.012678 0.042907 0.217924

n 408 408 408 408

<-- p=0.0005 --> <-- p=0.0669 -->

increasing rate of A : 

A in nth epoch / A in (n-

1)th epoch, A = total 

number of newly labeled 

teacher data by nth 

epoch in each class 

Tukey-Kramer's 

HSD test <-- p<0.0001 -->

<0.0001

mean 98.26716 7.982843 116.375 106.25

SEM 3.789907 0.628302 5.595064 3.88096

n 408 408 408 408

<-- p<0.0001 -->

<-- p<0.0001 -->

<--     p<0.0001     -->

Difference of A: B
B = A in nth epoch - A

in (n-1)th epoch Tukey-Kramer's 

HSD test

<--     p=0.0059     -->

<0.0001

mean 3.930686 0.319314 4.637457 2.125

SEM 0.151593 0.018477 0.221208 0.0776395

n 408 408 408 408

<-- p<0.0001 --> <-- p<0.0001 -->

<-- p<0.0001 -->

<--     p<0.0001     -->

<--    p=0.0021   -->

increasing rate vs the 

first number of teacher 

data: B in nth epoch / 25 Tukey-Kramer's 

HSD test

<--     p<0.0001     -->

p<0.0001

mean 0.9006 0.9046 0.93579

SEM 0.005804 0.007512 0.007498

<--  p=0.0019  -->

Accuracy for test data in 

every epoch Tukey-Kramer's 

HSD test <-- p=0.0065 -->

P=0.0010

best value 0.94375 0.94125 0.97325
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metamyelocyte images in which the estimated probability for the class output by the classifier was 0.99 or 
higher in the CST group. Even for human examiners, metamyelocytes are often difficult to discriminate from 
myelocytes and band neutrophils. In contrast, the number of added metamyelocytes (15.708 ± 11.709) and band 
neutrophils (15.13 ± 10.94) by AL was larger than the average (7.9828 ± 4.4619) of all classes (Supplementary 
Table S2). This result may be due to the characteristics of margin sampling, which more often selects images that 
are difficult to identify for the classifier. In other words, metamyelocytes are considered a class difficult to judge 
for the classifier. In CST + AL, the number of added metamyelocytes (136.88 ± 117.45) and band neutrophils 
(142.13 ± 106.45) was larger than the average (116.22 ± 51.914) of all classes (Supplementary Table S3). Since 
atypical morphological cells of both metamyelocytes and band neutrophils are also added by AL to the training 
data in AL + CST, it is considered that the increase of both cell types in the training data was promoted. These 
results suggest that the combined use of CST and AL enables efficient labeling, even for cell types that are difficult 
to distinguish. The mean increasing rate of metamyelocytes after each round of semi-supervised learning by 
CST + AL (5.475 ± 0.9584961) was 2.1769 times that of CST (2.515 ± 0.6937623). Similarly, band neutrophils 
were 1.452 times higher than that in CST. According to the above results, the number of MMC and Band images 
added to the teacher data by CST + AL was nearly twice as large as the average of classes other than these two. It 
is suggested that the imbalance in the number of additions for each class would not contribute to the inaccuracy. 
Instead, we consider the following as the cause of inaccuracies.

In this study, we used the discrimination criterion of the Blood Cell Morphology Standardization Subcom-
mittee (BCMSS) of the Japan Society of Laboratory Hematology (JSLH)30 for immature granulocyte cells. The 
cells are defined by these criteria as follows: "the nuclei of the myelocyte are round in shape, and that of the 
metamyelocyte is concave (the major to short axis ratio is less than 3:1), and the nuclei with a larger or equal 
ratio of 3:1 or greater are band neutrophils”. The criteria define mature neutrophils as follows: "Their nucleus 
is segmented by chromatin filaments, of which the minimum nuclear width is less than 1/3 of the maximum 
width of the short axis of the nucleus or less than 1/4 of RBC diameter (about 2 μm).” Even with the model after 
25 rounds of semi-supervised learning using the CST + AL method, which showed the best accuracy in this 
study, misjudgment was observed among the three types of granulocyte immature cells, metamyelocytes, band 
neutrophils, and segment band neutrophils. They are frequently found to be metamyelocytes with a laterally 
elongated nucleus and band neutrophils with constrictions. In the identification of these cell types, the ratios of 
the major axis to the minor axis of the nucleus and the ratio of the maximum width to the minimum width of 
the minor axis of the nucleus are important characteristic indicators. Because deep learning makes a judgment 
based on the morphological characteristics of the entire image, it is considered that the discrimination of these 
cell types based on the criteria of JSLH BCMSS was not a good definition for deep learning.

The data addition ratio in classes of eosinophils, basophils/mast cells, and plasma cells was also smaller in 
AL than in the other methods. Nonetheless, few misclassifications in these cell classes were observed, even with 
a small amount of training data. In actual values, the total number of training data points from myelocytes to 
band neutrophils after 25 learning sessions was approximately 300–500, and that for eosinophils, basophils, 
and plasma cells were 68, 70, and 77, respectively. These cells have a characteristic morphology that is easy to 
distinguish by human observation, and the identification rate of these cells by human observation is high as 

Table 4.   Diagnosis and number of captured images for each of the 47 specimens. Dx, Diagnosis; DLBCL, 
diffuse large B-cell lymphoma; APL, acute promyelocytic leukemia (FAB-M3); MDS, myelodysplastic 
syndromes; CMML, chronic myelomonocytic leukemia; CML, chronic myeloid leukemia; AML-M1, acute 
myeloid leukemia; FAB-M1, PNH: paroxysmal nocturnal hematuria, CAD: cold agglutinin disease, MM: 
multiple myeloma, AML-M4: acute myelocytic leukemia FAB-M4, MA: megaloblastic anemia, AML: acute 
myelocytic leukemia, AIHA: autoimmune hemolytic anemia.

Training data

No 1 2 3 4 5 6 7 8 9 10 Subtotal

Dx Normal Normal Normal DLBCL Normal Normal Normal Normal Normal Normal

Count 19 327 837 212 148 191 438 594 229 131 3126

No 11 12 13 14 15 16 17 18 19 20 Subtotal

Dx Normal Normal APL Normal MDS CMML CML AML-M1 CML MM

Count 177 221 102 456 328 170 280 20 734 111 2599

No 21 22 23 24 25 26 27 28 29 30 Subtotal

Dx MM MM Anemia PNH CAD MDS MDS MDS MDS MDS

Count 7 178 50 329 58 317 50 111 159 3 1262

No 31 32 33 34 35 36 37 38 39 40 Subtotal

Dx MDS MDS MDS MDS CML CML CML MDS MA Anemia

Count 361 107 189 223 369 259 163 289 80 136 2176

No 41 42 43 Subtotal Total

Dx MDS MM AML-M4

Count 141 17 20 178 9341

Test data

No 1 2 3 4 Total

Dx Normal Normal AML AIHA

Count 769 80 7 102 958
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well. The high prediction probability of these cell types is an interesting result, given that deep learning has been 
developed with the human central nervous system as a model.

To develop a system with higher performance, we have to study and create algorithms other than deep learn-
ing that measure the diameters of the nucleus and calculate the ratios of the major axis to the minor axis of the 
nucleus and that of the maximum width to the minimum width of the minor axis of the nucleus. We must also 
work on the classification of proerythroblasts and basophilic erythroblasts, which were not distinguished due to 
limitations of hardware performance, and basophils and mast cells could not be separated into different classes, 
due to the small number of cells in blood samples.

Despite the above-mentioned limitations, we propose, based on the results of this study, that a semi-super-
vised learning method combining active training and confirmed self-training is a better tool for practical and 
rapid enlargement of training data to create an automatic blood cell recognition system than a single applica-
tion of each method. We believe that the results of our study will be useful for promoting the development of 
practical systems in the future.

Materials and methods
Sample collection.  Forty-three anonymized bone marrow smears, donated by Sapporo Hokuyu Hospital, 
were used in this study. In Sapporo Hokuyu Hospital, written informed consent for the test was obtained from 
all patients undergoing bone marrow aspiration examinations. Normally, in bone marrow aspiration tests, a 
maximum of ten smears, which exceeds the regularly required number of smears for routine examination, are 
prepared and preserved for additional tests such as special cytochemical staining and immunostaining that 
may be required later. However, some smears that remain unused after a month of storage are discarded. Such 
discarded unstained smears were provided to our laboratory with only a pathological diagnosis attached, 
and removing all patients’ identifiable data. The Institutional Review Board of Sapporo Hokuyu Hospital and 
the Ethics Committee of the Faculty of Health Sciences from Hokkaido University approved this study as a 
retrospective observational study because it included only a collection of smears and their respective diagnosis 
from medical records. Therefore, both the ethical review committees instructed us and the staff of Sapporo 

Figure 2.   Learning curves of semi-supervised learning. The vertical axis of all learning curves indicates 
accuracy. The orange line indicates the accuracy for training data and the blue line indicates the accuracy for 
ld data. The scale of the vertical axis differs depending on the number of learnings, and the first learning was 
set from 0 to 1.0, 5th learning was set from 0.7 to 1.0, 10th learning was set from 0.8 to 1.0, and 15th and 25th 
learnings were set from 0.9 to 1.0. The horizontal axis of all learning curves indicates the count of epochs from 1 
to 250.
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Hokuyu Hospital to display information posters of this study, and waived consent from all bone marrow 
aspiration patients in the present study as it was already obtained by Sapporo Hokuyu Hospital. This study was 
conducted in accordance with approved guidelines at both institutions. The smears were stained with May–
Grunwald Giemsa (MG) staining using the standard method. Images were captured using CellaVisionDM96 
in digital slide mode. Microscopic field images (901 × 823 pixels) were selected from the digital slide set. Only 
images that well focused several cells and with negligible overlap were selected. Each image was cropped for 
training data to a 704 × 704 pixels square image containing as many cells as possible. Four newly donated bone 
marrow smears were stained, and microscopic field images were captured using the same method as that for 
training data. These were used as test images. The detailed counts of the specimens and the number of square 
images obtained are listed in Table 4.

Segmentation of single‑cell images from microscopic field images.  To separate the part of the 
image containing the cell from the background, we developed an original improved cell segmentation system 
based on U-Net, which is a neural network architecture for image segmentation31. We also created a program 
to crop 282 × 282 single-cell images, which automatically removed the extracellular area. The cell segmentation 
systems are connected to each other. This combined system crops out a single-cell region from the microscopic 
field image. Using this system, we segmented 68,238 cell images from 9341 microscopic field images. The 
segmented images included images with incomplete cell separation and some images with only cell fragments. 
The above process and details of the segmentation and cropping systems are illustrated in Fig. 4.

Labeling of each cell image.  In this study, 17 types of object classes were defined for labeling: 
proerythroblast/basophilic erythroblasts, polychromatic erythroblasts, orthochromatic erythroblasts, blasts, 
promyelocytes, myelocytes, metamyelocytes, band neutrophils, segmented neutrophils, eosinophils, basophils/
mastocytes, monocytes, lymphocytes, plasma cells, mitotic cells, bare nuclei, and artifacts (Fig. 5).

The classification of cell types from proerythroblasts to orthochromatic erythroblasts and from myeloblasts 
to segmented neutrophils was judged according to the discrimination criterion of the Blood Cell Morphology 
Standardization Subcommittee (BCMSS) of the Japan Society of Laboratory Hematology (JSLH)30.

Proerythroblasts and basophilic erythroblasts were labeled as the same class because the images of both types 
used in this study did not have sufficient image quality, and it is difficult to classify them stably and accurately 
by human visual observation.

Mast cells were labeled as the same class of basophils because only a small number were present in the 
microscopic field images. When we performed machine learning, the bare nuclei and artifacts were in different 
classes, but they were labeled as the same class in the evaluation. The above process, from bone marrow blood 
film preparation to creating initial teacher data, validation data, and unlabeled images, is illustrated in Fig. 6.

Semi‑supervised learning.  Twenty-five images in each of the 17 classes (Fig. 5) were labeled as the initial 
training data. In addition, 50 images from each of the 16 classes in which bare nuclei and artifacts were combined 
into a class were newly labeled as validation data. First, 250 epochs of machine learning were performed using 

CST+AL PEB/
BEB PCEB OEB MB PMC MC MMC Band Seg MO LY BA EO PC MIT ART recall

PEB/BEB 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.98
PCEB 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
OEB 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 1
MB 1 0 0 48 0 0 0 0 0 1 0 0 0 0 0 0 0.96

PMC 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0 0.98
MC 0 0 0 0 0 49 1 0 0 0 0 0 0 0 0 0 0.98

MMC 0 0 0 0 0 3 44 2 1 0 0 0 0 0 0 0 0.88
Band 0 0 0 0 0 0 3 42 5 0 0 0 0 0 0 0 0.84
Seg 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 1
MO 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 1
LY 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 1
BA 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 1
EO 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 1
PC 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 1
MIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 1
ART 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 1

precision 0.98 0.9804 1 1 1 0.9245 0.9167 0.9545 0.8929 0.9804 1 1 1 1 1 1

3679.0ycarucca latoT
Mean recall 0.9763
Mean precision 0.9768

0.9189
0.9893
0.9348
0.9816

Predicted labels

Correct 
labels

Mean precision only for MMC, Band 
and Seg. 0.9214 Mean recall  only for MMC, Band and Seg

Accuracy for other than MMC, Band and Seg
Accuracy for MMC, Band, and Seg

Accuracy for MMC, and Band
Accuracy for other than MMC, and Band

0.9067

Mean precision  only for other than 
MMC, Band and Seg. 0.9896 Mean recall  only other than MMC, Band and 

Seg. 0.9923

Figure 3.   Confusion matrix for the prediction results by the model with the best accuracy. The confusion 
matrix was created with estimation results for the test data by the CST + AL classification model after the 
25th training, which had the best accuracy. PEB/BEB, proerythroblasts/basophilic erythroblasts; PCEB, 
polychromatic erythroblasts; OEB, orthochromatic erythroblasts; MB, myeloblasts; PMC, promyelocytes; MC, 
myelocytes; MMC, metamyelocytes; Band, band neutrophils; Seg, segmented neutrophils; MO, monocytes; LY, 
lymphocytes; EO, eosinophils; BA, basophile/mastocyte; PC, plasma cell; MIT, mitotic-cell; ART, bare nucleus/ 
artifact.
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the initial training data with the architecture described in detail later. Using a deep learning model with an 
accuracy of 80.0% or more for the validation data after machine learning, self-training (ST)27 and active learning 
(AL)28,29 were performed on the unlabeled training data to obtain the new labeled training data. With these 
increased training data, we attempted to further improve the performance of the model.

In the ST algorithm adopted in this study, when the predicted probability of the pseudo label of certain 
unlabeled training data predicted by the classifier was 0.99 or more, the pseudo label was judged as the correct 
label on the image, and the data were added to the training data. As a result of repeating the semi-supervised 
learning using ST and the above rule, the accuracy was improved from 0.81625 after the first iteration to 0.84 after 
the third iteration. However, the accuracy subsequently exhibited a downward trend and returned to 0.81625 after 
ten iterations (detailed data are not shown here). ST is a robust learning method as long as every added pseudo 
label is correctly predicted32,33, but the performance of a model deteriorates when incorrectly labeled data are 
added to the training data10,34. To solve this problem, we added a new step of confirmation of the recommended 
data by a human observer to the ST algorithm. We named this method “Confirmed ST” (CST; Fig. 7). In this 
study, we evaluated the effect of increasing the number of training datasets on the improvement of performances 
between two types of semi-supervised methods and their combination, namely, only CST, only AL, and both of 
these (CST + AL). The details of CST and AL are described below.

1.	  CST.

 In self-training, unlabeled data are provisionally labeled (pseudo-labeling) with a classifier that was first trained 
(machine learning) with a relatively small amount of labeled training data. These temporary pseudo-labeled data 
were selected according to a certain rule, in addition to the original training data. Machine learning was repeated 
with new training data and new training data was continuously added. As a result, the data increased step-by-step. 
In this study, prediction probability was used as the selection rule, and an image whose prediction probability 
of the pseudo label on the image was 0.99 or more was selected to be added to the training data. However, the 
selected pseudo-labeled data were not immediately added to the training dataset. When the pseudo label and 

Original improved segmentation system: 
1. Remove the background by filtering 
with the resulting mask image. 

Original created cropping system: 
1. Crop the cell area image to a single 

cell image. 
2. Paste on a 282×282 pixels square 

black image.

Single cell images removed their 
extra-cellular area

( 282 x 282 pixels) n = 68,238

Taking photographs with digital 
slide mode of Cellavision® DM96

Microscopic field images
(901 x 823 pixels) n = 9.341

Manually cropping into 
704 x 704 pixels 

square image

Figure 4.   Flow of preprocessing and sample images. Microscopic field images (901 × 823) were taken with an 
automatic microscope (CELLAVISION DM 96). They were then cropped to 704 × 704 square images for input 
to the cell segmentation neural network. Square images were then input into the system to obtain 282 × 282 
individual single-cell images. The inverted trapezoidal frame shows manual processing. The rectangular frame 
shows automatic processing or processing by hand-made programs written in Python and Cellavision DM96.
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the image were judged by human examiners and it was found that a wrong label was attached, the correct label 
was re-attached and added to the training data. If a candidate image was difficult to judge by the examiners, it 
was not added to the dataset. The above process is illustrated in Fig. 7.

2.	  AL.

AL in machine learning is a method for efficiently increasing the number of training datasets by selecting 
data for addition from unlabeled data. Data are selected only if they are considered to be effective in improving 
the performance of a classifier. Human examiners labeled the data correctly and added them to the training data. 
Margin sampling was adopted as the data selection strategy. Margin sampling is a method of selecting an image in 
which the difference in probability between the "the most probable class" and the "the second most probable class" 
is less than the threshold value in the output predicted by the classifier for a certain image29,35. In this study, the 
threshold was set to 0.2. Experts correctly labeled an image for which the difference in the predicted probabilities 
of the top two classes was less than the threshold. The image was then added to the training data. When labeling 
was difficult for an image, it was not added to the training data. The above process is illustrated in Fig. 8.

3.	 CST + AL.

We combined two methods of semi-supervised learning, CST and AL (CST + AL). Briefly, the current 
unlabeled data were input into a neural network model that was trained with deep learning using the current 
teacher data, whose number of images was increased using the CST + AL method. Candidate images for addition 
were filtered from the prediction result file and verified using the CST method (Fig. 9A). In parallel, the other 
candidate images for addition were selected by the AL method from the same prediction result file (Fig. 9B). 
All images in Fig. 9A, B were added to the next set of teacher data. Herein, the threshold of filtering in CST 
and selection criteria in AL were set to 0.9 and 0.2, respectively. Under these thresholds and criteria, it was not 
possible to add the same image from CST and AL to the next set of teacher data (Fig. 9C). Thus, we instead used 
the images (Fig. 8A, B) to create the next set of teacher data and subtracted them from current set of unlabeled 
data to create next set of unlabeled data. The above process is illustrated in Fig. 9.

When CST and AL are adapted to all unlabeled training data, each may select a large number of images as 
candidates for addition. Consequently, we randomly sampled 5000 images from all unlabeled training data in 
each run of the semi-supervised learning method. For each learning of the classifier, the data number for each 
class was adjusted every time because the learning may not be performed effectively if there is a large difference 
in the number of training data between classes36. For example, when creating the training data for the nth time, 

Orthochromatic 
erythroblasts

Blasts Promyelocytes Myelocytes

Metamyelocytes

Polychromatic 
erythroblasts

Band 
neutrophils

Basophils          
/ mastocyte

Monocytes

Lymphocytes Plasma cells mitotic cells

Eosinophils

Bare nuclei

Proerythroblasts   
/ Basophilic 

erythroblasts

Segmented 
neutrophils

Artifacts

Figure 5.   Flowchart from blood films to image data. The inverted trapezoidal frame shows manual processing. 
The rectangular frame shows automatic processing or processing by hand-made programs written in Python 
and Cellavision DM96. PEP/BEB: proerythroblast/basophilic erythroblast,
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Initial teacher data  (n = 425)
1. PEB/BEB x 25 , …
16. Bare nucleus x 25 … 
17. Artifact x 25

Taking photograph with digital slide mode of Cellavision® DM96

Microscopic field images
(901 x 823 pixels) n = 9,341

Original improved segmentation system (details in Fig. 4)

Original created cropping system (details in Fig. 4)

Single cell images removed their 
extra-cellular area

( 282 x 282 pixels) n = 68,238

Validation data  (n = 850)
1. PEB/BEB x 50, … 
16. Bare nucleus x 50 , …
17. Artifact x 50

Unlabeled images
(n = 66,963)

Subtracting initial teacher 
data and validation data

(n = 425,850)

Bone marrow blood films for teacher and validation data 
(May-Grunwald Giemsa stain) (n = 43)

Manually cropping into 704 x 
704 pixels square image

Manually labeling the 
correct class (Figure 5) 

Figure 6.   Examples of the 17 classes of bone marrow cells in this study. For classes of proerythroblast/
basophilic erythroblast and basophil/mastocyte, only an image of the first label of the cell is shown in this figure.

Current teacher 
data (labeled)

Neural network 
architecture for learning

Neural network model 
after learning

Unlabeled data

predict results 
(labeled)

Prediction 
provability is 

higher than the 
threshold ?

Remove label and add to next 
unlabeled data

Next unlabeled
data

Next teacher data 
(labeled)

No

Add image with predicted label Yes

Correct
In CST method

In ST method

learning predicting

Not correct

Verifying
the 

prediction 
by human 

expert

unknown

Remove image from unlabeled data 

Add image with correct
label by human expert

Figure 7.   Semi-supervised learning process with self-training (ST) and confirmed self-training (CST) methods. 
The inverted trapezoidal frame shows manual processing or human judgment. The rectangular frame shows 
automatic processing by a hand-made program written in Python. The diamond frame shows the automatic 
judgment by a program written in python. The threshold provability in this study was 0.9.
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the data added in the (n−1)-th semi-supervised learning were preferentially preserved in the nth training data, 
and the data added before the (n−1)-th time in the labeled data pool were deleted from the nth training data to 
avoid exceeding 1000 images per class, if necessary. It was ensured by the above algorithm that the newly added 
data were used as training data at least once and that there was no large difference in the number of training data 
between classes during the learning iteration.

In the n-th learning, transfer learning was performed using a model with the weights of inputs for each unit of 
the neural network determined in the previous (n−1)-th learning. Semi-supervised learning was performed for 
250 epochs at a time, and each of the three method, i.e., CST only, AL-only, and CST + AL, were repeated 25 times.

Current teacher 
data (labeled)

Neural network 
architecture for learning

Neural network model 
after learning

Unlabeled data

predict results 
(labeled)

Results of the 
prediction meet 

the selection 
criteria?

Remove label and add to  
next unlabeled data

Next unlabeled
data

Next teacher 
data (labeled)

NoAdd the image to 
next teacher 

data

Yes

learning predicting

Can human 
experts label 

correctly to the 
image?

Yes

No 

Figure 8.   Semi-supervised learning process with the active learning (AL) method. The rectangular frame shows 
automatic processing by a hand-made program written in Python. The diamond frame shows the automatic 
judgment by a program written in python. The selection criteria of the difference in prediction provability 
between the highest and the second highest class was less than 0.2 in this study.

Next teacher data 
(labeled with CST+AL)

Predicted 
results (labeled)

All images in (A) 
and (B) are 

added to the next 
teacher data (C)

ALL images in (A) and 
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from current unlabeled 
data

Learning

CST

Current unlabeled
data

Next unlabeled
data

Images verified by CST
(A) (Details in Figure 7) 

Images selected by AL 
(B) (Details in Figure 8)

Current teacher data 
(labeled with CST+AL)

Neural network 
model after 

learning

Neural network 
model for 
learning

Predicting

Input

Figure 9.   Semi-supervised learning process with the confirmed self-training and active learning (CST + AL) 
method. Two semi-supervised learnings, CST and AL, were performed in parallel using the same predicted 
labeled results. With the threshold and criteria adopted in this study, the same image was never selected as an 
additional candidate by both methods. All labeled images picked by both methods were added to the next set 
of teacher data. Then, they were subtracted from current unlabeled data to create the next set of unlabeled data. 
The rectangular frame shows automatic processing by a hand-made program written in Python.
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Data augmentation.  Data augmentation of the training data was applied to each machine learning 
operation. The input images were randomly rotated from 0° to 360°, vertically and horizontally reversed, and 
vertically and horizontally shifted by 12.5% of the position in every input image.

Figure 10.   Original architecture for this study. The architecture consisted of total of eight layers of two 
dimensional convolution. The figures under each convolution layer indicate the size (height and width) and 
number of future maps and layers. “Conv2D” refers to 2-dimentional convolution. “BatchNorm” refers to batch 
normalization. “SE block” refers to Squeeze-and-Excitation block.
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Figure 11.   Overall flow of this study. The inverted trapezoidal frame shows manual processing or human 
judgment. The rectangular frame shows automatic processing by a hand-made program written in Python. 
The filled arrows indicate the flow in the first run of semi-authorized learning. Arrows with fine diagonal lines 
indicate the flow in the second run of semi-authorized learning. Arrows with rough diagonal lines indicate the 
flow in the third and subsequent runs of semi-authorized learning. CST: Confirmed self-training, AL: Active 
learning.



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16736  | https://doi.org/10.1038/s41598-022-20651-4

www.nature.com/scientificreports/

Architecture.  The original architecture (Fig. 10) was created and used as the classifier. This incorporated 
the squeeze-and-excitation block37 into an 8-layer architecture consisting of a convolution layer and maximum 
pooling. The optimization function was a stochastic gradient descent (SGD) with momentum. The learning rate 
was set to 0.01 for the first learning and 0.005 for subsequent learnings.

Evaluation.  To evaluate the classification system, microscopic field images from four specimens not used 
as training data were distributed to three qualified clinical laboratory technologists and a board-certified 
hematologist (Japanese Society of Hematology) in our laboratory to identify the cells in the images31.

We collected 50 images with the label of cell type, which was matched by four examiners from each class, 
except for artifacts and bare nuclei, and processed them like those used for the training data.

From images of both artifacts and bare nuclei, we collected 25 images each and created one class. The classifier 
was evaluated using a test consisting of 800 cell images, with the accuracy, recall, and precision. Finally, we present 
a flowchart of the whole procedure in this study in Fig. 11.

Statistical analysis.  The statistical analysis consisted of chi-square tests, one-way ANOVA, Dunnett’s tests, 
and Tukey’s multiple comparison tests using JMP® Pro 16 (SAS Institute Japan Ltd., Tokyo, Japan). Statistical 
significance was set at less than 5% for all two-sided p-values.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to restrictions by 
the Institutional Review Boards but are available from the corresponding author on reasonable request.
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