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Abstract 
 
Drug repositioning for available medications can be preferred over traditional drug development, which requires 
substantially more effort to uncover new insights into medications and diseases. Genome-Wide Association Studies 
(GWAS) and Phenome-Wide Association Studies (PheWAS) are two complimentary methods for finding novel 
associations between genes and diseases. We hypothesize that discoveries from these studies could be leveraged to 
find new targets for existing drugs. Thus, we propose a framework to learn opportunities for inferring such 
relationships via overlapped genes between disease-associated genes (e.g. GWAS and PheWAS findings) and drug-
targeted genes. We use drug indications found in Medication Indication Resource (MEDI) as a gold standard to 
evaluate if drug indications learned from GWAS and PheWAS findings have clinical indications. We examined 
151,011 <drug, GWAS phenotype> pairs from 987 drugs across 153 diseases and 763 pairs were statistically 
significant. Out of these 763 pairs, 16 of them were found to have clinical indications.  
 
Introduction 
 
The importance of drug therapy, or the employment of medication to treat diseases, can be observed in the 
expansive application of pharmacology in the clinical sphere of medicine1, 2. New drug therapies are established 
through two major methods: i) drug discovery: bringing a new medication onto the market3; or ii) drug repositioning: 
reapplying existing medications to new medical conditions4, 5. The disadvantages of drug discovery include its long 
and expensive process and the repeated failures of newly-developed drugs to pass clinical trials2, 3, 6, 7. Applications of 
drug repositioning have led to potential and successful remedies for various medical conditions, including but not 
limited to cancer8, cardiovascular disease9, and Parkinson’s disease10. Notably, drug repositioning can be looked 
towards for a more efficient and effective alternative for identifying novel pharmaceutical treatments4, 5, 11.  

Drug repositioning is commonly approached from identification of new targets for a particular medication. A well-
known successful example of drug reposition is thalidomide, which was originally used as a sedative and has been 
found to possess anticancer activity12. More recently, metformin, a medication originally used to treat type 2 diabetes, 
has been recently reported and validated with evidence from electronic health records (EHRs) to have drug 
repositioning association with cancer survival13. There are two typical approaches when conducting drug 
repositioning research: i) designing biochemical experiments to find uncovered genetic targets10, 14; and ii) 
conducting clinical studies to discover disease targets4, 5, 13. The first type aims to investigate relationships between 
drugs and targeted genes, which require gathering genetic evidence to authenticate the possibility of newly found 
targeted genes. The second type aims to identify relationships between drugs and diseases from clinical information. 
While the former requires a substantial number of biochemical experiments, each of which will take time to validate 
the results and expend resource costs, the second type of repositioning is limited when finding the hidden reasons 
(e.g. genetic variations) that a drug has positive indications for a disease. Thus, we propose a data-driven framework, 
which only relies on the publically available genetic and clinical resources, to learn opportunities for discovering 
novel drug targeted diseases. Notably, for each targeted disease, we are able to identify their associated genetic 
variations.  

For this study, genetic evidence comes in the form of data found from two comparable analytic tools: genome-wide 
association studies (GWAS) and phenome-wide association studies (PheWAS). While both operate in a similar 
fashion, the former samples a large number of genetic variants for association with a single phenotype whereas the 
latter does the same procedure with many phenotypes to one gene. We will leverage findings of the associations 
between genotypes and phenotypes from these studies and drug targets in DrugBank, a comprehensive online 
database detailing over 9,000 medications and their pathways and targets, to infer drug targeted diseases. Medication 
Indication Resource (MEDI), a comprehensive online database documenting drugs and its clinical disease targets15, 
is then leveraged to assess the plausibility of these inferred drug targeted diseases. 
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Study Materials 
 
This study leverages findings learned from GWAS and PheWAS and drug-targeted gene-sets from DrugBank to 
infer novel indications for drugs and then uses MEDI to assess the plausibility of learned drug indications. To orient 
the audience, we introduce four major data resources involved in this study: i) DrugBank on drugs and their protein 
targets14; ii) GWAS findings on the associations between genes and GWAS phenotypes (diseases/traits)16; iii) 
PheWAS findings on clinical phenotypes and their relationships with genes17; and iv) clinically implemented drug-
indications managed in MEDI15. Because this investigation utilizes analytic tools and databases that have been 
recently pioneered, we take a moment here to explain the developments and applications of each resource.  

DrugBank: Associations between drugs and their protein targets 
 
DrugBank is a unique bioinformatics and cheminformatics resource that combines detailed drug (i.e. chemical, 
pharmacological and pharmaceutical) data with comprehensive drug target (i.e. sequence, structure, and pathway) 
information14. It is widely used by the drug industry, medicinal chemists, pharmacists, physicians, and the general 
public. Its extensive drug and drug-target data have enabled the discovery and repurposing of a number of existing 
drugs to treat rare and newly identified illnesses18. In this study, we will leverage drug targets (genes) recorded in 
DrugBank and relationships between genes and phenotypes in GWAS and PheWAS findings to build connections 
between drugs and phenotypes.  
 
GWAS: Associations between genes and GWAS phenotypes 
 
The GWAS catalog (https://www.ebi.ac.uk/gwas/) manages the majority of all associations between single 
nucleotide polymorphisms (SNPs) and GWAS phenotypes learned from GWAS over the past decade16. Genomic 
regions can be defined for each SNP by calculating linkage disequilibrium with other SNPs in the region (r2 > 0.6) to 
define genomic boundaries. Genes will be included if they fall at least partially within that genomic region. Interval-
based Enrichment Analysis (INRICH) can then be applied to test for enrichment of genes from a set (e.g. drug 
targets) within the genomic regions compared to randomly generated sets of genomic regions accounting for number 
of genes18, 19. This approach has been previously demonstrated in schizophrenia20. An example of broad graphical 
depiction of enriched gene-sets associated with distinct chromosomal regions is provided in Figure 1. We will 
transform associations between a GWAS trait and SNPs to relationships between the trait and a set of genes via 
INRICH.   
 
 

Figure 1. Enriched gene-sets for three different regions, each of which contain SNPs that are confirmed to be 
associated with a specific GWAS phenotype. 
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PheWAS: Associations between clinical phenotypes and GWAS phenotypes 
 
PheWAS codes, which is broadly utilized to characterize clinical phenotypes17, was developed to accompany 
PheWAS. Denny et.al17, 21 built mapping associations between PheWAS codes and International Classification of 
Diseases, 9th Edition (ICD-9) codes because GWAS phenotypes cannot be directly compared to clinical conditions. 
Additionally, they build connections between GWAS phenotypes and PheWAS codes, and such connections have 
been established based on both GWAS (relationship between a GWAS phenotype and genes) and PheWAS findings 
(relationship between a gene and PheWAS codes). Algorithms for such connection establishments are managed in 
Phenotype KnowledgeBase (PheKB, https://phekb.org)22.  

MEDI: Associations between drugs and clinical phenotypes 
 
MEDication Indication resource (MEDI) was created with the intention of supporting EHRs through its aggregation 
of clinical treatment data into a comprehensive dataset, which may provide assistance with EHR applications and 
research15. To date, MEDI contains 3,112 medications and 63,343 medication indications in the form of <drug, 
clinical phenotype> pairs, where medications are represented by RxNorm concept unique identifiers (RxCUI) and 
clinical phenotypes are identified by ICD-9 codes. <Drug, clinical phenotype> pairs were extracted from four 
different medication resources: 1) RxNorm – a National Library of Medicine (NLM)-organized drug knowledge 
platform; 2) SIDER 2 – a drug database handling FDA-retrieved adverse drug reactions; 3) Medline Plus – a website 
that provides health information for patients and healthcare providers; and 4) Wikipedia – a collaborative online 
encyclopedia. MEDI also employs formal and prevalent identifications for the information it contains, allowing 
more productive and straightforward mapping and merging of data. We utilize <drug, clinical phenotype> pairs 
managed in MEDI to assess plausibility of <drug, clinical phenotype> pairs we learned from GWAS and PheWAS 
findings.  

Methods 
 
Our investigation begins with learning associations between drugs and clinical phenotypes (drug indications) via 
DrugBank and GWAS and PheWAS findings. We then assess the plausibility of learned drug indications via MEDI 
and utilize statistical models to assess the significances of the learned drug indications. The pipeline to learn drug 
indications and their evaluations are depicted in Figure 2.   

First, we infer associations between clinical phenotypes and genes via GWAS and PheWAS findings. Specially, we 
align <GWAS phenotype, genes> to <PheWAS code, genes>.  

Second, we leverage overlapped genes between GWAS traits associated genes derived from GWAS findings and 
drug-targeted genes to learn drug indications, or <drug, GWAS phenotype> pairs, and test their statistical 
significances.  

Third, we will align the learned <drug, GWAS phenotype> pairs to <drug, PheWAS code> pairs and then leverage 
MEDI as a gold standard to evaluate the plausibility of the pairs. Through this process, we can categorize learned 
indications into three groups: i) indications with significant genetic relations (e.g. overlapped genes) between the 
drugs and clinical phenotypes and are also confirmed by MEDI; ii) indications without significant genetic relations 
and are confirmed by MEDI; and iii) indications with significant genetic relations and not confirmed by MEDI. 
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Figure 2. Methods pipeline. Top left:  <GWAS phenotype, gene> relationships are inferred from information in 
GWAS catalogs and INRICH analysis. Top center: <clinical phenotype, gene> relationships are provided by already 
conducted PheWAS studies. Top right: <drug, gene> relationships are found in DrugBank. These three forms of 
data are mapped to produce learned drug indications (bottom left). The learned drug indications are then checked for 
documentation in MEDI. 	

Finding potential drug indications and test their statistical significance 
 
For this investigation, we determine the degree of association (in the form of P values) between drug and GWAS 
phenotype for 151,011 pairs (987 drugs crossed with 153 GWAS phenotypes). These P values are calculated by 
comparing the observed number of drug targets within associated regions of a particular GWAS trait to randomly 
permuted regions of the exact length and number, which ensures that the total number of genes is the same. For 
instance, in Figure 3, the degree of association between a GWAS phenotype and a drug is dependent on the number 
of overlapping genes between their associated gene-sets.  

For each <drug, GWAS phenotype> pair, we infer: i) the number of gene targets for the medication, which is 
obtained from DrugBank; ii) number of genes overlapped between drug-targeted genes and GWAS phenotype 
associated genes; and iii) the P value indicating the significance of the association between the drug and GWAS 
phenotype.  
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Figure 3. An example to measure association between a GWAS phenotype and a drug via their overlapped genes, 
which are shown in red. 

Thereafter, we transform <drug, GWAS phenotype> pairs into <drug, clinical phenotype> pairs using mapping 
information between PheWAS Codes and GWAS traits/diseases learned from both GWAS and PheWAS findings. 
We represent clinical phenotypes in the form of PheWAS codes as opposed to GWAS phenotypes because GWAS 
phenotypes are not completely analogous to clinical conditions and transitioning to clinical phenotypes allows for 
precise confirmation of learned indications.  

Assessing plausibility of learned <drug, clinical phenotype> pairs 
 
We use MEDI as a gold standard to confirm learned drug indications. In order to perform confirmation, we must 
first resolve the gap regarding identification of drug and phenotype between learned indications and those in MEDI.  
As shown in Table 1, a drug indication in MEDI is represented as a RxNorm ID (RxCUI) and ICD-9 code pair 
whereas a learned drug indication is represented as a DrugBank ID and PheWAS code pair.  

For the inconsistency of clinical phenotypes between inferred indications and those in MEDI, we use mappings 
between ICD-9 codes and PheWAS codes to replace ICD-9 codes in MEDI with PheWAS codes. This is because 
PheWAS codes have been validated to be more accurate to represent clinical phenotypes than ICD-9 codes by 
various PheWAS studies21, 23. For the inconsistency of drugs between DrugBank and RxNorm, we map DrugBank 
drug IDs to RxNorm IDs using the FDA's UNII system and INCHI keys. Such mapping information has been 
widely used under the Observational Health Data Sciences and Informatics (OHDSI) framework24. After drugs and 
clinical phenotypes alignments between different systems (e.g., PheWAS, DrugBank, RxNorm, and MEDI), we use 
indications in MEDI to confirm if the learned indications exist in clinical setting.  
 

 
Drug Indications Drug Clinical Phenotype 

Inferred Drug in DrugBank PheWAS code 

MEDI Drug in RxNorm ICD-9 code 

 
One of our ultimate goals is to utilize GWAS and PheWAS findings to find novel drug indications and then 
recommend these indications to be further investigated to reveal more clinical treatment options. To achieve such a 
goal, we first need to demonstrate that the occurrence of learned significant drug indications found in MEDI is not 
random. Our hypothesis was designed as follows: the learned significant <drug, clinical phenotype> pairs 
confirmed in MEDI did not occur by chance. To test this hypothesis, we use two types of statistical tests: i) random 
permutation; and ii) chi-square.  

Table 1. Differences in representation of data in MEDI and of learned indications. 
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Figure 4. Process to count the number of permutations whose confirmed number of drug indications are equal or 
larger than the number of learned drug indications confirmed in MEDI. 
 
For the random permutation, we generate random pairs based on the learned significant drug indications. 
Specifically, we randomly shuffle between drugs and clinical phenotypes as shown in the bottom of Figure 4. To 
perform an empirical permutation test, we repeat the random process 100 times. Within each permutation, we count 
the number of drug indications confirmed by MEDI. The P value to test that the learned drug indications confirmed 
by MEDI are not randomly inferred is calculated as: 𝑝 = #$%('()%$*+*,-./)

122
, where 𝑁𝑢𝑚(𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠) is defined 

as the number of permutations whose number of indications confirmed by MEDI is equal or greater than the number 
of learned indications confirmed by MEDI.   

For the chi-square test, we also run 100 random permutations and conduct a chi-square test for each permutation. 
Our null hypothesis is that the learned significant <drug, clinical phenotype> pairs confirmed by MEDI occurred by 
chance. To calculate the chi-square and p-values, we build a 2x2 contingency table with rows represented by 
learned/random pairs and columns represented by in/not in MEDI. The details are shown in Table 2. Because we 
perform 100 trials, we will compute and average the chi-square and P values for all trials.  
 

Table 2.	Information used by Chi-square test to determine if learned indications confirmed by MEDI occur by 
chance.	

 
 
 
 
 
 
Results 
 
Learned <drug, clinical phenotype> pairs 
 
151,011 <drug, GWAS phenotype> pairs were transformed into 156,933 <drug, clinical phenotype> pairs in order to 
confirm each pair in MEDI. After checking for documentation for these 156,933 pairs, we then condensed the 
results back down to 151,011 <drug, GWAS phenotype> pairs. To do so, we gathered all <drug, clinical phenotype> 

 
Number of drug indications 

In MEDI Not in MEDI 
Learned drug indications a b 
Permutated drug indications c d 
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pairs that map to a single <drug, GWAS phenotype> pair and sum the number of pairs that were documented in 
MEDI. Out of the 151,011 pairs, 1,431 were confirmed in MEDI and 763 were statistically significant with a P 
value less than 0.05. The results are shown in Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. A Venn diagram depicting the learned drug indications. There were 1,431 learned indications (<drug, 
GWAS phenotype> pair) confirmed in MEDI and 763 pairs that were tested to be significant. Out of all total pairs 
examined, 16 pairs were both significant and confirmed in MEDI. 
 
From the figure, it can be seen that out of 763 significant pairs, 16 were confirmed to be in MEDI as shown in Table 
3, which indicates these drug indications are genetically supported. In other words, the drug and the clinical 
phenotype in these pairings have overlapping genes and their genetic relation is statistically significant. At the same 
time, the drug used to treat the clinical phenotype was also found to be used in clinical practice (confirmed by 
MEDI).  

 
Table 3. The 16 significant pairs that were found in MEDI. 

 
RxCUI IDs Drug GWAS Phenotype PheCode P value 
5691 Imipramine Bipolar Disorder 296.1 0.002598 
5691 Imipramine Schizophrenia 295.1 0.039195 
89013 Aripiprazole Schizophrenia 295.1 0.049467 
6779 Mesoridazine Schizophrenia 295.1 0.044916 
8331 Pimozide Schizophrenia 295.1 0.003172 
8704 Prochlorperazine Schizophrenia 295.1 0.027732 
115698 Ziprasidone Schizophrenia 295.1 0.049467 
1525 Bezafibrate Type 2 Diabetes 250.2 0.024596 
4821 Glipizide Type 2 Diabetes 250.2 0.005061 
274332 Nateglinide Type 2 Diabetes 250.2 0.000051 
73044 Repaglinide Type 2 Diabetes 250.2 0.012215 
72610 Troglitazone Type 2 Diabetes 250.2 0.000069 
106955 Cortisone Ulcerative Colitis 555.2 0.003842 
155323 Methylprednisolone Ulcerative Colitis 555.2 0.001987 
8640 Prednisone Ulcerative Colitis 555.2 0.001457 
142442 Naproxen Urate Levels 274.1 0.009905 
 
For each pair of the remaining 747 significant drug indications that were not confirmed in MEDI, the drug and the 
clinical phenotype in these pairings have significant genetic association, but the drug was not found to be used to 
treat the clinical phenotype in practice. This provides a great opportunity for drug companies to repositioning these 
drugs to further investigate their novel indications. 

There are 1,415 drug indications that were not significant but found in MEDI. These indications are more complex, 
and could be further investigated in the following directions. First, they may be genetically associated but have not 
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been investigated; if this is the case, we can conduct more GWAS and PheWAS studies to study their genetic 
relationship. Second, the drug and the clinical phenotype within a pair might not be genetically correlated and the 
drug has been employed to treat the clinical phenotype in practice; in this scenario, drug companies or clinicians can 
conduct studies to learn more about the pairing from the clinical perspective. Examples of both significant drug 
indications that were not confirmed in MEDI and not significant drug indications that were found in MEDI are 
shown in Table 4.  

Table 4. Left of the table provides examples of significant pairs that were not found in MEDI. Right of the table 
provides examples of non-significant pairs that were found in MEDI. 
 
Significant pairs not found in MEDI Non-significant pairs found in MEDI 
RxCUI 
IDs 

Drug GWAS 
Phenotype 

PheCode P value RxCUI 
IDs 

Drug GWAS 
Phenotype 

PheCode P value 

51499 Irinotecan Asthma 495.0 0.033482 3628 Dopamine Bipolar 
Disorder 

296.1 1 

85248 Alosetron Bladder 
Cancer 

189.21 0.005432 328134 Gefitinib Lung 
Cancer 

165.1 0.209136 

18747 Balsalazide Obesity 278.1 0.000005 5640 Ibuprofen Migraine 340.0 1 
89784 Isopropamide Type 2 

Diabetes 
250.2 0.012065 73044 Repaglinide Type 1 

Diabetes 
250.1 1 

1525 Bezafibrate Melanoma 172.1 0.023378 10432 Thalidomide Prostate 
Cancer 

185.0 0.179429 

 
 

Statistical test results of 16 significant drug indications confirmed by MEDI 
 
We implemented the random permutation procedure and obtained an expected value of 0 all 100 times. 
Consequently, the P value provided by the empirical permutation test is 0/100. However, because P values cannot 
be 0 and we performed 100 trials, the best approximation for our P value is <0.01. The chi-square test corroborated 
these results. The average chi-square value and P value were calculated to be 16.170 and <0.0001, respectively.  

According to the results from random permutation and chi-square test, we confirmed that the 16 significant learned 
drug indications did not occur by chance, which indicates the drug and the clinical phenotype in each of these pairs 
have genetic relations and the drugs have been used in the clinical practice for treatments.  

In other words, it is unlikely that 16 of 763 observed significant pairs were found in MEDI by chance and there 
exists a correlation between genetic significance and clinical success. For that reason, there is benefit in conducting 
additional investigations (i.e. reviewing drug-phenotype associations, clinical trials, etc.) to interpret and discover 
the remaining 747 pairs with genetic significance but not found in the clinical practice as well as to investigate the 
MEDI pairs for which genetic and drug target information existed but no significant overlap was found. 

Discussion 
 
Our work intends to identify potential drug therapies by way of drug repositioning using GWAS and PheWAS, 
DrugBank, and MEDI data. Drug repositioning represents a more efficient method for acquiring undiscovered drug 
treatment options than the traditional drug discovery route. Implementing drug repositioning can involve gathering 
genetic evidence in support of possible therapies and testing for association with clinical documentation. For this 
study, we learned drug-GWAS phenotype correlations from GWAS and PheWAS findings and employed the MEDI 
database as our gold standard to assess plausibility of learned drug indications. Our drug indication learning and 
evaluating framework outlined above offers insight into the viability of drug repositioning given public resources 
(e.g. GWAS, PheWAS, DrugBank and MEDI). The contributions of this work are as follows: 

1) First, we proposed a framework to build connections among drugs, genes, and phenotypes via available 
public resources. For example, we use PheWAS findings to build connections between GWAS phenotypes 
and clinical phenotypes, which provides an opportunity to relate genotypes and clinical phenotypes. 
Additionally, we leverage overlapped genes to connect drugs with GWAS phenotypes. 	

2) Second, we filled the gap between drug indications managed in MEDI and those learned from GWAS and 
PheWAS findings, which provides an opportunity to perform comparisons between drug indications 
learned from the genetic perspective and those learned from the clinical perspective.  
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3) Third, we deduced several interesting findings. For instance, we found 1,415 drug-phenotype pairs that are 
not significantly correlated but are documented in MEDI. Explanations for this phenomenon include the 
increasing need for conducting more GWAS and PheWAS studies as well as the understanding that 
diseases/traits can be environmentally influenced.  

4) Fourth, we deduced several interesting findings. For instance, we found 747 drug-phenotype pairs that have 
significant overlap between genetic findings and drug targets but are not documented in MEDI. While 
many of these will be false positives, we expect some proportion of these pairs could represent drug 
repositioning opportunities. For the five of the 747 significant pairs not located in MEDI listed in Table 4, 
the drugs mostly look to be unrelated to the clinical phenotypes. For example, Alosetron is used to treat 
diarrhea symptoms for irritable bowel syndrome (IBS) but was discovered to have genetic correlation with 
bladder cancer. Another example is Irinotecan, which is more generally employed to treat colon cancer but 
was discovered to be genetically related with a lung condition like asthma. However, further research is 
needed to determine whether these genetic associations have clinical significance.	

We note that there are several limitations regarding data representation and alignments, which could have 
specifically lowered the number of confirmed significant pairs learned from GWAS and PheWAS findings. For 
instance, the alignments between drugs in DrugBank and those in RxNorm; connections between GWAS 
phenotypes and clinical phenotypes; and mappings between ICD-9 codes and PheWAS codes. Also, we realize that 
not all significant <drug, GWAS phenotype> pairs can result in successful drug repositioning outcomes. Ultimately, 
however, based on the statistical analysis performed, we have found promising developments in terms of drug 
repositioning with regards to the resources utilized in this study.  
 
Conclusion 
 
Drug repositioning introduces a productive approach to identifying novel drug therapies. The process involves first 
pinpointing new disease targets for existing medications on the market and evaluating whether these newly formed 
drug indications are applicable from both of genetic and clinical perspectives. In this study, we proposed a 
framework to build connections between drugs, genes and phenotypes via available public resources and then to 
deduce novel drug indications and evaluate their plausibility via MEDI. We investigated 151,011 <drug, GWAS 
phenotype> pairs and found that: i) 1,431 pairs were confirmed by MEDI; and ii) 763 pairs with significant genetic 
relations and 16 of them were confirmed by MEDI. Furthermore, we conducted statistical analysis (e.g. empirical 
permutation and chi-square test) to illustrate that the learned significant pairs (drug indications) confirmed by MEDI 
did not occur by chance.  

Future data-driven drug repositioning investigations can be conducted by altering our methods in several ways, 
including but not limited to utilizing other genetic information outside of GWAS and PheWAS databases to link 
medications with indications, employing different drug indication databases for determining validity for learned 
pairs, and focusing drug reposition for one particular drug for potentially better accuracy. While there were 
limitations concerning data alignment (e.g. mapping between GWAS phenotypes and PheWAS codes, mapping 
between DrugBank IDs and RxNorm IDs, etc.), these outcomes depict optimistic developments for pharmaceutical 
therapy discovery by way of drug repositioning.  
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