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Metastasis is a leading cause of cancer-related death and consists of a

sequence of events including tumor expansion, intravasation of cancer cells

into the circulation, survival in the bloodstream, extravasation at distant

sites, and subsequent organ colonization. Particularly, intravasation is a

process whereby cancer cells transverse the endothelium and leave the pri-

mary tumor site, pioneering the metastatic cascade. The identification of

those mechanisms that trigger the entry of cancer cells into the blood-

stream may reveal fundamentally novel ways to block metastasis at its

start. Multiple factors have been implicated in cancer progression, yet, sig-

nals that unequivocally provoke the detachment of cancer cells from the

primary tumor are still under investigation. Here, we discuss the role of

intrinsic properties of cancer cells, tumor microenvironment, and mechani-

cal cues in the intravasation process, outlining studies that suggest the

involvement of various factors and highlighting current understanding and

open questions in the field.

Introduction

Metastasis is the leading cause of cancer-related deaths

[1]. It proceeds via a sequence of events, beginning

with tumor expansion and progressing with the

intravasation of cancer cells into the circulation, their

subsequent survival within the blood stream, extrava-

sation at distant sites, and finally metastatic coloniza-

tion and expansion. Each of these steps is considered

to be extremely inefficient, estimating that < 1% of

cells that intravasate into the circulation ultimately

succeed to establish a distant metastasis [2]. However,

tumors are composed of billions of cells and, as a con-

sequence, it is assumed that millions of individual cells

may be shed into circulation from 1 g of cancerous tis-

sue in rodents each day [3]. Whether intravasation is a

passive or actively regulated phenomenon is debated,

yet, unarguably, the identification of those mechanisms

that trigger the entry of cancer cells into the blood-

stream may reveal fundamentally novel ways to block

metastasis right where it begins (Fig. 1).

Intravasation is a process whereby cancer cells

detach from the tumor mass and penetrate through

the endothelial walls of blood vessels to reach the

blood stream, where they are referred to as circulating

tumor cells (CTCs). Intravital microscopy studies have

shown that cancer cells generate protrusions that are

first aligned along endothelial cell–cell contacts and

then inserted in between endothelial cells [4,5]. Both

single cells and clusters of cancer cells together with

partnering cells from the microenvironment can intra-

vasate into blood [6–10], with cluster presence in the
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circulation associated with a more aggressive disease

progression [6,7].

It has been discussed whether the process of intrava-

sation of cancer cells and shedding of CTCs into circu-

lation is occurring randomly or is predetermined by

specific factors. While no definitive proof is present at

the moment, and likely more than one mechanism is

involved, it is hard to imagine that intravasation

would be neutral with respect to all the environmental

and intrinsic factors such as proximity to blood ves-

sels, mechanical forces, presence of immune cells, or

the aggressiveness of a particular subclone of tumor

cells (Fig. 2). To verify this, there is a need for rigor-

ous studies that would prove causality between differ-

ent factors and intravasation.

Multiple elements have been implicated in cancer pro-

gression in general, ranging from genetic, transcriptional,

immune cell involvement, and others [11]. However, it is

a challenge to disentangle the processes that directly con-

tribute to individual steps of the metastatic cascade, given

the complexity of growing tumors and their associated

microenvironments. With that regard, the goal of this

review is to outline those studies that suggest a linkage of

various factors with the intravasation process itself, high-

lighting the current understanding and open questions

for metastasis research. These factors include intrinsic

properties of cancer cells, signals from the tumor

microenvironment, and mechanical cues.

Intrinsic properties of cancer cells

Cell-intrinsic properties may play a key role in pro-

moting intravasation of cells into the circulation.

Particularly, here we discuss how genetic mutations,

gene expression profiles, epigenetic profiles, and meta-

bolism of cells may affect their proclivity to intrava-

sate. These factors have been discussed to be essential

in various aspects of tumor development and progres-

sion. However, much information comes from correla-

tive studies that analyze tumor profiles and disease

outcome or, alternatively, that focus on the overall dis-

ease outcome without distinction into individual steps

of the metastatic cascade. A useful approach to dissect

the role of various factors in the intravasation process

is to focus on CTCs—given their short half-life in cir-

culation [6,12]—considering them as a ‘snapshot’

image of those features that cancer cells have acquired

in order to leave the tumor site, for example, when

compared to cells that did not intravasate.

Gene expression profiles

Though the expression of several genes has been impli-

cated in cancer metastasis [13–16], their role in specific

steps of the metastatic cascade remains to be fully

understood. The expression of some genes may predis-

pose cancer cells to intravasate into circulation: for

instance, the role of certain signaling pathways has

been emphasized in this context, in particular the Wnt

pathway and epithelial-to-mesenchymal transition

(EMT) program. The expression of genes involved in

Wnt signaling is enriched in pancreatic cancer mouse

model CTCs [17], and a study using mouse orthotopic

models of glioblastoma and CTC samples from

glioblastoma patients has suggested that Wnt pro-

motes the expression of stemness markers such as

Expansion Intravasation Circulation

Extravasation

Expansion

Tumor

Distant organs, e.g. lungs

Fig. 1. Metastasis consists of a series of steps including tumor expansion, intravasation of cancer cells into the circulation, their survival in

the circulation, followed by extravasation and expansion at distant sites.
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Sox2, Oct4, and Nanog, with upregulated levels in

CTCs compared with the primary tumor counterpart.

Functionally, those cells showed enhanced prolifera-

tion and contribution to tumor growth in vivo [18].

Recently, in an effort to group and unify the sequenc-

ing data in relation to metastasis in patients, a data-

base of published CTC and primary tumor RNA

expression profiles has been generated [19]. Further-

more, a study analyzing comparative expression of

genes between primary and secondary tumors in

patients identified the involvement of genes including

Wnt8A, Fgf8, pik3CB, ESR2, and others, as well as

ORH5221, CATSPER4, and CLRN1 that were not

previously known in the context of breast cancer [20].

‘Stemness’ genes, in turn, were implicated in CTCs of

PDAC—Lin28B and Klf4, as well as Wnt5a, and

LGALS3. Lin28B knockout resulted in a reduced cell

aggressiveness in vitro and in vivo [21]. Altogether, the

Wnt pathway emerges as a strong candidate in cancer

invasiveness, since its components appear to be over-

represented in CTCs. However, more studies will be

needed in this area to fully dissect the gene expression

changes of CTCs compared with primary tumor cells

in various cancer types, and beyond correlative efforts,

to conclusively demonstrate a functional role for speci-

fic genes in dictating intravasation dynamics.

Epithelial-to-mesenchymal transition has been impli-

cated in cancer progression [11] and is a process

whereby junctions of cells are disrupted, epithelial-like

cells acquire a mesenchymal phenotype, resulting in

invasive properties and detachment of single cells.

While EMT has an effect on invasive properties

in vitro and in vivo, it is not fully understood whether

it plays a role in the spontaneous intravasation of can-

cer cells into the circulation and, as a consequence,

enhanced colonization of distant organs [22,23]. In

mouse models, the ectopic activation of EMT tran-

scription factors induced invasive phenotype and

intravasation into circulation [24–26], although con-

trary reports, whereby more epithelial cells were migra-

tory, also exist [27,28]. In studies without

overexpression systems, more complex hybrid pheno-

types have been observed [29,30], arguing in favor of

cellular plasticity rather than a full, rigid EMT transi-

tion. Some of the conclusions from the analysis of

EMT mouse models may be in conflict with the data

from patient tumor histology; for example, primary

breast tumors are overwhelmingly epithelial [31].

Recently, a study showed that in breast cancer xeno-

graft models, E-cadherin expression is essential for

metastasis formation [32]. On the other side, E-cad-

herin negative cells have been seen shown to be more

migratory in an intravital study of aggressive breast

cancer mouse model; however, intravasation events

themselves were not recorded [33]. In patient samples,

CTCs with a broad spectrum of EMT features have

been detected, although some of these studies used

microfluidic enrichment without unequivocal valida-

tion of their putative cancer identity, for example, by

means of genomic analysis [34,35]. A recent study, on

Intravasation Cellular microenvironment

Mechanical cuesIntrinsic properties
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Genetic mutations

Tissue stiffness

Solid stressFluid pressure

Metabolism
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Fig. 2. The intravasation process is

regulated by intrinsic, microenvironmental,

and mechanical factors. Intrinsic properties

include genetic mutations, epigenetic

changes, gene expression, and metabolic

profile alterations that give cells an

intravasation advantage. The cellular

microenvironment consists of fibroblasts,

adipocytes, pericytes, platelets, and

immune cells such as macrophages and

neutrophils. These cells may regulate the

intravasation of cancer cells by cell-to-cell

signaling, altering the tumor

microenvironment and direct participation in

the invasion process. Mechanical cues such

as tissue stiffness, stress, and interstitial

fluid pressure may also affect cancer cell

dissemination into the circulation.
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the other hand, found that there was no correlation

between EMT and the clinical stage of hepatocellular

carcinoma [36]. At the same time, collective cell migra-

tion and detection of CTC clusters in the circulation

with evident epithelial features has been reported [6–
8,10,32]. Altogether, while occurring at different

degrees during cancer progression and in a model-de-

pendent fashion, recent studies argue that EMT may

be dispensable for intravasation in human disease. In

our opinion, more focus should be paid to cellular

programs and plasticity, and should be studied out of

the box of EMT dogma, though not necessarily

excluding it.

Genetic mutations

Similarly to gene expression profiles, it is conceivable

that the acquisition of a particular set of mutations

may confer a high propensity to intravasate, consis-

tent with the emergence of mutationally defined,

metastasis-prone tumor subclones. A few studies

have investigated the mutational profile of CTCs

compared with primary tumor cells in patients and

identified private mutations specific to CTCs [37–41].
In prostate cancer, whole exome sequencing (WES)

of matched tumor and CTC samples from two

patients and subsequent SNV analysis revealed muta-

tions in DNAH8 encoding a dynein heavy chain and

in receptor tyrosine kinase EPHB1 [37]. Another

WES analysis revealed genes involved in cytoskeleton

modeling (e.g., MACF1) or invasion (NEDD9) as

exclusively mutated in prostate cancer CTCs [39]. In

breast cancer, loss of chromosome 1p was observed

in CTCs and absent in the primary tumor counter-

part [40]. However, it is important to note that some

of these CTC-only mutations may emerge due to

low depth of sequencing of the tumor or its incom-

plete sampling and may actually still be present sub-

clonally within primary tumor cells [42]. Of note,

several studies have identified genes promoting

metastasis to defined organs [14–16]; however, the

associated profiles seem reflective of the adaptation

of cells to specific environments following extravasa-

tion. Nevertheless, some genes such as Nedd9, which

was identified as a melanoma metastasis gene [13],

have been found privately mutated in CTCs relative

to tumor [39]. A higher depth of sequencing com-

bined with an increase in the number of sampled

CTCs could potentially reveal more genes simultane-

ously mutated or expressed in CTCs and metastases.

Together, while it is likely that certain mutations

may increase CTCs’ proclivity to intravasate, addi-

tional sequencing efforts and functional studies will

be needed for a better understanding of this phe-

nomenon.

Epigenetic factors

DNA methylation, histone modifications, and chro-

matin remodeling have been characterized in various

tumors [43,44], yet the effect of those epigenetic

changes on metastasis are only beginning to be

resolved.

Comparative analysis of the methylation landscape

of mouse primary tumor and metastatic cells [45], as

well as of primary tumor and metastasis patient-

derived cell lines [46], has indicated epigenetic factors

that may drive metastasis. Focusing on CTCs, the

hypomethylation of tumor suppressor and metastasis

suppressor genes including CST6, Sox17, and BRMS1

have been observed in breast cancer patients [47].

Recently, a genome-wide methylation profile was

reported for CTCs in breast cancer patients and mouse

models [48]. The study revealed differential methyla-

tion pattern between single and clustered CTCs, with

CTC clusters showing DNA hypomethylation at bind-

ing sites of transcription factors that are typically

involved in the regulation of pluripotency and stem-

ness in embryonic stem cells, such as OCT4, NANOG,

SOX2, and SIN3A. Analysis of The Cancer Genome

Atlas revealed that the hypomethylation pattern of

CTC clusters was also detected in primary tumors and

correlated with a poor prognosis of patients [48]. This

highlights the possibility that epigenetic signatures pre-

sent at the primary tumor level may predispose toward

intravasation. Further comparative analysis of epige-

netic patterns in CTCs and primary tumor samples

may help to identify epigenetic marks with an impact

on cancer cells intravasation.

Outlook

Molecular analysis of single and clustered CTCs and

their comparison with primary tumor cells has begun

to highlight some of the cell-intrinsic factors that could

play a role in the intravasation. These include metasta-

sis-promoting shifts in gene expression, acquisition of

mutational profiles, and epigenetic patterns that favor

the metastatic process. A major challenge in this

regard is to compare these profiles to an adequate

number of matched primary tumor cells and to mini-

mize technical biases related to sample characteristics

(e.g., solid vs liquid biopsy) and procedures (e.g., sin-

gle cell vs bulk sequencing). It will also be important

to focus these analyses on a high number of patient

samples, that is, progressively stepping away from
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model systems that may not fully recapitulate the com-

plexity of the intravasation process in cancer patients.

Integration of multi-omics methods along with dedi-

cated computational pipelines will be instrumental in

this context, promoting the identification of cell-intrin-

sic features with an impact on the intravasation pro-

cess.

Metabolism of cancer cells

Metabolism emerges as an uneven characteristic of

tumor cells with a potential impact on various steps of

tumor progression, as cancer cells display a significant

extent of metabolic plasticity and heterogeneity. They

can rewire their metabolic profiles to ensure a variety

of features, including survival, proliferation, and inva-

sion [49,50]. However, it is likely that metabolic path-

ways involved in the expansion of the primary tumor

are distinct from those that give advantage for meta-

static progression. For instance, the tissue of origin of

the primary tumor may influence the type of metabolic

processes in action [51], given the variability in param-

eters such as organ vascularization and oxygen avail-

ability. Therefore, finding a pattern between cellular

metabolism and metastatic intravasation in different

cancer types is a challenge as well as an opportunity

for future studies.

Glycolysis

One of the key players in cancer cell survival is glucose

metabolism. Glucose serves as the main energy source

in mammalian cells, by feeding into the glycolytic

pathway. Indeed, cancer cells are commonly character-

ized by the Warburg effect [52]—their metabolism

heavily relies on glycolysis, with the omission of the

TCA cycle even in the high abundance of oxygen.

However, how glucose metabolism affects metastasis,

and intravasation specifically, needs to be addressed.

Hexokinase 2 and pyruvate kinase 2 are the enzymes

involved at the beginning and at the end of glycolysis,

respectively. Their expression levels are correlated with

motility and invasiveness as measured in in vitro and

in vivo transplantation assays, and there is also a cor-

relation between their levels in cancer tissue and dis-

ease aggressiveness in patients [53–59]. Furthermore, a

byproduct of glycolysis, methylglyoxal, may be capable

of inducing YAP-mediated metastasis, as shown

in vitro and in in vivo transplantation assays [60].

Additionally, heavy reliance on glycolysis results in the

accumulation of lactate. In a breast cancer mouse

transplantation model, L-lactate did not affect tumor

growth, but significantly increased metastatic potential

[61]. Lactate production may be involved in pH

change that could stimulate activation of cathepsins

and mmp9, which degrade ECM and promote invasion

[62]. Indeed, inhibition of MCT1 lactate transporter

could be a good therapeutic target as shown in vitro

and in vivo transplantation model of breast cancer

[63]. Interestingly, a recent study showed that pyruvate

uptake induces the production of a-ketoglutarate,
which remodels collagen via increasing the activity of

the enzyme collagen prolyl-4-hydroxylase (P4HA).

Inhibition of pyruvate metabolism was sufficient to

impair collagen hydroxylation and decrease the meta-

static burden of breast cancer in different mouse mod-

els [64].

Mitochondrial metabolism

Parallel with the reports of reliance of cancer cells on

glycolysis, oxidative phosphorylation still plays a sig-

nificant role, though the extent of this process may be

variable in different cancer types [65]. Using isotope

tracing, glucose oxidation was found to be low in clear

renal cell carcinoma as studied in patients [66], while

both glucose oxidation and glycolysis were high in

lung cancer in patients, and glioblastoma models in

mice [67–69]. Importantly, one of those studies

revealed metabolic heterogeneity within tumor cells

with respect to both glycolysis and glucose oxidation

[68]. The question arises about the extent of cellular

metabolic heterogeneity within human tumors, and

more specifically, whether enhanced oxidation is of an

advantage/disadvantage for metastatic intravasation.

In general, reports about the effect of mitochondria

function on cancer cell invasiveness have been conflict-

ing. Mitochondrial biogenesis and oxidative metabo-

lism have been shown to promote metastasis in breast

cancer in vivo models [70–72] with enhanced oxidative

phosphorylation observed in breast cancer CTCs in

patients [70], as well as to suppress it based on a study

of prostate and melanoma models [73,74]. These stud-

ies relied on knockdown and overexpression of PGC1a
that mediates oxidative phosphorylation, and there-

fore, the discrepancy may result from tissue specific

differences in endogenous levels of PGC1a. It is possi-

ble that there is an optimal range of PGC1a levels that

promotes metastasis. It is also likely that cancer cells

display a significant level of metabolic flexibility during

disease progression and respond to other metabolic

cues: For example, even though the Warburg effect is

very common in cancer cells, alternative pathways

could be activated when glycolysis is switched off.

Indeed, oxidative phosphorylation was increased in

cancer cell lines upon inhibition of glycolysis [75],
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provision of low glucose concentration in the medium

[76], and following induction of lactic acidosis [77].

Vice versa, suppression of PGC1a-dependent mito-

chondrial oxidative metabolism brought up glycolysis

in a melanoma cell line [78]. These findings emphasize

the importance of single-cell resolution metabolic pro-

filing of tumor cells along with matched circulating

tumor cells to identify metabolic processes that may

confer intravasation benefit.

Oxidative stress

Oxidative stress arises as a consequence of an imbal-

ance between production and detoxification of reactive

oxygen species (ROS), which are normally generated

as by-products of oxygen metabolism. However, envi-

ronmental stressors, which are prevalent during car-

cinogenesis, also contribute to the production of ROS

[79]. ROS has been recognized as a metastasis promot-

ing factor [71,80,81], and it could do so by promoting

DNA damage or through the activation of prometa-

static signaling pathways within cells [82,83]. For

example, pharmacological scavenging of mitochondrial

superoxide prevented metastatic spread from mela-

noma models in mice [71]. One study showed that

mitochondrial DNA (mtDNA) of cells with high meta-

static potential contained G13997A and 13885insC

mutations in the gene encoding NADH (reduced form

of nicotinamide adenine dinucleotide) dehydrogenase

subunit 6 (ND6). These mutations resulted in a defi-

ciency in respiratory complex I activity and conse-

quently overproduction of ROS. When the

endogenous mtDNA of poorly metastatic cells was

replaced with that of a highly metastatic cell line of

Lewis lung carcinoma, those recipient cells gave rise to

more lung metastases as determined by intravenous

(i.v.) injection assay [81]. Another study confirmed that

the metastatic potential of melanoma cell lines, as

revealed by i.v. assay, correlated with ROS levels [80].

However, both those studies examined the metastatic

potential of cells without considering intravasation

requirements, as the cells were injected directly into

the circulation [80,81].

More recently, however, oxidative stress has been

shown to inhibit metastasis and intravasation specifi-

cally, as blocking folate pathway and antioxidant

treatment resulted in a higher number of CTCs and a

higher incidence of metastases in melanoma models

[84]. This antioxidative stress protection may happen

via Nur77 and TGFB signaling as shown in vitro and

in transplantation mouse models of melanoma [85].

Other studies have supported this notion of the nega-

tive effect of oxidative stress on intravasation in the

context of lung cancer [86–88] and melanoma [89]. It

needs to be further defined if this factor could have its

effect on metastasis via rendering the cells fit for

intravasation and/or survival in the blood circulation.

It may be that antioxidant metabolism facilitates cell

survival by counteracting stress signals arising as a

consequence of matrix detachment during intravasa-

tion. Altogether, while oxidative stress is generally

considered to be metastasis-promoting, controversy is

present and its specific role in the spontaneous intrava-

sation of cancer cells in vivo remains to be fully dis-

sected. The apparent disparity could, at least partially,

result from different experimental approaches, using

i.v. assays and tumor models to address this question

[80,81,84–89].

Hypoxia and tumor vascularization

Hypoxia and vascularization, though apparently of

opposite effect, are key features involved in cancer

progression [11]. There is vast evidence for the role of

hypoxia in metastasis promotion [90,91]. For example,

induction of hypoxia in mouse tumor models using

oxygen chambers resulted in increased metastasis to

the lymph nodes in cervical carcinoma [92] and to dis-

tant organs in sarcoma [93]. Furthermore, other stud-

ies show a positive correlation between the extent of

hypoxia in the primary tumor and metastatic rate as

observed for mouse xenograft models of pancreatic

cancer [94] and in patients with sarcoma [95]. High

expression levels of hypoxia master regulators, Hif1a
and Hif2a, correlate with a worse patient prognosis

and a higher metastatic incidence in various cancers

[90,96–99].
Focusing on intravasation, it has been shown

in vitro that Hif1a and Hif2a reduce endothelial cell–
cell adhesion via angiopoietin-like 4 (ANGPTL-4) sig-

naling and increase endothelial-cancer cell adhesion

via induction of L1CAM on cancer cell surface [100],

thus providing a possible mechanism of hypoxia-driven

intravasation. Another study suggested that hypoxia

could drive intravasation via signaling through

CXCR4, which results in adhesion of cancer cells to

endothelial cells and trans-endothelial migration in

in vitro assays [101]. Hypoxia also induces secretion of

VEGF, rendering blood vessels more permeable [90].

A study using a fibrosarcoma cell line found increased

hypoxia, enhanced blood vessel permeability, and ele-

vated intravasation rate at the core in a chick embryo

mesodermal model of tumor growth [102]. These find-

ings should also be verified with more standard

approaches of in vivo orthotopic transplantation mod-

els. A recent study on breast tumor xenograft models
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suggested that both central/core as well as scattered

hypoxia areas are present in a model-dependent fash-

ion. More importantly, however, the study provided a

direct link between intravasation and hypoxia, by

showing that CTC clusters arise from hypoxic areas.

Interestingly, the authors show that in vivo, hypoxia

results in cell–cell junction upregulation and intravasa-

tion of clustered CTCs with an elevated metastatic

ability [103].

Fatty acid uptake

Interestingly, fatty acid metabolism has also been

shown to have an effect on metastasis. A population

of cells expressing high levels of CD36, a fatty acid

translocase associated with stem cell-like features of

some cancer cells [104,105], showed high metastatic

potential, while stimulation of cells with palmitic acid

increased their metastatic ability in orthotopic mouse

models of human oral cancer, in a CD36-dependent

manner [106]. Furthermore, an analysis of published

patient datasets suggested that mutations in the path-

ways responsible for the uptake of free fatty acids cor-

related with invasiveness [107]. A possible mechanism

of fatty acid action could be via their incorporation

into membrane structure to induce oncogenic signaling

[108], or via their oxidation and subsequent signaling

[109]. These reports are very interesting and may sug-

gest a more prominent role of fatty acid metabolism in

the metastatic process than previously anticipated.

Outlook

While cancer cell metabolism has been extensively

studied, highlighting intriguing roles for glycolysis,

mitochondrial metabolism, antioxidant metabolism,

tumor hypoxia, and fatty acid uptake, it is becoming

increasingly clear that cancer cells are also heteroge-

neous in the context of their metabolic status, raising

the intriguing question of whether or not altered meta-

bolism can be intravasation-promoting in individual

tumor ecosystems. Clearly, an answer to this question

will require metabolic profiling of matched primary

tumor cells, CTCs and metastatic deposits, possibly at

the single-cell level. We speculate that such analyses

should also be extended to cells that are part of the

tumor microenvironment, as their metabolic activity

could influence intravasation dynamics.

Cells in the microenvironment

Tumor microenvironment consists of a variety of cells

including immune cells, endothelial cells, activated

fibroblasts, and pericytes. Here, we outline their

potential involvement in the intravasation process.

Their mechanisms of action include modification of

cancer cell properties via signaling pathways, altering

the tumor microenvironment or direct participation in

the intravasation process. While the effects of individ-

ual groups of cells are discussed below, future

research efforts should also focus on their cooperative

activity.

Cancer-associated Fibroblasts

Fibroblasts are residents of many tissues, and during

cancer development they can become activated or

recruited to the tumor site, and as such they are

referred to as cancer associated fibroblasts (CAFs)

[110]. This population of cells has been associated with

various aspects of tumor progression including tumor

expansion, extracellular matrix (ECM) remodeling,

angiogenesis, invasiveness, and metastasis [111]. Both

progression-promoting and inhibitory roles in metasta-

sis have been reported [112,113]. It is therefore crucial

to identify subpopulations of CAFs and their respec-

tive functions.

CAFs were observed to be part of CTC clusters in

efferent blood from tumors, and partial depletion of

CAFs in mice resulted in reduced metastatic burden to

the lungs [114]. Additionally, an observation was made

that lung carcinoma as well as brain metastases in

patients contained CAF populations within their

microenvironment, while no fibroblasts were detected

in healthy brain tissue or in primary brain cancers

[114]. In line with the above, CAFs have also been

detected as part of CTC clusters in the peripheral

blood circulation in patients [115] and may confer

shear resistance to CTCs as studied in in vitro systems

[115]. Altogether, these studies suggest that CAFs may

be associated with CTCs and potentially involved in

their intravasation. Further evidence for CAF involve-

ment in this process comes from the analysis of pri-

mary tumors. Fibroblasts were observed at the leading

edge of invasive cancers, surrounding cancer cells in

‘collective invasion packs’ in vivo [116]. The cells at the

leading edge have been shown to invade together by

means of heterotypic N-cad/E-cad-based adhesion

between CAFs and cancer cells in 3D/2D migration

assays and supported by protein expression analysis in

patient tumor samples [117]. Altogether, these results

suggest a potential role for CAFs in the intravasation

process, as well as, more broadly, in metastatic cancer

progression, and their full characterization in this

regard is likely to reveal important mechanisms of can-

cer spread.

4342 The FEBS Journal 289 (2022) 4336–4354 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Key players in cancer cell intravasation M. K. Sznurkowska and N. Aceto



Neutrophils

Neutrophils are cells of the innate immune system

that abundantly infiltrate the developing tumor. For

long, they have been considered as bystanders; how-

ever, the past decade has provided evidence that in

fact they play a very important role in tumor devel-

opment and progression [118–120]. Neutrophils may

indeed promote metastasis, especially by creating a

premetastatic niche in the distant organs [121,122].

One way in which the neutrophils could exert their

prometastatic function is via release of neutrophil

extracellular traps (NETs), which are commonly pro-

duced to trap microorganisms and consist of chro-

matin DNA filaments coated with granule proteins.

Indeed, recently, NETs have been detected in meta-

static lesions and to a lesser extent in primary tumors

of breast cancer patients [123]. NETs have been

shown to be implicated in the formation of a preme-

tastatic niche in the liver and their removal impaired

metastasis formation in vivo [123], while the role of

NETs at other stages of the metastatic cascade and,

particularly during intravasation, needs to be investi-

gated. More generally, the presence of neutrophils

has been previously correlated with increased intrava-

sation rates in vivo [124], but recently it has been

directly shown that these cells participate in the

intravasation of CTC clusters in breast cancer

patients and mouse models, particularly by partnering

with cancer cells and sustaining their cell cycle pro-

gression in circulation, leading to increase metastatic

propensity [7].

Macrophages

Macrophages are the cells of the innate immune sys-

tem, and when recruited to the cancer site, they are

referred to as tumor associated macrophages (TAMs).

Macrophages have been shown to display both pro-

and antitumorigenic functions [125].

Direct insight into the role of macrophages in

intravasation was given by the discovery of the

Tumor Microenvironment of Metastasis (TMEM)

Doorway, composed of a Tie2-high VEGFA-high

perivascular macrophage, a tumor cell expressing high

levels of the actin-regulatory protein mammalian

enabled (Mena), and an endothelial cell as functional

‘doorway’ for hematogenous dissemination. Tie2-high

VEGFA-high perivascular macrophages cause tran-

sient vascular permeability and result in intravasation

of tumor cells as shown in the MMTV-PyMT breast

cancer model and in the PDX TN1 xenograft model

[126–128]. Moreover, macrophages enhance the

performance of cancer cells in in vitro transmigration

assays [4] and promote invadopodia formation in a

Rho-A signaling-dependent fashion [4] or via Notch1/

Mena signaling pathway [129]. Macrophages have

also been implicated in promoting early dissemination

of cancer cells in breast cancer model [130]. In con-

trast, some other studies have shown a tumor-in-

hibitory function for macrophages. This dual nature

of macrophages (pro- vs antitumor) in cancer pro-

gression may arise from the existence of different

functional subtypes, including the M1 and M2

macrophages that are described to be of proinflam-

matory and immunosuppressive function, respectively

[131,132]. Altogether, there is strong evidence that

macrophages may play a significant role in the

intravasation of cancer cells. The involvement of

specific subpopulations of macrophages needs to be

determined for designing efficient antimetastatic thera-

pies that act at the macrophage level. Furthermore, it

will be essential to understand fully the involvement

of macrophages in concert with other tumor-associ-

ated cell types [131], while considering macrophage

heterogeneity and the possibility that different macro-

phage subtypes may intervene at different stages of

the metastatic progression.

T cells

T lymphocytes are cells of the adaptive immune cells

that commonly infiltrate the tumor environment dur-

ing disease progression [133,134]. While cytotoxic

CD8+ T cells are believed to exhibit antitumor activ-

ity, helper CD4+ T cells have been suggested to pro-

mote cancer progression in some contexts. The link

between these cell types and intravasation is beginning

to be resolved.

CD4+ T lymphocytes have appeared as cells con-

tributing to enhanced intravasation via direct signal-

ing to cancer cells [135] or via indirect effect through

regulation of the TAMs [136]. These studies have

used mouse models of mammary cancer combined

with depletion and inactivation of lymphocyte sub-

populations, followed by analysis of metastasis to the

lungs and count of CTCs. However, a more recent

study has suggested that CD4+ T lymphocytes may

be involved in vasculature normalization, and there-

fore, via this mechanism they could impede cancer

cell intravasation [137]. The role of CD8+ T cells in

intravasation has been investigated to a lesser extent;

however, a recent study has demonstrated that

tumors in CD8 knockout mice and mice with CD8

inactivation give rise to more metastases and

increased numbers of CTCs [138]. This suggests that
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CD8+ cells play a safeguard role to intravasation. To

corroborate these findings, it would be essential to

understand the role of various subpopulations of

CD4+ and CD8+ T cells in different contexts and

stages of metastatic progression.

Platelets

Platelets have been implicated in angiogenesis and

metastasis promotion [139,140]. One study suggested

that platelets induce EMT in cancer cells in vitro and

improve extravasation by means of i.v. injection in

mice [141]. While these studies highlight the involve-

ment of platelets in the later stages of the metastatic

cascade, it is possible that platelets also play an impor-

tant role in the early events. For example, their

involvement at the intravascular transit should be con-

sidered, both from the blood stream as well as from

the tumor site [140]. Notably, platelet signatures have

been consistently found in both mouse and human

CTC clusters [6,7].

Pericytes

Pericytes are commonly associated with endothelial

cells, and are considered to be vital regulators of

angiogenesis and vascular stability in both healthy and

pathological conditions. Recruitment of pericytes to

newly formed vessels in tumors has been shown to

impede their sprouting, enhance vessel maturation,

and decrease their leakiness [142,143]. As such, they

may be considered as gatekeepers of metastasis.

This notion is supported by the analysis of patient

samples, which showed that low pericyte coverage of

blood vessels is associated with a drop in survival in

invasive breast cancer patients [144–146], and it is fur-

ther corroborated by various mouse model studies.

For instance, mice deficient in endosialin, a pericyte

and myofibroblast marker [147–149], showed an

increased metastatic rate with no effect on tumor

growth and no effect on extravasation as studied by

i.v. injection in mice [150]. Additionally, enhanced

metastasis accompanied by overall tumor growth

reduction in mice was observed following depletion of

Ng2+ pericytes [151], and in PDGFR-b ret/ret mouse

model (bearing a truncating mutation in PDGFR-b, a
putative pericyte marker) [152]. Conditional inactiva-

tion of Shb—an adapter protein downstream of tyro-

sine kinases such as VEGFR2 and PDGFR—in

pericytes with the PDGFR-b-CreERT2 reporter system

resulted in a decreased pericyte coverage of small

tumor vessels, increased leakage, and higher metastatic

rate without affecting tumor growth [153]. This

reinforces the notion that pericytes may be involved in

intravasation by influencing blood vessel wall leakage.

It should be noted, however, that part of the effect

observed with the PDGFR-b-CreERT2 reporter sys-

tem may be due to the fact that PDGFR-b promoter

may also be active in other cell types such as CAFs

[154–156] or tumor cells themselves [157,158]. Another

study supports the hypothesis that pericytes influence

endothelial wall leakiness, which was observed in

response to the deletion of the A6-integrin subunit of

A6b1 integrin. Surprisingly though, while reduced peri-

cyte coverage of tumor vessels and enhanced leakiness

were observed, other parameters such as tumor

growth, blood vessel density, and metastases were not

affected [159].

On the opposing side, a study has suggested that

orthotopic colon cancer grown in endosialin-negative

context resulted in a reduced tumor growth, invasion,

and metastatic burden compared with wild-type mice

[160]. Another article showed that tumor cells may

influence pericytes to convert into fibroblast-like cells,

thereby enhancing the invasiveness and intravasation

of cancer cells [161]. Altogether, it is possible that the

role of pericytes, and ultimately their subpopulations,

may be context-dependent. Indeed, the extent of peri-

cyte coverage, and consequently their collective effect,

could be variable with respect to tumor type and its

location [162], as well as tumor progression stage

[163]. Furthermore, the functional heterogeneity of

pericytes based on different marker expression [143]

should be carefully examined in future studies, as this

could potentially reveal differential effects of pericyte

subpopulations.

Adipocytes

Adipocytes are the main constituents of adipose tis-

sue, and their function is to store fat as well as to

secrete lipid and protein factors [164]. They have

drawn attention in recent times in the context of

growing obesity rates, and the observed correlation

between obesity and cancer incidence [165]. Addi-

tionally, they are the major cellular component of

breast tissue and get activated during cancer tumori-

genesis, that is, become cancer associated adipocytes

[166]. They are also a prevailing cell type in mela-

noma [167]. Cancer-associated adipocytes have been

implicated in cancer development and metastasis

[166,168,169]. In vitro studies suggest that adipocytes

may indeed promote cancer cell migration and inva-

sion, and several mechanisms have been proposed.

Coculture of ovarian cancer cells with adipocytes

increases the proliferation of cells in vitro and the
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growth of those cells in transplantation assays in vivo

and may promote their metastasis by inducing Feb4

expression in cancer cells [169,170]. Similarly, the

proliferation, invasion, and migration of melanoma

and colon cancer cell lines in vitro were increased

due to adipocyte influence [171]. Adipocytes may

also act on cancer cells via the transfer of vesicles

that contain enzymes involved in fatty acid oxidation

[172], or via lipid transfer from adipocytes to mela-

noma cell lines in vitro and in Zebrafish transplanta-

tion model [173]. Finally, adipocytes may act to

remodel collagen and in this way enhance migration

and intravasation of cells [168]. More in vivo mouse

models and analyses of patient samples will be nec-

essary to assess whether and how adipocytes directly

affect intravasation.

Outlook

In recent years, significant progress has been made in

the understanding of the effect that different cell types

within the tumor microenvironment have on metastatic

progression, including intravasation. It will be interest-

ing to gain a high-resolution insight into the involve-

ment of various microenvironmental cell types in

different steps of intravasation—their contribution to

the initial migration or detachment of cancer cells,

cancer cell interaction with the endothelial wall, and

during endothelial transit. Interactions between differ-

ent cell types and their collective effect on intravasa-

tion should also be considered.

Mechanical cues

Cancer is confined by the tissue in which it resides

‘with limited inlets and outlets for cells, fluids and

waste’ [174]. When cancer invades the surrounding tis-

sue, it causes a buildup of pressure. Biomechanical

abnormalities in tumors consist in elevated solid stress,

elevated interstitial fluid pressure, increased stiffness,

altered material properties, and altered tissue microar-

chitecture [175]. These mechanical cues have an effect

on other cancer-associated features, for instance, influ-

encing microenvironment components, inducing

inflammation, and promoting abnormal signaling.

There is evidence that mechanical cues may affect

metastasis, but how precisely, and by which mechani-

cal, cellular and molecular mechanisms, remains to be

discovered. YAP and TAZ, transcriptional coactiva-

tors that respond to various stimuli including the

hippo pathway or mechanical signals, are commonly

hyperactivated in human cancers. However, no activat-

ing mutations have been detected, and hippo pathway

mutations are rare [176]. Therefore, it is possible that

YAP/TAZ activation is induced by mechano-stimuli

within the tumor. For example, cytoskeleton arrange-

ments could be involved in the activation of YAP/

TAZ [176]. Because of their role in mechano-transduc-

tion [176,177], YAP-TAZ involvement in different

steps of the metastatic cascade—including intravasa-

tion—should be studied mechanistically and function-

ally.

Aggregation of ECM proteins may result in stiff-

ness, which is correlated with poor patient prognosis

[178]. ECM stiffening may be due to activity of can-

cer cells and cells of the microenvironment such as

macrophages and CAFs [179]. For example, stiff

ECM may induce CAF activation in a YAP/TAZ-de-

pendent manner, which then further contributes to

ECM stiffening in a positive feedback loop [180].

Reports have shown that stiffness of matrices is

linked to cancer cell invasiveness [181–183] and their

metastatic potential in vivo [184], though some other

studies suggest that the migration velocity of cells of

higher metastatic potential is independent of matrix

stiffness [185] or may rather depend on the matrix

molecular composition [186]. How exactly stiffness

can affect cancer cell intravasation remains to be

clarified.

Interstitial fluid pressure (IFP) buildup is another

occurrence in cancer. In healthy tissue, influx of

plasma from the blood vasculature with nutrients and

oxygen is used for metabolism of cells and is then

reabsorbed by post-capillary venules, while a fraction

drains through the lymphatic system to reach the

blood stream. In cancer, the amount of fluid is very

high and not drained well due to various abnormali-

ties in the vasculature, lymphatic co-option, and

increase in cell number and density [174]. IFP may

have an effect on metastasis: for example, reducing

interstitial fluid pressure with gelatin modified catio-

nic lipid particles leads to decreased pulmonary

metastasis in an orthotopic breast cancer model [187].

Xenografts of cervical and melanoma cell lines and

patient tumors show a correlation between IFP level

and metastasis [188,189]. It would be crucial to

understand how these mechanical signals translate

into molecular changes within cancer and stromal

cells and feed into the enhancement of the intravasa-

tion process. Contradictory with the mentioned obser-

vations, another study suggests a lack of correlation

between IFP of tumor or lymph node metastasis and

lungs in mouse models [190]; however, the dissemina-

tion of cells from minority high-IFP areas, that are

not evident in the average IFP measurement, could

take place.
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Outlook

The effect of mechano-stimuli on cancer progression is

a developing field and the link between mechanical

stimuli and intravasation should be rigorously investi-

gated, possibly using spontaneous metastasis models

in vivo as well as dedicated reporter systems to mea-

sure the activity of mechano-sensing pathways during

cancer progression.

Concluding remarks

Several processes and factors have been highlighted in

the context of metastatic intravasation (Fig. 3). Collec-

tively, intravasation is mostly referred to and generally

associated with the process in which cancer cells enter

the bloodstream from a primary tumor site. However,

it is important to highlight that intravasation could

also occur from established metastatic deposits and be

the key event in metastasis-to-metastasis dissemination

of cancer. Clearly, intravasation biology could be

organ-dependent, with different mechanisms being

involved at distant sites as a consequence of varying

tissue properties. Generally, in recent years, various

studies have suggested a role for immune cells or

genetic and gene expression profiles in the intravasa-

tion process. At the same time, other areas, such as

epigenetic, metabolic, and mechanical inputs, are being

investigated. Focusing future research efforts on eluci-

dating the drivers of the intravasation process, individ-

ually and in combination, in an organ-specific fashion

and using spontaneous metastasis models in vivo and

patient samples will be instrumental in dissecting the

dynamics of metastasis and more importantly, in

identifying new treatment opportunities for patients

with aggressive cancers.
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