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Abstract
Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the

crops that depend on bee pollination. While many factors are known to increase the risk of

colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most seri-

ous one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for

many viral diseases which are among the likely causes for Colony Collapse Disorder. The

effects of V. destructor infestation differ from one part of the world to another, with greater

morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and

North America. Although this mite has been present in Brazil for many years, there have

been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried

out in Mexico have highlighted different behavioral responses by the AHB to the presence

of the mite, notably as far as grooming and hygienic behavior are concerned. Could these

explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer

this question, we have developed a mathematical model of the infestation dynamics to ana-

lyze the role of resistance behavior by bees in the overall health of the colony, and as a con-

sequence, its ability to face epidemiological challenges.

Introduction
In winter and spring of 2006/2007 American beekeepers started reporting heavier and wide-
spread losses of bee colonies and so did Europeans beekeepers. This mysterious phenomenon
was called “Colony Collapse Disorder” (CCD). Diseases, parasites, in-hive chemicals, agricul-
tural insecticides, genetically modified crops, changed cultural practices and cool brood have
all been suggested as possible causes for it [1] but nowadays the ectoparasitic mite Varroa
destructor that parasitizes honey bees is considered the most likely cause. Although V. destruc-
tor has become a global problem its effects vary in different parts of the world. More intense
losses have been reported in European honey bee colonies (EHB) in Europe, Asia and North
America [2].
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The mite’s life cycle is tightly linked with that of the bees. Immature mites develop with
immature bees, parasitizing them from an early stage. The mite’s egg-laying behavior is cou-
pled with that of the bees and thus depends on its reproductive cycle. In the northern hemi-
sphere bees are much less active during the cold winter months. But since worker brood
rearing (and thus Varroa reproduction) occurs all year round in tropical climates, one would
expect that the impact of the parasite would be even worse in tropical regions. But even though
V. destructor has been present in Brazil for more than 30 years, no colony collapses due to this
mite, have been recorded [3]. It is worth noting that the dominant variety of bees in Brazil is
the Africanized Honey Bee (AHB) which has spread throughout the entire country since its
introduction in 1956 [4]. African bees and their hybrids are known to be more resistant to the
mite V. destructor than the European bee subspecies [4, 5]. A review by Arechavaleta-Velasco
et al. [6] in Mexico showed that EHB were twice as attractive to V. destructor as AHB.

Resistance behaviors of the bee against the parasite
Both varieties of bees exhibit two types of resistance to the mite: firstly, grooming where work-
ers use their legs and mandibles to remove the mite and then injure or kill it [7], and secondly
hygienic behavior where workers destroy potentially infested brood cells [8]. Grooming behav-
ior performed by adult bees, includes detecting and eliminating mites from their own body
(auto-grooming) or from the body of another bee (allo-grooming). Hygienic behavior occurs
when adult bees detect the presence of mite offspring still in the cells and in order to prevent
the mites from spreading in the colony, the worker bees kill the infested brood. It has been
demonstrated that the smell of the mite is capable of activating this behavior [9]. Hygienic
behavior serves to combat other illnesses and parasites to which the brood is susceptible but it
is not 100% accurate. Correa-Marques and De Jong [9] report that the majority (53%) of the
uncapped cells display no apparent signs of parasitism or other abnormality which would jus-
tify killing of the brood.

AHB workers were more efficient in grooming mites from their bodies than EHB. AHB
have been shown to be more effective in hygienic behavior than EHB. Vandame et al. [7] found
in Mexico that the EHB are only able to remove 8% of infested brood whereas AHB removed
up 32.5%. These types of behavior are important factors in keeping mite infestation low in the
honey bee colonies but they come at a cost to the bees.

Our paper is not the first to model host-parasite systems; others exist in the literature and
have recently been reviewed by Becher et al. [10]. In particular, Ratti et al. [11] modelled the
population dynamics of bees and mites together with the acute bee paralysis virus. Here, we
focus solely on the host-parasite interactions in order to understand the resilience of colonies
in Brazil and the role of the more efficient resistance behaviors displayed by AHB to explain
the lower infestation rates and the lower incidence of colony collapse [7].

The main goal of this paper is to propose a model capable of describing the dynamics of
infestation by V. destructor in bee colonies taking into consideration bee’s resistance mecha-
nisms to mite infestation, grooming and hygienic behavior. In addition, by simulating the
dynamics, we show how the resistance behaviors contribute to reducing infestation levels in
the colony.

Mathematical model
Vandame et al. [12] discuss the cost-benefit of resistance mechanism of bee against mite. The
grooming behavior performed by adult bees, includes detecting and eliminating mites from
their own body (auto-grooming) or from the body of another bee (allo-grooming). The
hygienic behavior occurs when adult bees detect the presence of the mite offspring still in the
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cells and in order to prevent the mites from spreading in the colony, the worker bees kill the
infested brood. Their study compared the results for two subspecies of bees—Africanized and
European—to examine whether these two mechanisms could explain the observed low com-
patibility between Africanized bees and the mite Varroa destructor, in Mexico. The results
showed that grooming and hygienic behavior appears most intense in Africanized bees than in
Europeans bees.

The model proposed is shown in the diagram of Fig 1, and detailed in the system of differen-
tial equations below:

_I ¼ p
A

Aþ Ai

� dI � HI

_A ¼ dI þ gAi � mA

_Ii ¼ p
Ai

Aþ Ai

� dIi � HiIi

_Ai ¼ dIi � gAi � ðmþ gÞAi

ð1Þ

In the proposed model, I, Ii, A and Ai represent the non-infested immature bees, infested
immature bees, non-infested adult worker bees and infested adult worker bees, respectively.

Daily birth rate for bees is denoted by π, δ is the maturation rate, i.e., the inverse of number
of days an immature bee requires to turn in adult, this rate is the same for both infested and
non-infested immature bees. The infestation of immature bees is proportional to the fraction
of infested adults because females mites initiate reproduction by entering the brood cell, before
it is sealed [2]. μ is the mortality rate for adult bees, γ is the mortality rate induced by the pres-
ence of mites in the colony bees. The value used for γ (Table 1) is insignificant, but this parame-
ter can be used in extensions of this model to represent additional mortality due to the impact
of diseases transmitted by the mite. The parameters Hi,H and g are the rate of removal of
infested pupae via hygienic behavior, the general hygienic rate (affecting uninfested pupae) and
grooming rate, respectively.

Fig 1. Diagram to describes the dynamics of the model.

doi:10.1371/journal.pone.0160465.g001
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Choosing parameters values
Some of the parameters associated with the bees life cycle, used for the simulations, can be
found in the literature, as shown in Table 1. For the resistance behavior parameters, g, H and
Hi, very little information is available. Therefore we decided to study the variation of these
parameters within ranges which allowed for the system to switch between a mite-free equilib-
rium to one of stable infestation. These ranges also reflected observations described in the liter-
ature (Table 2) [6, 12, 15].

The three unknown parameters representing resistance behaviors g,Hi,H—grooming,
proper hygienic behavior and harmful hygienic behavior—were studied with respect to the
existence of a stable infestation equilibrium.

Results

Basic reproduction numberR0 of the infested bees
One way of looking for a boundary beyond which infestation by mites is possible, is to compute
the basic reproduction number,R0 of infestation. For our model, the basic reproduction num-
ber, orR0 of infested bees, can be thought of as the number of new infestations that one
infested bee when introduced into the colony generates on average over the course of its infes-
tation period or before it is groomed, in an otherwise uninfested population.

DerivingR0 using the next-generation method. To calculate the basic reproduction
number of infested bees, we will use the next-generation matrix [16], where the whole popula-
tion is divided into n compartments in which there arem< n infested compartments. The
next-generation matrix defines the instantaneous rate of expansion of the infestation, right at
the start.

In this method,R0 is defined as the spectral radius, or the largest eigenvalue, of the next-
generation matrix.

Table 1. Parameters of the model.

Parameters Meaning Value Unit Reference

π Bee daily birth rate 2500 bees × day−1 [13]

δ Maturation rate 0.05 day−1 [13]

H Generic hygienic behavior - day−1 -

Hi Hygienic behavior towards infested brood - day−1 -

g Grooming - day−1 -

μ Mortality rate 0.04 day−1 [14]

γ Mite induced mortality 10−7 day−1 [11]

doi:10.1371/journal.pone.0160465.t001

Table 2. Varying the parameters.

Parameter Minimum value Maximum value

g 0.01 0.01

Hi 0.08 0.4

H 0.04 0.2

doi:10.1371/journal.pone.0160465.t002
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Let xi, i = 1, 2, . . .,m be the number or proportion of individuals in the ith compartment.
Then

dxi
dt

¼ F iðxÞ � V iðxÞ

where F iðxÞ is the rate of appearance of new infestations in compartment i and
V iðxÞ ¼ V�

i ðxÞ � Vþ
i ðxÞ. V�

i is the rate of transfer of individuals out of the ith compartment,

and Vþ
i represents the rate of transfer of individuals into compartment i by all other means.

The next-generation matrix is then defined by FV−1, where F and V can be formed by the
partial derivatives of F i and V i.

F ¼ @F iðx0Þ
@xj

" #
and V ¼ @V iðx0Þ

@xj

" #

where x0 is the disease free equilibrium.
In our model,m = 2 and the infested compartments are:

dIi
dt

¼ p
Ai

Aþ Ai

� dIi � HiIi

dAi

dt
¼ dIi � gAi � ðmþ gÞAi

ð2Þ

Now we write the matrices F and V, substituting the mite-free equilibrium values, A� ¼
dp

mðdþHÞ and A
�
i ¼ 0.

F ¼
0 mðdþHÞ

d

0 0

2
4

3
5

V ¼
dþ Hi 0

�d g þ gþ m

" #

Let the next-generation matrix G be the matrix product FV−1. Then

G ¼
mðdþHÞ

ðdþHiÞðgþgþmÞ
mðdþHÞ
dðgþgþmÞ

0 0

2
4

3
5

Now we can find the basic reproduction number,R0, which is the largest eigenvalue of the
matrix G.

R0 ¼
mðdþ HÞ

ðdþ HiÞðg þ gþ mÞ ð3Þ

Figs 2, 3 and 4 show the boundary between mite-free (blue region,R0 < 1) and infestation
equilibria (red region,R0 > 1).

Well-Posed and Boundedness
For sake of simplicity, we denote

a¼: dþ H; ai ¼: dþ Hi; mi ¼: mþ g ð4Þ
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in such a way that the System (1) rewrites

_I ¼ p
A

Aþ Ai

� aI ð5aÞ

_A ¼ dI � mAþ gAi ð5bÞ

_I i ¼ p
Ai

Aþ Ai

� aiIi ð5cÞ

_Ai ¼ dIi � ðmi þ gÞAi ð5dÞ

Fig 2. Plot of values ofR0 for a range of values of g andH. Hi = 0.01 and remaining parameters set as described in
Table 1. The region in red (top-left) corresponds toR0 > 1, the black line toR0 ¼ 0 and the blue region (bottom-right)
otherwise. This figure shows a slightly narrower range of the parameters as described in Table 2, for a better visualization
of the threshold.

doi:10.1371/journal.pone.0160465.g002
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We assume that all the coefficients presented in Table 1 are all positive, that is:

p; d; m > 0; a; ai > d; mi > m: ð6Þ

The previous system of equations is written

_X ¼ f ðXÞ; X ¼ ðI;A; Ii;AiÞ ð7Þ

The right-hand side of Eq (7) is not properly defined in the points where A + Ai = 0. However,
the following result demonstrates that this has no consequence on the solutions, as the latter
stays away from this part of the subspace. For subsequent use, we denoteD the subset of those

elements X ¼ ðI;A; Ii;AiÞ 2 R
4
þ such that A + Ai 6¼ 0.

Fig 3. Values ofR0 for various combinations ofHi andH. g = 0.01 and other parameters as given in Table 1. The region in red (bottom-right)
corresponds toR0 > 1, the black line toR0 ¼ 0 and the blue region (top-left) otherwise. This figure illustrates one of the conditions for infestation(given
other parameters values fixed as in Table 1) that Hmust be larger thanHi. This figure shows a slightly narrower range of the parameters as described in
Table 2, for a better visualization of the threshold.

doi:10.1371/journal.pone.0160465.g003
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Theorem 1 (Well-posedness and boundedness) If X0 2 D, then there exists a unique solu-
tion of Eq (7) defined on [0, +1) such that X(0) = X0.Moreover, for any t> 0, XðtÞ 2 D, and

p
amax

� lim inf
t!þ1

ðIðtÞ þ IiðtÞÞ � lim sup
t!þ1

ðIðtÞ þ IiðtÞÞ �
p
amin

ð8aÞ

dp
miamax

� lim inf
t!þ1

ðAðtÞ þ AiðtÞÞ � lim sup
t!þ1

ðAðtÞ þ AiðtÞÞ �
dp

mamin

ð8bÞ

Fig 4. Implicit plot forR0 letting g andHi vary.Using the values for parameters π, δ, μ, H and γ from
Table 1 The red region representR0 > 1 which means that for these combination of g andHi the mite will stay
in the colony. On the other hand, the blue region representsR0 < 1 which means that for these these
combination of g andHi the mites will be eliminated.

doi:10.1371/journal.pone.0160465.g004
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where by definition αmin ¼: min{α; αi}, αmax ¼: max{α; αi}. Also,

1

ða� aminÞmþ ag
pgmamin

miamax

� lim inf
t!þ1

IðtÞ; 1

ða� aminÞmþ ag
dpga
miamax

� lim inf
t!þ1

AðtÞ ð9Þ

and

ðIið0Þ;Aið0ÞÞ 6¼ ð0; 0Þ ) 8t � 0; IiðtÞ > 0; AiðtÞ > 0 ð10Þ

DefineD0 as the largest set included inD and fulfilling the inequalities of Theorem 1, that is:

D0¼:
(
ðI;A; Ii;AiÞ 2 R

4
þ :

pgmamin

miamax

� I;
dpga
miamax

� A;
p

amax

� I þ Ii �
p
amin

;

dp
miamax

� Aþ Ai �
dp

mamin

)
:

ð11Þ

Theorem 1 shows that the compact setD0 is positively invariant and attracts all the trajectories.
Therefore, in order to study the asymptotics of System (5), it is sufficient to consider the trajec-
tories of Eq (5) that are inD0.

In Theorem 1, the notations lim inf and lim sup correspond respectively to the limit inferior
and limit superior of a function (or lower limit and upper limit). We recall e.g. that the limit
superior at infinity of a real-valued function f defined on [0, +1) is equal to inft � 0supτ � t f
(τ). It is the largest accumulation point of f at infinity.

Equilibria
Theorem 2 (Equilibria and asymptotic behavior) Define

b¼: m
ai
� mi þ g

a
ð12Þ

• If β� 0, then there exists a unique equilibrium point of System (7) inD0, that corresponds
to a mite-free situation. It is globally asymptotically stable, and given by

XMF ¼
p
a

1

d
m

0

0

0
BBBBBBB@

1
CCCCCCCA
: ð13Þ

• If b > 1
ai
, then there exists two equilibrium points inD0, namely XMF and a infestation equi-

librium defined by

XCO ¼ dpg
aiðmi þ gÞ

am� aiðmi þ gÞ
aðmþ gÞ � aiðmi þ gÞ

1
d

aiðmiþgÞ
am�aiðmiþgÞ

a
am�aiðmiþgÞ

miþg
dg

1
g

0
BBBBBBBB@

1
CCCCCCCCA
: ð14Þ
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Moreover, for all initial conditions inD0 except in a zero measure set, the trajectories tend
towards XCO.

Recall thatR0 ¼ am
aiðmiþgÞ, in such a way that

b > 0 , R0 > 1: ð15Þ

The pointR0 ¼ 1, that is β = 0, is the point of a transcritical bifurcation, that appears when
R0 gets larger than 1. For larger values, two equilibria are found analytically, a mite-free one,
that is unstable, and a infestation equilibrium which is stable. We’ve shown (Theorem 2) that
the latter is globally asymptotically stable if b > 1

ai
, and conjecture that the same property holds

for β in the interval 0; 1
ai

� i
. Using α as bifurcation parameter, the bifurcation appears for

a ¼ aiðmiþgÞ
m � 0:125, after substituting the parameter values (Fig 5).

If we solve numerically the system from Eq (5), we confirm the existence of two equilibria
when α crosses the bifurcation value of 0.125. The instability and stability of the mite-free and
infestation equilibria, respectively is shown in the simulation of Fig 6.

Fig 5. Bifurcation diagram showing the transcritical bifurcation with bifurcation point α0 � 0.125 (β = 0,R0 ¼ 1).When the parameter
α is greater than α0, coexistence equilibrium (Ii > 0) exists. When α < α0, only the mite-free equilibrium exists. Blue dots correspond to the
equilibrium values of Ii.

doi:10.1371/journal.pone.0160465.g005
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Figs 6 and 7 show simulations representing the infestation and mite-free equilibria, respec-
tively. The time range of simulations is between 2 and 3 years, with daily time steps, which is
enough for the dynamic to converge to the equilibria.

Proofs of the theorems
Proof of Theorem 1. • Clearly, the right-hand side of the system of equations is globally
Lipschitz on any subset ofD where A + Ai is bounded away from zero. The existence and
uniqueness of the solution of System (5) is then obtained for each trajectory staying at finite
distance of this boundary. We will show that the two formulas provided in the statement are
valid for each trajectory departing initially from a point where A + Ai 6¼ 0. As a consequence,
the fact that all trajectories are defined on infinite horizon will ensue.

Fig 6. Simulation showing the infestation of a colony, by a single infested adult bee, with parameters givingR0 � 1:33. Initial conditions: I = 5000,
Ii = 0, A = 20000, Ai = 0 and parameters g = 0.01,Hi = 0.1, μ = 0.04, δ = 0.05, γ = 10−7 andH = 0.19. On time t = 100 days, a single infested adult bee is
introduced into the colony. For this simulation, β = 0.375 andR0 � 3:199.

doi:10.1371/journal.pone.0160465.g006
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• Summing up the first two equations in Eq (5) yields, for any point insideD:

_I þ _I i ¼ p� aI � aiIi � p� amaxðI þ IiÞ: ð16Þ

Integrating this differential inequality between any two points X(0) = X0 and X(t) of a trajectory
for which XðtÞ 2 D, τ 2 [0; t], one gets

IðtÞ þ IiðtÞ �
p

amax

1� e�amaxtð Þ þ ðIð0Þ þ Iið0ÞÞe�amaxt; ð17Þ

where the right-hand side is in any case positive for any t> 0.
Similarly, one has

_I þ _I i � p� aminðI þ IiÞ; ð18Þ

Fig 7. Simulation showing the elimination of the mites from a colony, by a single infested adult bee, whenR0 < 1. Initial conditions: I = 15000, Ii =
5000, A = 20000, Ai = 6000 and parameters g = 0.01,Hi = 0.1, μ = 0.05, δ = 0.05, γ = 10−7 andH = 0.1.

doi:10.1371/journal.pone.0160465.g007
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and therefore

IðtÞ þ IiðtÞ �
p
amin

1� e�amintð Þ þ ðIð0Þ þ Iið0ÞÞe�amint: ð19Þ

This proves in particular that the inequalities in Eq (8a) hold for any portion of trajectory
remaining insideD.

We now consider the evolution of A, Ai. Similarly to what was done for I, Ii, one has

_A þ _Ai ¼ dðI þ IiÞ � mA� miAi � dðI þ IiÞ � miðAþ AiÞ ð20Þ

Therefore,

AðtÞ þ AiðtÞ � ðAð0Þ þ Aið0ÞÞe�mi t þ d
Z t

0

ðIðtÞ þ IiðtÞÞe�miðt�tÞ: dt: ð21Þ

Integrating the lower bound of I + Ii extracted from Eq (17) yields the conclusion that any solu-
tion departing fromD indeed remains inD as long as it is defined. On the other hand, we saw
previously that trajectories remaining inD could be extended on the whole semi-axis [0, +1).
Therefore, any trajectory departing from a point inD can be extended to [0, +1), and remains
inD for any t> 0. In particular, Eq (8a) holds for any trajectory departing insideD.

Let us now achieve the proof by bounding A + Ai from above. One has

_A þ _Ai � dðI þ IiÞ � mðAþ AiÞ ð22Þ

and thus

AðtÞ þ AiðtÞ � ðAð0Þ þ Aið0ÞÞe�mt þ d
Z t

0

ðIðtÞ þ IiðtÞÞe�mðt�tÞ: dt: ð23Þ

Using Eq (19) then permits to achieve the proof of Eq (8b), and finally the proof of Eq (8).
• Let us now prove Eq (9). One deduces from Eqs (5a) and (5b) and the bounds established

earlier the differential inequalities

_I � p
lim supðAþ AiÞ

A� aI � mamin

d
A� aI; ð24aÞ

_A � dI � mAþ gðlim infðAþ AiÞ � AÞ � dI � ðmþ gÞAþ dpg
miamax

ð24bÞ

The auxiliary linear time-invariant system

d
dt

I 0

A0

 !
¼

�a
mamin

d

d �ðmþ gÞ

0
B@

1
CA I 0

A0

 !
þ

0

dpg
miamax

0
B@

1
CA ð25Þ

is monotone, as the state matrix involved is a Metzler matrix [17]. Moreover, it is asymptoti-
cally stable, as the associated characteristic polynomial is equal to

sþ a �mamin

d

�d sþ mþ g

������
������ ¼ s2 þ ðaþ mþ gÞsþ aðmþ gÞ � mamin; ð26Þ

and thus Hurwitz because α(μ + g) − μαmin = (α − αmin)μ + αg> 0. Therefore, all trajectories of
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Eq (25) tend towards the unique equilibrium:

lim
t!þ1

I 0ðtÞ

A0ðtÞ

 !
¼ �

�a mamin
d

d �ðmþ gÞ

 !�1 0

dpg
miamax

0
@

1
A

¼ 1

ða� aminÞmþ ag

mþ g mamin
d

d a

 ! 0

dpg
miamax

0
@

1
A

¼ 1

ða� aminÞmþ ag

pgmamin
miamax

dpga
miamax

0
@

1
A:

ð27Þ

Invoking Kamke’s Theorem, see e.g. ([18] Theorem 10, p. 29), one deduces from Eq (24) and
the monotony of Eq (25) the following comparison result, that holds for all trajectories of
Eq (31):

lim inf
t!þ1

IðtÞ

AðtÞ

 !
� 1

ða� aminÞmþ ag

pgmamin
miamax

dpga
miamax

0
@

1
A: ð28Þ

This gives Eq (9).
•One finally proves Eq (10). Using Eq (8b), identity Eq (5c) implies

_I i �
p

lim supðAþ AiÞ
Ai � aiIi �

mamin

d
Ai � aiIi ð29Þ

Joining this with Eq (5d) and using Kamke’s result as before, ones deduces that both Ii and Ai

have positive values when at least one of their two initial values are positive. This achieves the
proof of Theorem 1.

Proof of Theorem 2. The proof is organized as follows.

1. We first write System (5) under the form of an I/O system, namely

_I ¼ p
A

Aþ Ai

� aI ð30aÞ

_A ¼ dI � mAþ u ð30bÞ

_I i ¼ p
Ai

Aþ Ai

� aiIi ð30cÞ

_Ai ¼ dIi � ðmi þ gÞAi ð30dÞ

y ¼ gAi ð30eÞ

where u, resp. y, is the input, resp. the output, closed by the unitary feedback

u ¼ y: ð30fÞ

For subsequent use of the theory of monotone systems, one determines, for any (nonnega-
tive) constant value of u, the equilibrium values of (I, A, Ii, Ai) for Eqs (30a)–(30d), and the
corresponding values of y as given by Eq (30e).
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2. The equilibrium points of System (5) are then exactly (and easily) obtained by solving the
fixed point problem u = y among the solutions of the previous problem.
unique equilibrium points when β� 0, and there exist exactly two equilibrium points when
β> 0. equilibrium points.

3. One then shows that the I/O system u 7! y defined by Eqs (30a)–(30e) is anti-monotone
with respect to certain order relation, and the study of the stability of these equilibria shows
that it admits single-valued I/S and I/O characteristics, as in [19].

4. Using this properties, the stability of the equilibria of the system obtained by closing the
loop Eqs (30a)–(30e) by Eq (30f) is then established using arguments similar to Angeli and
Sontag [17].

1. For fixed u> 0, the equilibrium equations of the I/O system (30a)–(30e) are given by

p
A

Aþ Ai

� aI ¼ 0 ð31aÞ

dI � mAþ u ¼ 0 ð31bÞ

p
Ai

Aþ Ai

� aiIi ¼ 0 ð31cÞ

dIi � ðmi þ gÞAi ¼ 0 ð31dÞ

y ¼ gAi ð31eÞ

Summing up the first and third identities gives

p ¼ aI þ aiIi; ð32Þ

and thus necessarily:

9l 2 ½0; 1�; I ¼ l
p
a
; Ii ¼ ð1� lÞ p

ai
: ð33Þ

• The case λ = 0 yields I = 0, and then A = 0 by Eq (31a), and therefore u has to be zero from

Eq (31b). Also, Ii ¼ p
ai
, Ai ¼ dp

aiðmiþgÞ by Eq (31d), and then y ¼ gAi ¼ gdp
aiðmiþgÞ. in Eq (11) and

should be discarded. obtained point is located outsideD and has to be discarded; or
• The case λ = 1 yields Ii = 0, and then Ai = 0 by Eqs (31d) or (31c), and y = 0. There remains

the two following conditions:

p ¼ aI; dI ¼ mA� u ð34Þ

which yield

I ¼ p
a
; A ¼ dp

am
þ u
m

ð35Þ

(The map u 7! y(u) is therefore multivalued.) Notice that these solutions do not systematically
correspond to equilibrium points for the closed-loop System (30). unconditionally.
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• Let us now look for possible values of λ in (0;1). From Eqs (33) and (31a)–(31c), one
deduces

A
Ai

¼ aI
aiIi

¼ l
1� l

: ð36Þ

Using Eq (33) on the one hand and summing the two identities Eqs (31b)–(31d) on the other
hand, yields

dðI þ IiÞ ¼ dp
l
a
þ 1� l

ai

� �
¼ mAþ ðmi þ gÞAi � u ¼ A mþ ðmi þ gÞ 1� l

l

� �
� u: ð37Þ

This permits to express A as a function of λ, namely:

A ¼ l
lmþ ð1� lÞðmi þ gÞ dp

l
a
þ 1� l

ai

� �
þ u

� �
: ð38Þ

Using this formula together with Eqs (33), (31d) and (36) now allows to find an equation
involving only the unknown λ, namely:

dIi ¼
dp
ai

ð1� lÞ ¼ ðmi þ gÞAi ¼ ðmi þ gÞAi

A
A

¼ ðmi þ gÞ 1� l
l

l
lmþ ð1� lÞðmi þ gÞ dp

l
a
þ 1� l

ai

� �
þ u

� �
:

ð39Þ

Simplifying (as λ 6¼ 0, 1) gives:

dp
ai

¼ mi þ g
lmþ ð1� lÞðmi þ gÞ dp

l
a
þ 1� l

ai

� �
þ u

� �
: ð40Þ

The previous condition is clearly affine in λ. It writes

lmþ ð1� lÞðmi þ gÞð Þ dp
ai

¼ ðmi þ gÞ dp
l
a
þ 1� l

ai

� �
þ u

� �
ð41Þ

which, after developing and simplifying, can be expressed as:

lm
dp
ai

¼ ðmi þ gÞ dp
l
a
þ u

� �
ð42Þ

and finally

ðmi þ gÞu ¼ dp
m
ai
� mi þ g

a

� �
l ¼ dpbl: ð43Þ

For u� 0, this equation admits a solution in (0;1) if and only if

b > 0 and u < u�¼: dpb
mi þ g

; ð44Þ

and the latter is given as

l ¼ mi þ g
dpb

u: ð45Þ

The state and output values may then be expressed explicitly as functions of u. In particular,
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one has

yðuÞ ¼ gAi ¼
dg

mi þ g
Ii ¼

dpg
aiðmi þ gÞ ð1� lÞ ¼ dpg

aiðmi þ gÞ 1� mi þ g
dpb

u

� �
: ð46Þ

value
•Eq (31) admits exactly one solution inD0 for any u� 0; admits a supplementary solution

inD0 for any u 2 [0; u�). Figs 8 and 9 summarize the number of solutions of Eq (31) for all non-
negative values of u. (The map u 7! y(u) is therefore multivalued.) Notice that these solutions
do not systematically correspond to equilibrium points for the closed-loop System (30).

2. The equilibrium points of System (5) are exactly those points for which u = y(u) for some
nonnegative scalar u, where y(u) is one of the output values corresponding to u previously
computed. We now examine in more details the solutions of this equation.

• For the value λ = 0 in the previous computations, one should have u = 0, due to Eq (45);
but on the other hand y> 0 for u = 0, due to Eq (46). Therefore this point does not correspond
to an equilibrium point of System (31).

• The value λ = 1 yields a unique equilibrium point. Indeed, y = 0, so u should be zero too,
and the unique solution is given by

I ¼ p
a
; A ¼ dp

am
; Ii ¼ 0; Ai ¼ 0; y ¼ 0: ð47Þ

This corresponds to the equilibrium denoted XMF in the statement.
• Let us consider now the case of λ 2 (0;1). For this case to be considered, it is necessary that

β> 0, that isR0 > 1. The value of u should be such that (see Eq (46))

y ¼ dpg
aiðmi þ gÞ �

g
aib

u ¼ u; ð48Þ

Fig 8. R0 � 1 (i.e. β� 0). See details in the text.

doi:10.1371/journal.pone.0160465.g008

Fig 9. R0 > 1 (i.e. β > 0). See details in the text.

doi:10.1371/journal.pone.0160465.g009
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that is

1þ g
aib

� �
u ¼ dpg

aiðmi þ gÞ ; ð49Þ

or again

u ¼ dpbg
ðaibþ gÞðmi þ gÞ ¼

dpg
aiðmi þ gÞ

am� aiðmi þ gÞ
aðmþ gÞ � aiðmi þ gÞ ; ð50Þ

after replacing β by its value defined in Eq (12). The corresponding value of

l ¼ mi þ g
dpb

u ¼ g
aibþ g

; ð51Þ

given by Eq (45), is clearly contained in (0;1) when β> 0. Therefore, when β> 0, there also
exists a second equilibrium. The latter is given by:

I ¼ l
p
a
¼ mi þ g

adb
u ¼ 1

d
aiðmi þ gÞ

am� aiðmi þ gÞ u; Ai ¼
u
g
; ð52aÞ

Ii ¼
mi þ g
d

Ai ¼
mi þ g
dg

u ð52bÞ

A ¼ 1

m
dI þ uð Þ ¼ 1

m
aiðmi þ gÞ

am� aiðmi þ gÞ þ 1

� �
u ¼ a

am� aiðmi þ gÞ u; ð52cÞ

and corresponds to XCO defined in the statement.
diagonal that comes from the loop closing.

3. LetK be the cone in R
4
þ defined as the product of orthants Rþ � Rþ � R� � R�. We

endow the state space with this order. In other words, for any X = (I, A, Ii, Ai) and X 0 ¼
ðI 0;A0; I 0i ;A

0
iÞ in R

4
þ, X�KX

0 means:

I � I 0;A � A0; Ii � I 0i ;Ai � A0
i: ð53Þ

With this structure, one may verify that the System (30a)–(30e) has the following monotonicity
properties [20, 21]

• For any function u 2 U¼: fu : ½0;þ1Þ ! R; locally integrable and taking on positive values

almost everywhere}, for any X0;X 0
0 2 R

4
þ,

X0�KX
0
0 ) 8t � 0; Xðt;X0; uÞ�KXðt;X 0

0; uÞ ð54Þ

where by definition X(t; X0, u) denotes the value at time t of the point in the trajectory
departing at time 0 from X0 and subject to input u.

• The Jacobian matrix of the I/O system is

�a p Ai

ðAþAiÞ2
0 �p A

ðAþAiÞ2

d �m 0 0

0 �p Ai

ðAþAiÞ2
�ai p A

ðAþAiÞ2

0 0 d �ðmi þ gÞ

0
BBBBBBB@

1
CCCCCCCA
; ð55Þ
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which is irreducible when A 6¼ 0 and Ai 6¼ 0. The system is therefore strongly monotone in

D0 n fX : Ai ¼ 0g (notice thatD0 does not contain points for which A = 0), and also on the

invariant subsetD0 \ fX : Ii ¼ 0; Ai ¼ 0; g.
• The input-to-state map is monotone, that is: for any inputs u; u0 2 U , for any X0 2 R

4
þ,

uðtÞ � u0ðtÞ a:e: ) 8t � 0; Xðt;X0; uÞ�KXðt;X 0
0; uÞ: ð56Þ

• The state-to-output map is anti-monotone, that is: for any X ;X 0 2 R
4
þ,

X�KX
0 ) 8t � 0; gAi � gA0

i ð57Þ

monotone (due to the irreducibility of the Jacobian matrix) for any constant value of u.
• In order to construct I/S and I/O characteristics for System (31), we now examine the sta-

bility of the equilibria of System (31) for any fixed value of u 2 Rþ. As shown by Theorem 1,
all trajectories are precompact.

•When β� 0, it has been previously established that for any u 2 R there exists at most one
equilibrium inD0 to the I/O System (31). The strong monotonicity property of this system
depicted above then implies that this equilibrium is globally attractive ([20] Theorem 10.3).
Therefore, System (31) possesses I/S and I/O characteristics. As for any value of u, this equilib-
rium corresponds to zero output, the I/O characteristics is zero. Applying the results of Angeli
and Sontag [19], one gets that the closed-loop system equilibrium XMF is an almost globally
attracting equilibrium for System (5).

• Let us now consider the case where β> 0. We first show that the equilibrium point with Ii
= 0, Ai = 0 and Eq (34) is locally unstable. Notice that this point is located on a branch of solu-
tion parametrized by u and departing from XMF for u = 0. The Jacobian matrix Eq (55) taken at
this point is

�a 0 0 � map
dpþau

d �m 0 0

0 0 �ai
map

dpþau

0 0 d �ðmi þ gÞ

0
BBBBBBB@

1
CCCCCCCA
: ð58Þ

This matrix is block triangular, with diagonal blocks

�a 0

d �m

 !
and

�ai
map

dpþau

d �ðmi þ gÞ

 !
: ð59Þ

The first of them is clearly Hurwitz, while the second, whose characteristic polynomial is

s2 þ ðai þ mi þ gÞsþ aiðmi þ gÞ � madp
dpþ au

¼ s2 þ ðai þ mi þ gÞs� aaiðb� uðmi þ gÞÞ
¼ s2 þ ðai þ mi þ gÞs� aaiðmi þ gÞðu� � uÞ

ð60Þ

(where u� is defined in Eq (44)) is not Hurwitz when β> 0 and 0� u� u�, and has a positive
root for 0< u< u�. Therefore, the corresponding equilibrium of the I/O System (30) is unsta-
ble for these values of u.
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The other solution, given as a function of u by Eq (52), is located on a branch of solution
parametrized by u and departing from XCO for u = 0. As the other solution is unstable for 0<
u< u�, one can deduce from Hirsch [20] that these solutions are locally asymptotically stable.

•One may now associate to any u 2 [0;u�] the corresponding unique locally asymptotically
stable equilibrium point, and the corresponding output value, defining therefore respectively
an I/S characteristic kX and an I/O characteristic k for System (30).

For any scalar u 2 [0;u�], for almost any X0 2 D0, one has

lim
t!þ1

Xðt;X0; uÞ ¼ kXðuÞ; lim
t!þ1

yðt;X0; uÞ ¼ kðuÞ; ð61Þ

and, from the monotony properties, for any scalar-valued continuous function u, for almost
any X0 2 D0:

kðlim sup
t!þ1

uðtÞÞ � lim inf
t!þ1

yðt;X0; uÞ � lim sup
t!þ1

yðt;X0; uÞ � kðlim inf
t!þ1

uðtÞÞ: ð62Þ

Using the fact that k is anti-monotone and that u = y for the closed-loop system, one deduces,
as e.g. in Gouzé [22] that, for the solutions of the latter,

k2lðlim inf
t!þ1

yðt;X0; uÞÞ � lim inf
t!þ1

yðt;X0; uÞ � lim sup
t!þ1

yðt;X0; uÞ � k2lðlim sup
t!þ1

yðt;X0; uÞÞ: ð63Þ

Here k(u), defined by Eq (46), is a linear decreasing map. When its slope is smaller than 1,
then the sequences in the left and right of Eq (63) tend towards the fixed point that corresponds
to the output value at X = XCO, see Eq (50).

This slope value, see Eq (46), is equal to

dpg
aiðmi þ gÞ

mi þ g
dpb

¼ 1

aib
; ð64Þ

and it thus smaller than 1 if and only if b > 1
ai
, which is an hypothesis of the statement.

Under these assumptions, one then obtains that the lim inf and lim sup in Eq (63) are equal,
and thus that y, and thus u, possesses limit for t! +1. Moreover, the state itself converges
towards the equilibrium XCO when t! +1 for almost every initial conditions X(0). This
achieves the proof of Theorem 2.

Discussion
The parasitism of bees by Varroa mites in nature is an undeniable fact. However, this parasitic
relationship is fraught with dangers for the bees, since Varroa mites can be vectors of lethal
viral diseases. These deleterious effects for the health of the individual workers and the whole
colony, has led to the evolution of resistance behaviors such as the hygienic behavior and
grooming.

Those behaviors are not entirely without cost to the bees, exacerbated hygienic behavior—
when both H and Hi are intensified—can exert a substantial toll on the fitness of the queen. So
it is safe to say that this parasitic relationship has evolved within a very narrow range of param-
eters. Even if the mite-free equilibrium is advantageous to the colony, maintaining it may be
too expensive to the bees.

On the other hand, in the absence of viral diseases, mite parasitism seems to be fairly harm-
less. If we look at the expression for theR0 of infestation Eq (3), we can see that the mite-
induced bee mortality, γ, must be kept low or risk de-stabilizing the colony.

Africanized Honey Bees, having evolved more effective resistance behaviors, are more resis-
tant to colony colapse through this ability to keep infestation levels lower when compared to
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their European counterparts [23, 24]. Unfortunately, the lack of more detailed experiments
measuring the rates of grooming and higienic behaviors in both groups (EHB and AHB),
makes it hard to position them accurately in the parameter space of the model presented.

In this model, we chose to leave seasonal effects out, for simplicity, even though it is known
that colonies in temperate climates suffer substantial losses during the winter. Such effects can
be added to this model through the use of a time-varying mortality and birth rates. Neverthe-
less, we are convinced this simple model still applies to tropical colonies, and our observations
about infestation levels and colony vulnerability remain relevant regardless of external morbid-
ity factors such as hard winters.

Finally, we hope that the model presented here along with its demonstrated dynamical
properties will serve as a solid foundation for the development of other models including viral
dynamics and other aspects of bee colony health.
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