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Abstract: The analysis and classification of the sounds produced by certain animal species, notably
anurans, have revealed these amphibians to be a potentially strong indicator of temperature
fluctuations and therefore of the existence of climate change. Environmental monitoring systems
using Wireless Sensor Networks are therefore of interest to obtain indicators of global warming.
For the automatic classification of the sounds recorded on such systems, the proper representation
of the sound spectrum is essential since it contains the information required for cataloguing anuran
calls. The present paper focuses on this process of feature extraction by exploring three alternatives:
the standardized MPEG-7, the Filter Bank Energy (FBE), and the Mel Frequency Cepstral Coefficients
(MFCC). Moreover, various values for every option in the extraction of spectrum features have been
considered. Throughout the paper, it is shown that representing the frame spectrum with pure
FBE offers slightly worse results than using the MPEG-7 features. This performance can easily be
increased, however, by rescaling the FBE in a double dimension: vertically, by taking the logarithm
of the energies; and, horizontally, by applying mel scaling in the filter banks. On the other hand,
representing the spectrum in the cepstral domain, as in MFCC, has shown additional marginal
improvements in classification performance.

Keywords: environmental monitoring; audio monitoring; sensor network; sound classification

1. Introduction

1.1. Environmental Monitoring of Anuran Calls as Indicators of Climate Change

In recent years, the number of devices focused on the monitoring and analysis of environmental
parameters has grown strongly. However, the intended purpose is seldom related to the direct
measurement of a parameter, and requires the analysis of complex phenomena. An example of this
approach is phenology, which deals with the study of periodic plant and animal life cycles, and how
some events are related to seasonal and climate variations [1] and, therefore, to global warming.
A further example is provided by environmental monitoring operations, such as the use of the wildfire
acoustic emission spectrum as the indicator of the type of forest fire [2].

One of the well-known consequences of climate change is its impact on the development of
basic physiological functions of various species [3–7], such as the sound produced in the mating
call, which plays a central role in sexual selection and reproduction of numerous ectothermic species
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(those that regulate their temperature from ambient temperature), including Anura (frogs and toads),
fish, and insects [8–10]. Various acoustic patterns are employed to attract potential mates, to ward
off opponents, and to respond to the risks of predation. These sounds are therefore critical to the
adaptation of individuals to the environment.

However, sound production in ectotherms is strongly influenced by the ambient temperature [11–18],
which can also affect various features of the acoustic communication system. In fact, once the ambient
temperature exceeds a certain threshold, then this threshold can restrict the physiological processes
associated with the production of the sound, and may even inhibit behaviour calls. As a result,
the temperature may significantly affect the patterns of calling songs by modifying the beginning,
duration, and intensity of calling episodes and, consequently, influence anuran reproductive activity.

The analysis and classification of the sounds produced by certain animal species have revealed
them to be a potentially strong indicator of temperature fluctuations and therefore of the existence of
climate change. The results provided by anuran sound analysis [19] are especially interesting.

However, these studies have to be supported by a large number of audio recordings, which are
usually collected in the field, and individually analysed at a later time. Fortunately, the emergence
of the Wireless Acoustic Sensor Networks (WASN) [20] has changed this approach, although the
classification of bio-acoustic sounds remains a very burdensome task. It is estimated that, on average,
an expert requires 2 min of listening to identify a species in 1 min of audio [21], thereby rendering
it impractical to manually analyse the large volumes of acoustic data provided by modern sensor
networks. For this reason, it is imperative to develop intelligent systems that simplify, automate and
speed up the task of analysing and labelling sound recordings. An up-to-date review of such systems
can be found in [22].

1.2. Previous Work

Our research group has been working for several years on the problem of classifying anuran
sounds as indicators of global warming, and have enjoyed a long experience of collaboration in the
Spanish Doñana National Park where a Sensor Network has been deployed for various purposes.

In a first contribution [23], it was demonstrated that it is possible to automatically classify open-air
recorded anuran sounds. In that work, 64 sound records of three different classes were featured
using 18 MPEG-7 parameters, whereby two simple classifiers (minimum distance and maximum
likelihood) were employed that obtained results of good accuracy. However, in order to attain those
good outcomes, ad hoc tuning had to be performed on the proposed standard classifiers, which
caused two main drawbacks: the analysis procedure had to be adapted to every new dataset (it was
not generalizable); and the computational complexity required to run the algorithms obstructed its
implementation in a Wireless Sensor Network (WSN) node, where real-time computing is a requisite.

To overcome these difficulties, an alternative methodology was explored in [24]. Up to nine
standard algorithms (with no ad hoc tuning) were considered in a non-sequential frame-by-frame
classification scheme. These classifiers did not take into account the order of the frames, and the
final labelling of a sound was achieved by simply counting the number of frames belonging to each
class. For comparison purposes, a pure sequential classifier, the Hidden Markov Model (HMM),
was also considered. The experimental results show that the proposed method clearly outperforms
the HMM, thereby demonstrating that the non-sequential classification of anuran sounds is feasible.
From among the algorithms tested, the decision-tree classifier showed the best performance with an
overall classification success rate of 87.30%, which is a particularly striking result considering that the
analysed sounds were affected by a decidedly noisy background.

In an effort to exploit the information contained in the order of frames, six classification methods
were proposed in [25], all of which were based in the data-mining domain. The comparison of these
sequential classification methods revealed that they can obtain a slightly better performance than their
non-sequential counterparts. The sliding window approach with an underlying decision tree attained
the best results in the experiments: a noteworthy overall accuracy of 90.48%.
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The implementation aspects in environmental monitoring systems were explored in [26], whereby
the time required to compute every step in the classification process was considered: feature extraction;
training classifier; and non-sequential and sequential classification. It was shown that it was
feasible to operate many anuran sound classifiers in real time, particularly those obtaining the best
classification performance.

1.3. Research Objectives

Based on this background, the main aim of this paper is to explore the feature extraction process,
that is, to analyse the best way to represent the information contained in a sound frame. Further to
the MPEG-7 features used in previous work, several other ways to represent every frame spectrum
will be considered, from Filter Bank Energy (FBE) to the commonly used Mel Frequency Cepstral
Coefficients (MFCC). However, the extraction of FBE and MFCC features is a complex process that has
many options. In the paper, the optimal way of representing the spectrum of anuran calls will also be
experimentally explored in order to attain the best classification results.

Additionally, a much more extensive dataset has been employed in the experiments, whereby
more than 850 sound recordings of four different classes have been included, using up to 10 different
classifiers and seven different performance metrics.

It will be shown in this paper that representing the frame spectrum with pure FBE offers slightly
worse results than those obtained by employing the MPEG-7 features. Nevertheless, this performance
can easily be increased by rescaling the FBE in a double dimension: vertically, by taking the logarithm
of the energies; and horizontally, by applying a mel scaling in the filter banks. Moreover, selecting
the proper values for the options in the feature extraction process will also provide further gain in
several metrics. On the other hand, the representation of the spectrum in the cepstral domain, as in
MFCC, has shown additional marginal improvements in classification performance. The overall result
is that, by the optimal representation of the anuran call spectrum, its classification performance can be
noticeably increased, and can obtain an accuracy that is ten points higher than the MPEG-7 counterpart.

2. Materials and Methods

2.1. WSN Architecture

The use of wireless sensor networks to monitor natural habitats has become a common
methodology to ease the research tasks of biologists. The reasons for the many advantages in
applying this technology to this area of knowledge lie in the features of the sensor nodes: capacity
of measurement, data processing, computation, wireless communication, and energy autonomy.
In addition, the design of such nodes focuses on minimizing the power consumption and the economic
cost of the network. In this way, a long lifetime of the network and a large area of deployment can
be achieved.

The architecture of our network is based on this philosophy of design. Two kinds of nodes have
been considered: base station nodes and terminal nodes. There are usually only a few base station
nodes and hundreds of terminal nodes.

The main goal of the base station nodes is to collect information from the whole network and to
integrate it into an infrastructure network, such as Transmission Control Protocol-Internet Protocol
(TCP-IP), Ethernet, General Packet Radio Service (GPRS) and Long-Term Evolution (LTE). In this
respect, base station nodes behave as gateways between a wireless sensor network and an infrastructure
network managed by a communication service provider. Consequently, base station nodes have two
different network interfaces: one for the infrastructure network and the other for the wireless sensor
network. Although the bandwidth of the infrastructure network could be high, the bandwidth used in
the WSN interface is limited to the technology used. In our architecture design, several nodes are spread
over a large area (hundreds of km2). Consequently, wireless communication has to consider long-range
radio. To this end, we use two standard bands: the 2.4 GHz band, with greater bandwidth although



Sensors 2018, 18, 1803 4 of 31

with less penetration in the vegetation and, therefore, less range; and the 868 MHz band, which uses
the free radio frequency spectrum. The data rate is limited in these bands to only a few kB/s.

From the point of view of power consumption, base station nodes can be considered as being located
next to a communication cabinet, where the connection to the infrastructure network is implemented.
In this cabinet, there used to be an external supply of electricity. According to this assumption, no
autonomous electricity generation is needed for consideration in the design of base station nodes.

From the point of view of the computational capacity, base station nodes have to be able to deal
with a huge amount of data that has been transmitted by remote nodes wirelessly. In order to process
this data, base station nodes can run two types of algorithms: data aggregation and data fusion.

Data aggregation algorithms are focused on collecting data without considering the information
that is being carried. The main goal of these algorithms is to minimize the data related with the
protocol (overhead), thereby maximizing the payload.

The aim of data fusion algorithms is to minimize the size of the transmitted data, while focusing
on preserving the meaning of the information that is to be delivered. In this respect, it is of
utmost importance to correlate the information with the data. Data is the representation of the
information. This interpretation of information allows us to minimize the size of the message that
is to be delivered. Thus, while the data that is measured with a sensor could be based on an audio
recording, the information that is to be exploited is the identification of presence of an individual of
a specific anuran in this audio record. The reduction in data between sending the audio record and
sending the information of the specific detected anuran is huge: from several kB to a mere dozen bytes.
Moreover, in order to minimize power consumption, a sound threshold is established that activates
the recognition system by generating an interruption in the microprocessor that launches a routine
that addresses the acquisition of the audio and its processing. The node therefore only transmits
information when a valid call is detected.

In this paper, the algorithms that are going to be described are considered from the point of
view of the data fusion paradigm. However, they are implemented mainly in the terminal nodes.
This strategy strives to reduce the data traffic in the wireless sensor network and to minimize the
power consumption in communication tasks and minimizing the use of the electromagnetic band (the
bandwidth is limited to only a few kB/s).

The terminal nodes have two main tasks: first, creation and maintenance of the wireless network
in a collaborative way; second, collection of the information of its surroundings and its transmission to
the base stations. The common way to create the wireless topology is based on a star. This way, it is
easy to scale the network from dozens of nodes to hundreds. In this kind of network (spanning tree),
the data is transmitted from the leaves to the root (Figure 1). One drawback has to be considered in
such a network: as the number of nodes increases, the bottleneck effect at the root increases.
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The design of the terminal nodes considers an autonomous power supply (based on solar panels)
and low power consumption (ARM microprocessors and low data rate transceivers). Furthermore,
every node has an audio sensor for anuran identification and a set of meteorological sensors
(temperature, humidity, etc.) for the description of the climate in which the identification is carried out.
In Figure 2, a typical terminal node is shown [27].
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2.2. Sounds Database

For testing purposes, actual anuran sounds provided by the National Natural History Museum
(Museo Nacional de Ciencias Naturales) [28] have been employed (collection code starting on FZ0496).
The sounds correspond to 2 species, the epidalea calamita (natterjack toad) and alytes obstetricans
(common midwife toad), with a total of 868 recordings containing 4 classes of sounds:

1. Epidalea calamita; mating call (369 records),
2. Epidalea calamita; release call (63 records),
3. Alytes obstetricans; mating call (419 records),
4. Alytes obstetricans; distress call (17 records).

Figure 3 depicts the spectrograms of a sample call for each class. A total of 4343 s (1 h 13 min) of
recordings has been analysed, with an average duration of 5 s.
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Figure 3. Spectrograms of sample calls for each sound class.

The sounds have been recorded in five different locations (four in Spain and one in Portugal) using
a Sennheiser ME80 microphone (Wedemark, Germany), and this issue is discussed in detail in [23].
They are subsequently sampled at 44.1 kHz. A common feature of all the recordings is that they have
been taken in their natural habitat, with very significant surrounding noise (wind, water, rain, traffic,
voices, etc.), which posed an additional challenge in the classification process. The Signal-to-Noise
Ratio (SNR) distribution for each sound class is depicted in Figure 4. The dataset presents an overall
SNR median value of 35 dB, although some recordings have a much lower value.
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Figure 4. Signal-to-Noise Ratio (SNR) distribution for each sound class.

In order to perform a supervised classification, certain sounds have to be selected as patterns
(to be used in the training phase) while others are employed for testing. A common practice is to split
the dataset into several disjoint subsets and apply a cross-validation technique. However, the use of
these noisy recordings as patterns may lead to a decrease in the classification performance. Hence,
several other approaches arise as an alternative to cross-validation. In our case, the recordings with
relatively low background noise, which were carefully selected by biologists and sound engineers, have
been used as patterns. This approach, usually called instance or example selection, is recommended in
order to increase the rate of learning by focusing attention on informative examples [29–32].

To determine the frame patterns, the experts listen to the recordings of the anuran calls and
simultaneously consider the spectrogram, and label each frame that they consider may belong to any
of the possible classes. A total of 13 out of the 868 recordings have been selected as patterns with
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an SNR median value of 48 dB (13 dB higher than the full dataset). These recordings contain certain
fragments of pattern sounds but also contain silence and/or noise sections. Table 1 summarizes the
dataset of the sounds and patterns.

Table 1. Dataset of sounds and patterns.

Sound Class

Sound Recordings Pattern Recordings

Number Seconds Number Seconds (Pattern Section) Seconds (Total Recording)

Ep. cal. mating call 369 (43%) 1853 4 13.89 20.39
Ep. cal. release call 63 (7%) 311 3 0.99 14.56
Al. ob. mating call 419 (48%) 2096 4 1.09 19.72
Al. ob. distress call 17 (2%) 83 2 3.30 9.80

Silence/Noise - - - 45.20 -
Total 868 4343 13 64.47 64.47

2.3. Sound Framing

The first step to represent a sound is to split it up into frames of fixed duration. In the case of vocal
sounds, this duration is usually related to the mechanism of production of sound and, specifically, to
the period of opening and closing of the vocal cords, which is approximately 10 ms, both in humans [33]
and in anurans [9]. By labelling s(n) as the discrete time-domain representation of the sound signal,
a frame sw(n) is obtained using a window function w(n) in such a way that sw(n) = s(n)·w(n).
The simplest framing function is the rectangular window, which is 1 in the interval [0, Tw], and 0
outside that interval. However, the framing process always introduces a distortion in the sound
spectrum. In order to decrease this undesired effect, it is common to use a wider window of duration
Tw (for instance, 30 ms), to move the window forward in a shorter time Ts (for instance 10 ms), and also
use a bell-shaped window function. In this approach, each frame overlaps with the sides of the
adjacent frames. One of the most commonly used window functions is the Hamming window, which
is defined as

w(n) = 0.54 + 0.46 cos
(

2πn
N

)
, (1)

where N is the total number of values in the frame. Figure 5 represents a rectangular window function
with Tw = Ts = 10 ms (left), and a Hamming window with Tw = 30 ms and Ts = 10 ms (right).

Sensors 2018, 18, x  7 of 31 

 

fragments of pattern sounds but also contain silence and/or noise sections. Table 1 summarizes the 

dataset of the sounds and patterns. 

Table 1. Dataset of sounds and patterns. 

Sound Class 
Sound Recordings Pattern Recordings 

Number Seconds Number Seconds (Pattern Section) Seconds (Total Recording) 

Ep. cal. mating call 369 (43%) 1853 4 13.89 20.39 

Ep. cal. release call 63 (7%) 311 3 0.99 14.56 

Al. ob. mating call 419 (48%) 2096 4 1.09 19.72 

Al. ob. distress call 17 (2%) 83 2 3.30 9.80 

Silence/Noise - - - 45.20 - 

Total 868 4343 13 64.47 64.47 

2.3. Sound Framing 

The first step to represent a sound is to split it up into frames of fixed duration. In the case of 

vocal sounds, this duration is usually related to the mechanism of production of sound and, 

specifically, to the period of opening and closing of the vocal cords, which is approximately 10 ms, 

both in humans [33] and in anurans [9]. By labelling 𝑠(𝑛) as the discrete time-domain representation 

of the sound signal, a frame 𝑠𝑤(𝑛) is obtained using a window function 𝑤(𝑛) in such a way that 

𝑠𝑤(𝑛) = 𝑠(𝑛) · 𝑤(𝑛). The simplest framing function is the rectangular window, which is 1 in the 

interval [0, 𝑇𝑤], and 0 outside that interval. However, the framing process always introduces a 

distortion in the sound spectrum. In order to decrease this undesired effect, it is common to use a 

wider window of duration 𝑇𝑤 (for instance, 30 ms), to move the window forward in a shorter time 

𝑇𝑠 (for instance 10 ms), and also use a bell-shaped window function. In this approach, each frame 

overlaps with the sides of the adjacent frames. One of the most commonly used window functions is 

the Hamming window, which is defined as 

𝑤(𝑛) = 0.54 + 0.46 cos (
2𝜋𝑛

𝑁
), (1) 

where 𝑁  is the total number of values in the frame. Figure 5 represents a rectangular window 

function with 𝑇𝑤 = 𝑇𝑠 = 10 ms (left), and a Hamming window with 𝑇𝑤 = 30 ms and 𝑇𝑠 = 10 ms 

(right). 

 

Figure 5. Sound framing in the time domain: (left) rectangular window function; (right) Hamming 

window function. 

In order to show the effect of framing in the spectrum, a 10 kHz pure tone will be employed. 

Figure 6 depicts the spectrum obtained when using the simple rectangular function (blue) and the 

Hamming window (green). In both cases, the spectrum is altered by the framing process, but it can 

easily be seen that the Hamming window has significantly reduced the impact on the creation of 

undesired harmonics. 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (ms)

R
e
c
ta

n
g
u
la

r 
w

in
d
o
w

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Time (ms)

H
a
m

m
in

g
 w

in
d
o
w

Figure 5. Sound framing in the time domain: (left) rectangular window function; (right) Hamming
window function.

In order to show the effect of framing in the spectrum, a 10 kHz pure tone will be employed.
Figure 6 depicts the spectrum obtained when using the simple rectangular function (blue) and the
Hamming window (green). In both cases, the spectrum is altered by the framing process, but it can
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easily be seen that the Hamming window has significantly reduced the impact on the creation of
undesired harmonics.
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Figure 6. Effect of framing in the spectrum of a 10 kHz pure tone. Rectangular and Hamming
window functions.

2.4. Spectrum Representation

The representation of sounds is usually based on the frames obtained in the previous step.
The procedure for obtaining a vector of values representing a frame is called feature extraction. Most
of these algorithms are based on some kind of description of the frame spectrum. Figure 7 depicts a
typical spectrum of an anuran sound frame.
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Figure 7. Typical spectrum of an anuran sound frame.

One of the first issues that has to be addressed in featuring the spectrum is the range of frequencies
that will be considered as relevant. A broad spectrum bandwidth needs more values to be characterized
and, in many cases, includes noise that should be avoided. On the other hand, a spectrum that is too
narrow may discard relevant frequency components.

If a frame contains N values, its spectrum, usually computed using the Fast Fourier Transform,
also contains N values. For instance, a frame of a sound sampled at 44.1 kHz, with a duration
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Tw = 30 ms, contains N = 44.1·30 = 1323 values. This is a large number to be efficiently used for
classification purposes. It is also a large number if these values have to be stored and/or transmitted
in a WSN.

2.4.1. MPEG-7 Feature Extraction

A first approach to significantly reducing the number of values that represent a spectrum is
to use some kind of signature or fingerprint of the spectrum. The idea is not to store the spectral
amplitude at every frequency, but to determine certain general characteristics of the shape of the
spectrum. With these purposes in mind, the MPEG-7 ISO-standard [34] has been used for feature
extraction. From this recommendation, the most significant parameters for classifying purposes have
been selected. By executing three different processes on each frame, a set of 18 parameters is derived.
These parameters can be derived from the following spectrum-related analyses:

1. Spectrogram analysis. By applying the Fast Fourier Transform (FFT) to the frame values, a spectral
representation S( f ) is obtained for each frame. The 5 parameters derived from this spectrum are:

• Total power.
• Relevant power, that is, the power in a certain frequency band.
• Power centroid.
• Spectral dispersion.
• Spectrum flatness.

2. Linear prediction coding (LPC) analysis. From the sound values, s(n), a model of the sound
source is estimated. This model uses a harmonic sound generator, a random sound generator,
and a digital filter defined by its characteristic polynomial A(z). The roots of this polynomial are
complex numbers zi which can be stated as zi = riejθi , and play a key role in this technique by
determining the formants. Through LPC analysis, the spectrum envelope can be obtained and
11 parameters can also be derived such as:

• Frequency of the formants (only the first three formants are considered).
• Bandwidth of the formants (only the first three formants are considered).
• Pitch.
• Harmonic centroid.
• Harmonic spectral deviation.
• Harmonic spectral spread.
• Harmonic spectral variation.

3. Harmonicity analysis. From the sound values, s(n), its autocorrelation function ρ(k) is obtained
as this function is an indirect way of describing a spectrum. The two parameters derived from
this analysis are:

• Harmonicity ratio.
• Upper limit of harmonicity.

A more detailed description of this frame feature extraction can be found in [23] and in the
MPEG-7 standard [34].

2.4.2. Filter Bank Energy

A second approach to reducing the amount of information required to feature a spectrum is to
compute the energy in a certain number of bands. To this end, a bank of M filters is used and the
energy obtained for each filter is used to approximately describe the spectrum. Figure 8 depicts a bank
of 22 rectangular filters, each with a constant 1 kHz Bandwidth.
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Figure 8. Bank of rectangular filters with a constant 1 kHz bandwidth.

The result of applying a bank of filters to the original spectrum is called the Filter Bank Energy
(FBE) and it is defined using only M values (usually a figure much smaller than N). Figure 9 reflects
the FBE for a bank of rectangular filters with various bandwidths.
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Figure 9. Filter Bank Energy (FBE) for a bank of rectangular filters with various bandwidths.

A widely used variation of the FBE is to apply an unevenly spaced bank of filters. In the field of
sound classification, many studies are based on the hypothesis that automatic systems will obtain better
results if they “imitate” human behaviour and, among other issues, take into account the different
responses to signals of different frequency. It is a well-known fact about the human ear that:

• It has a lower sensitivity to low-frequency and, mainly, to high-frequency sounds [35]; and,
• It perceives two high-frequency tones as closer than a pair of equally spaced harmonics in the

low-frequency range [36].

To reproduce this human-like behaviour, a scale of perceived tone is defined, called the mel
(melody) scale, that arbitrarily assigns the value of 1000 mels at a frequency of 1 kHz and in which the
constant increments of mel tones are perceived as evenly spaced by the human ear. This scale has been
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obtained experimentally and admits several formulations, the most popular of which is probably the
following [37]:

m = 1197 ln
(

1 +
f

700

)
. (2)

By taking advantage of the mel scale, a bank of mel filters can be designed as one that is composed
of filters whose spectral responses are isosceles triangles evenly spaced in the mel scale. In Figure 10,
the spectral response of the mel filter bank in conventional scale (frequency) is presented (M = 23).
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Figure 10. Spectral response of the 23 filter bank in conventional (frequency) scale.

The effect produced by the application of this bank of filters is presented in Figure 11, where it is
compared to the result obtained by rectangular filter banks of constant bandwidth (M = 23). The effect
on the Filter Bank Energy, as can be observed in the frequency scale (left), resembles some kind of
equalization with a reduction in the low frequencies and an increase in the high frequencies. However,
when the FBE is drawn in comparison to the filter index, then the most noticeable effect (right) is the
horizontal rescaling of the spectrum with an expansion in the low frequencies and a compression in
the high frequencies.

Sensors 2018, 18, x  11 of 31 

 

By taking advantage of the mel scale, a bank of mel filters can be designed as one that is 

composed of filters whose spectral responses are isosceles triangles evenly spaced in the mel scale. 

In Figure 10, the spectral response of the mel filter bank in conventional scale (frequency) is presented 

(𝑀 = 23). 

 

Figure 10. Spectral response of the 23 filter bank in conventional (frequency) scale. 

The effect produced by the application of this bank of filters is presented in Figure 11, where it 

is compared to the result obtained by rectangular filter banks of constant bandwidth (𝑀 = 23). The 

effect on the Filter Bank Energy, as can be observed in the frequency scale (left), resembles some kind 

of equalization with a reduction in the low frequencies and an increase in the high frequencies. 

However, when the FBE is drawn in comparison to the filter index, then the most noticeable effect 

(right) is the horizontal rescaling of the spectrum with an expansion in the low frequencies and a 

compression in the high frequencies. 

 

Figure 11. Linear and mel Filter Bank Energy: (left) horizontal frequency scale; (right) horizontal mel 

scale (filter index). 

By applying the mel scale to the FBE spectrum, a certain improvement in classification 

performance should be expected. 

2.4.3. Cepstral Representation 

A third approach for representing and compressing the spectrum information of a sound frame 

considers the Filter Bank Energy (FBE) as a periodical signal that can be expanded using a certain 

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Frequency (kHz.)

F
ilt

e
r 

s
p
e
c
tr

a
l 
re

s
p
o
n
s
e

0 5 10 15 20
-70

-60

-50

-40

-30

-20

-10

0

Frequency (kHz.)

F
ilt

e
r 

B
a
n
k
 E

n
e
rg

y
 (

d
B

)

 

 

Linear FBE

Mel FBE

0 5 10 15 20
-70

-60

-50

-40

-30

-20

-10

0

Filter index

F
ilt

e
r 

B
a
n
k
 E

n
e
rg

y
 (

d
B

)

 

 

Linear FBE

Mel FBE

Figure 11. Linear and mel Filter Bank Energy: (left) horizontal frequency scale; (right) horizontal mel
scale (filter index).

By applying the mel scale to the FBE spectrum, a certain improvement in classification performance
should be expected.
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2.4.3. Cepstral Representation

A third approach for representing and compressing the spectrum information of a sound frame
considers the Filter Bank Energy (FBE) as a periodical signal that can be expanded using a certain form
of Fourier trigonometric or exponential series. However, since FBE is a spectrum, its Fourier expansion
constitutes the spectrum of a spectrum, which is known as the cepstrum.

The straightforward Fourier expansion is the Discrete Fourier Transform (DFT) or its faster Fast
Fourier Transform (FFT) version. However, careful consideration of the FBE shows that, just as for
every spectrum, FBE shows an even symmetry and, therefore, the Discrete Cosine Transform (DCT)
would better suit this case. Figure 12 depicts the original FBE of a frame and its approximate value
using C = 10 harmonics (cepstral) components of both the DFT and the DCT expansion.
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Figure 12. Original FBE of a frame and its approximate value using C = 10 harmonics (cepstral)
components of the DFT and the DCT expansion.

Although both the cepstral representations offer similar results, a more detailed analysis should
show that DCT has a lower error representing the FBE. Additionally, it is usual that the C coefficients
obtained through the DCT have a lower cross-correlation than their DFT counterpart and, moreover,
fewer cross-correlated coefficients should indicate better classification results. The DCT cepstral
representation of the anuran sound frame used as the example is drawn in Figure 13.
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Figure 13. The DCT cepstral representation of an anuran sound frame.

In order to reduce the size of the vector representing the frame spectrum, low values of C are
desirable. In Figure 14, the approximate value of the FBE for different numbers of cepstral coefficients
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is depicted. In this example, despite reducing the spectrum representation from M = 23 to C = 10
values, they continue offering a very good approximation of the spectrum.
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2.4.4. Sound Pre-Emphasis

Vocal sound signals generally have less energy in the high-frequency band than in the
low-frequency band. However, noise has a frequency behaviour of a more uniform nature to such an
extent that, in many cases, it is usually modelled as white noise, that is, noise with a flat spectrum,
which means that it has the same energy in any frequency band.

The combination of the two previous circumstances means that the signal-to-noise ratio (SNR) is,
in general, significantly lower at high than at low frequency. This disparity in the value of the SNR
can cause the influence of the high-frequency components in the classification processes to be greatly
diminished. To correct this circumstance, it is usual to pre-filter the sound signal before representing its
spectrum, which increases the relative importance of the high frequencies versus the low frequencies.
To this end, a first-order digital filter is usually employed, which is given as:

s′(n) = s(n)− α s(n− 1), (3)

where s(n) is the value of the sound sample at the n-th instant and α is a constant. Figure 15 (left)
shows the spectral response of such a filter, called the pre-emphasis filter, and its effect on the Filter
Bank Energy example (right).
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2.4.5. Cepstral Liftering

The cepstral coefficients obtained with the procedure described in the previous sections have a
problem: the values of the higher-order coefficients are numerically small and this causes a very wide
range of variances among the low-quefrency and high-quefrency cepstral coefficients. For pragmatic
reasons, such as plotting the parameters of the model, it is convenient in certain cases to scale the
cepstral coefficients to have similar magnitudes.

For this reason, certain implementations include a final processing in the calculation of the
coefficients that increases the relative value of the high-quefrency coefficients. To this end, a lifter
(a filter in the cepstral domain) is used, which is given by the following expression:

c′ik =
(

1 +
L
2

sin
πi
L

)
cik, (4)

where cik is the i-th cepstral coefficient of the k-th frame, c′ik is the same coefficient after the liftering
process, and L is a parameter of the lifter. Figure 16 (left) depicts the cepstral response of such a lifter
(L = 22), and its effect on the example Cepstral Coefficients (right). It shows the absolute values
of the cepstral coefficients, once normalized for ease of comparison. The relative increase in the
high-quefrency cepstral coefficients can be observed.
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2.4.6. Mel Frequency Cepstral Coefficients (MFCCs)

If the sound spectrum is rescaled considering the mel scale and it is later represented using
the cepstral coefficients, then the resulting feature vector is denominated Mel Frequency Cepstral
Coefficients (MFCCs). In this case, no standard set of options has been universally adopted. However,
an European Telecommunications Standards Institute (ETSI) standard covers certain applications in the
mobile telephone realm [38], and a widespread implementation originally developed by Cambridge
University, the Hidden Markov Model Toolkit (HTK) [39], recommends a number of by-default options.

Figure 17 reflects the full process of representing a spectrum, by showing every process in the three
domains (time, frequency, and quefrency), and by depicting the 3 alternatives to represent an anuran
call spectrum: MPEG-7 spectrum features, Filter Bank Energy, and MFCC cepstral representation.
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2.5. Sound Classifiers

To tackle the classification process, the sound dataset has to be split into 3 subsets. Firstly,
recordings with relatively low background noise, which were carefully selected by biologists
and sound engineers, have been used as patterns. In this research the training dataset contains
13 records. The parameters for each classifier are determined by exclusively using these pattern records.
The remaining elements in the dataset are then randomly divided into two approximately equal
subsets used for validation and testing. The validation dataset, containing 430 records, is employed to
determine the hyper-parameters of the classifiers. On the other hand, the testing dataset containing
425 elements, which includes none of the patterns or validation sounds, is employed for the evaluation
of the performance of each algorithm. Table 1 summarizes the dataset of the sounds and patterns.

By means of the feature extraction procedures described in the previous subsection, each sound
frame (its spectrum) is characterized by D parameters or, equivalently, by a point in an RD space
defined by its coordinate vector s = [s1, s2, . . . , sD]. N pattern frames are also available where
the i-th pattern is additionally represented by a point in the RD space with a coordinate vector
xi = [xi1, xi2, . . . , xiD]. Each frame is labelled as belonging to a certain class θ out of a total of M classes.
The set of pattern frames can be seen as a cloud of points in RD and can be identified by a matrix
Π = [x1, x2, . . . , xN]

′ containing the coordinate vector of the N points. The subset of points in Π

belonging to the class θ is denoted by its matrix Πθ . Non-sequential classifiers perform a certain type
of comparison between the frame to be classified (represented by its vector s) and the pattern frames
(represented by its matrix Π). This comparison is carried out in the space of the RD features and its
result is called a supervised classification.

A wide and representative set of non-sequential supervised classifiers has been considered.
Additionally, the sequential supervised HMM classifiers have been examined. The set of ten
classification procedures used in this paper include: Minimum distance (MinDis) [40], Maximum
likelihood (MaxLik) [41], Decision trees (DecTr) [42], k-nearest neighbours (kNN) [43], Support vector
machine (SVM) [44], Logistic regression (LogReg) [45], Neural networks (Neur) [46], Discriminant
function (Discr) [47], Bayesian classifiers (Bayes) [48], and Hidden Markov Models (HMM) [49] .
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Although the concluding results have to be implemented in the WSN nodes, a previous desktop
prototype has been designed to perform the comparisons in the feature extraction process and in the
classification algorithms. For this reason, the ten aforementioned classifiers have been prototyped
using MATLAB (2014a, Mathworks, Natick, MA, USA). The minimum distance classifier in its training
phase obtains the mean value µjk for the j-th feature belonging to the k-th class. In the test phase
for every frame, the distance dk between the frame features and the mean value of the k-th class is
obtained in accordance with the expression:

dk =

√
∑D

j=1

(
xj − µjk

)2
, (5)

where xj is the value of the j-th feature. The class assigned to the frame is that with the
minimum distance.

The maximum likelihood classifier is used under a Gaussian probability distribution with full
covariance. The neural network classifier is based on a feed-forward neural network with a 10-neuron
hidden layer and a 1-neuron output layer. The remaining methods and classifiers have been coded
based on built-in MATLAB functions using their default parameters, which are reflected in Table 2.
A more detailed description of the classifiers employed can be found in [24,50].

Table 2. MATLAB functions supporting the various classifiers.

Classifier Training Functions Test Functions Additional Functions

MinDis - -
MaxLik fitgmdist mvnpdf
DecTr fitctree predict
kNN fitcknn predict
SVM fitcsvm predict

LogReg mnrfit mnrval
Neur Feedforwardnet train net
Discr fitcdiscr predict
Bayes fitNaiveBayes posterior
HMM hmmtrain hmmdecode kmeanlbg disteusq

2.6. Classification Metrics

The definition of the most suitable classification performance metrics represents a key aspect in
the evaluation of procedures, and it is difficult to overstate its importance [51]. In order to compare
the results obtained for every classifier and every combination set of features, several metrics for the
performance can be defined [52], all of which are based on the binary confusion matrix (see Table 3).

Table 3. Definition of the binary confusion matrix.

Classification Class

Classified as Positive Classified as Negative

Data class
Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

The most relevant metrics and their definitions are shown in Table 4, where they are computed
for each class (considered “positive”), thereby leaving the remaining classes to be called “negative”.
Additionally, an average per class can be defined for each metric.
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Table 4. Classification performance metrics based on the confusion matrix.

Metric Formula Evaluation Focus

Accuracy ACC = TP+TN
TP+TN+FP+FN Overall effectiveness of a classifier

Error rate ERR = FP+FN
TP+TN+FP+FN Classification error

Precision PRC = TP
TP+FP

Class agreement of the data labels with the positive
labels given by the classifier

Sensitivity SNS = TP
TP+FN Effectiveness of a classifier to identify positive labels

Specificity SPC = TN
TN+FP How effectively a classifier identifies negative labels

ROC ROC =
√

SNS2+SPC2√
2

Combined metric based on the Receiver Operating
Characteristic (ROC) space [53]

F1 score F1 = 2 PRC·SNS
PRC+SNS

Combination of precision (PRC) and sensitivity
(SNS) in a single metric

Geometric Mean GM =
√

SNS·SPC
Combination of sensitivity (SNS) and specificity

(SPC) in a single metric

Since the number of instances in every class remains imbalanced in our dataset (see Table 1),
the use of accuracy or precision as the main performance metric can imply a significant skew [54].
It is therefore preferable to use sensitivity and specificity since they are unbiased metrics even when
the classes are imbalanced. Therefore, when a single metric is required to compare classifier results
(i.e., to identify “the best classifier”), the Receiver operating characteristic (ROC) values and the
Geometric Mean are preferred as they combine, in a single metric, the sensitivity and the specificity,
which both present a better behaviour in the presence of imbalanced classes [55].

3. Results

In this section, we present the results obtained in a set of experiments conducted to obtain the
optimal representation of the anuran call spectrum in order to provide a more efficient classification.
To this end, the dataset described in Section 2 has been employed and the spectrum of every sound
frame has been featured using several approaches. The features extracted were then used to classify
the sounds using the classifiers also described in the previous section.

For spectrum representation, three alternatives were selected: the MPEG-7 features, the Filter
Bank Energy, and the MFCC features using the HTK default options. Any of these alternatives uses
the set of options that are summarized in Table 5.

Table 5. Options for the extraction of features of a spectrum.

Domain Function Option MPEG-7 FBE MFCC-HTK MFCC-opt

Time

Pre-emphasis α - - 0.97 -

Framing
Window Hamming Hamming Hamming Hamming

Tw 30 ms 30 ms 25 ms 20 ms
Ts 10 ms 10 ms 10 ms 10 ms

Frequency

Filter
Bank

Energy

L f 64 Hz 64 Hz 300 Hz 1000 Hz
H f 16 kHz 16 kHz 3700 Hz 5000 Hz
M - 18 20 20

Scaling - Linear Mel Mel

Quefrency
Cepstrum Transform - - DCT DCT

C - - 13 20

Liftering L - - 22 -
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The classification performances have been obtained for each of these cases. Additionally,
the impact on the classification performance of every option in the MFCC extracting procedure
has been explored, which enables an optimal set of options to be selected during their extraction.
This optimum set of values is also presented in the last column of Table 5.

3.1. Sound Classification Using MPEG-7 Features

MPEG-7 feature extraction has the advantage of its standardization, and hence no optional
parameters have to be adjusted and selected. Therefore, using the recommended values, the classification
performance can be summarized in Figure 18. It can be seen that the best result is obtained by the
Minimum Distance classifier with an accuracy of 85%.
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Figure 18. Classification performance using MPEG-7 features.

3.2. Sound Classification Using Filter Bank Energies

The second approach represents the anuran call spectrum using the Filter Bank Energy. As there
is no standard or common practice in selecting options for FBE, we have used the same options as in
MPEG-7 to facilitate comparison. The classification performance obtained using this strategy can be
summarized in Figure 19. It can be observed that the best results are attained using the Maximum
Likelihood classifier with an accuracy of 92.69%.
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Figure 19. Classification performance using Filter Bank Energy.
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3.3. Sound Classification Using MFCC (Default Options)

The third alternative involves the use of the MFCCs as the vector featuring an anuran call spectrum.
As a starting point, the default values used in the MFCC-HTK implementation (see Table 5) are used
for every option. The classification performance obtained using this strategy can be summarized in
Figure 20. It can be seen that the best results are obtained using the Bayes classifier with an accuracy
of 94.85%.
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Figure 20. Classification performance using MFCCs (default options in the HTK implementation).

3.4. Classification Performances versus MFCC Feature Extraction Options

From among the three alternatives explored in the previous subsections, featuring the anuran
call spectrum using MFCC has resulted in the best classification performances. However, the process
of extracting these MFCC features leaves plenty of options as summarized in Table 5. It is now time
to investigate whether a different set of values for the extracting options could achieve even better
classification results.

The straightforward mechanism to find the optimum values for the options should include an
exhaustive search in the option space, which has dimension 11 (see Table 5). Considering that the
number of values for each option is O1, O2, · · · , O11, the total amount of combinations to be explored
will be O1·O2 · · ·O11 which is usually a very large number. For instance, on considering 10 values for
each option, then the number of combinations would be 1011. Furthermore, for each combination of
option values, the full sound dataset (868 recordings) has to be catalogued using the 10 classifiers,
and then its performance obtained. Since the evaluation of every point in the option space takes about
30 min on a desktop computer, it would therefore be unfeasible for practical reasons to carry out a
full search.

Alternatively, a much simpler and faster but still effective approach has been employed. We
consider a starting point in the option space and each time we move in a single dimension. The first
search will consider the starting point (1) and the remaining O1− 1 values of the first option. Searching
in the second dimension will need the computation of O2 − 1 values. The number of evaluations will
therefore be:

1 + (O1 − 1) + (O2 − 1) + · · ·+ (O11 − 1) = O1 + O2 + · · ·+ O11 − 10. (6)

Considering again 10 values for each option, the number of combinations will be 100, a much
more affordable search. As the starting point, the default values of the MFCC-HTK implementation
have been used.

For the search for every option, the order described in Table 5 is followed, and hence the first
option to be considered is the pre-emphasis coefficient. The classification performance metrics of the
best classifier vs. the value of this coefficient is depicted in Figure 21 (with the dashed line indicating
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the default value). No concluding value arises from this study (an almost flat dependency), and, hence,
this coefficient apparently has no influence on the overall performance. For a faster extraction, eliminating
the pre-emphasis stage is suggested.
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Figure 21. Classification performance metrics of the best classifier vs. the value of the pre-emphasis
coefficient.

Let us now consider the options related to the framing process by first exploring the influence of
the window function. The simplest rectangular window is compared to the more advanced Hamming
(default) function. The performance metrics for the best classifier are reflected in Table 6. It can be
observed that using the Hamming window function significantly increases classification performance.

Table 6. Classification performance metrics vs. window function.

Window Function ACC ERR PRC SNS SPC ROC F1 GM

Rectangular 91.58% 8.42% 73.12% 69.96% 92.77% 82.16% 71.51% 80.56%
Hamming 94.85% 5.15% 76.76% 81.22% 95.87% 88.49% 78.93% 88.24%

Still regarding the framing process, the second option to be considered is that of the frame duration
(Tw). The classification performance metrics of the best classifier vs. the value of this option is depicted
in Figure 22 (with the dashed line indicating the default value). As can be observed, a smaller value of
the frame duration (Tw = 20) slightly increases the classifier accuracy.
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Figure 22. Classification performance metrics of the best classifier vs. the frame duration.
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The last analysis of the framing process takes into account the frame shift (Ts). The classification
performance metrics of the best classifier vs. the value of this option is depicted in Figure 23 (with the
dashed line indicating the default value). No concluding value arises from this study (an almost flat
dependency), and hence it appears that this coefficient has a very limited influence on the overall
performance. Therefore, the Ts = 10 default value is maintained.
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Figure 23. Classification performance metrics of the best classifier vs. the frame shift.

Moving forward, the options involved in the process of obtaining the Filter Bank Energy are now
analysed. Its first element should be the low-frequency limit of the spectrum (L f ). The classification
performance metrics of the best classifier vs. the value of this option is depicted in Figure 24 (with the
dashed line indicating the default value). For small values of the low-frequency limit, an increase
leads to better performance, probably due to a limitation on the influence of the low-frequency noise.
On exceeding a certain threshold (of about L f ≥ 1000 Hz), however, the performance decreases,
probably because relevant harmonics are discarded below this frequency.
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Figure 24. Classification performance metrics of the best classifier vs. the low-frequency limit.

An analogous study has been carried out on the high-frequency limit of the spectrum (H f ).
The classification performance metrics of the best classifier vs. the value of this option is depicted in
Figure 25 (with the dashed line indicating the default value). For large values of the high-frequency
limit, an almost flat response is obtained. On exceeding a certain threshold (of about H f ≤ 5000 Hz.),
however, the performance decreases, probably because relevant harmonics are discarded above this
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frequency. The optimum values for the spectrum bandwidth should maintain the highest possible
values for performance metrics, but with the most limited frequency range in order not to increase the
number of filter banks required (and later the size of the spectrum feature vector).
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Figure 25. Classification performance metrics of the best classifier vs. the high-frequency limit.

Having considered the frequency range, it is time to focus on the number of filter banks (M).
The classification performance metrics of the best classifier vs. the value of this option is depicted
in Figure 26 (with the dashed line indicating the default value). No concluding value arises from
this study (an almost flat dependency) and hence it appears that this coefficient has a very limited
influence on the overall performance. This is probably due to the fact that changing the value of M
while maintaining a smaller value of the number of cepstral coefficients (C = 13) has a very limited
influence. Therefore, the M = 20 default value is maintained.
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Figure 26. Classification performance metrics of the best classifier vs. the number of filter banks.

The last analysis of the Filter Bank Energy process will take into account the scaling of the
frequency axis. The simplest rectangular filter bank will be compared to the mel filter bank.
The performance metrics for the best classifier are reflected in Table 7. It can be seen that using
the mel scale slightly increases classification performance.
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Table 7. Classification performance metrics vs. filter bank frequency scaling.

Filter Bank ACC ERR PRC SNS SPC ROC F1 GM

Rectangular 94.56% 5.44% 62.57% 73.03% 96.08% 85.34% 67.40% 83.77%
Mel 94.85% 5.15% 76.76% 81.22% 95.87% 88.89% 78.93% 88.24%

Moving now to the analysis in the quefrency domain, the options involved in the process of
obtaining the Cepstral Coefficients are analysed. Its first element should be the type of transform to
obtain the cepstrum. The straightforward DFT is compared to the DCT, which takes into account the
even symmetry of the Filter Bank Energy. The performance metrics for the best classifier are reflected
in Table 8. It can be observed that both transforms offer very similar results with a slight advantage for
the DCT (the default option).

Table 8. Classification performance metrics vs. cepstral transform.

Cepstral Transform ACC ERR PRC SNS SPC ROC F1 GM

DFT 94.27% 5.73% 74.46% 81.17% 96.09% 88.94% 77.67% 88.31%
DCT 94.85% 5.15% 76.76% 81.22% 95.87% 88.89% 78.93% 88.24%

In the quefrency domain, probably the most relevant option should be the number of cepstral
coefficients (C) approximating the Filter Bank Energy. The classification performance metrics of the
best classifier vs. the value of this option is depicted in Figure 27 (with the dashed line indicating
the default value). As shown, a smaller value of the number of cepstral coefficients (C) worsens the
classifier performance metrics. However, since this effect is limited for a small reduction of C, by using
half the number of cepstral coefficients C = 10 (instead of the maximum C = 20 when M = 20) leads
to only a slight reduction in performance (from ACC = 95.85% to ACC = 94.27%).
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Figure 27. Classification performance metrics of the best classifier vs. the number of cepstral coefficients.

Finally, the influence of the options in the liftering process is explored. The classification
performance metrics of the best classifier vs. the value of this option is depicted in Figure 28 (with the
dashed line indicating the default value). No concluding value arises from this study (an almost flat
dependency), and hence it appears that this coefficient has no influence on the overall performance.
For a faster extraction, the elimination of the liftering stage is suggested.
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Figure 28. Classification performance metrics of the best classifier vs. the value of the cepstral
lifter parameter.

3.5. Sound Classification Using Optimal MFCC

Having investigated the effect of every option for the extraction of MFCC parameters in the
classification performance metrics, an optimum set of values can be selected. Their values are indicated
in the last column of Table 5. The classification performance attained using this strategy can be
summarized in Figure 29. It can be seen that the best results are achieved using the Bayes classifier,
with an accuracy of 96.37%.
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Figure 29. Classification performance using MFCCs (optimal values in every option).

Table 9 shows the confusion matrix obtained using the Bayes Classifier on MFCC features that
have been extracted with the optimal values in every option. It can be seen that every class is well
classified except the epidalea calamita release call. This is probably due to the fact that this sound is very
short and has an almost flat spectrum, which makes it difficult, even for human experts, to distinguish
it from a wideband spike noise.

Table 9. Confusion matrix using MFCCs (optimal values in every option) and the Bayes Classifier.

Classification Class

Ep. cal. Mating Call Ep. cal. Release Call Al. ob. Mating Call Al. ob. Distress Call

Data class

Ep. cal. mating call 96.16% 0.82% 0.82% 2.19
Ep. cal. release call 48.33% 48.33% 1.67% 1.67%
Al. ob. mating call 2.41% 0.96% 95.90% 0.72%
Al. ob. distress call 0% 0% 0% 100%
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4. Discussion

4.1. Comparing Classification Performances

In Section 3 above, basic alternatives for the representation of the anuran call spectrum have been
explored: MPEG-7 18-feature set, 18-Filter Bank Energy, and 13-MFCC following the HTK default
implementation. Additionally, we have made an extensive search for the optimum values of the
MFCC feature extraction and an optimal set of values for these options has been selected. Table 10 and
Figure 30 summarize the classification performance metric for the three basic alternatives and for the
optimized representation, using 13 and 20 features.

Table 10. Classification performance using different alternatives for the representation of the anuran
call spectrum.

ACC ERR PRC SNS SPC ROC F1 GM

MPEG-7 (18) 84.56% 15.44% 56.80% 77.69% 90.28% 84.22% 65.63 83.75%
FBE (18) 93.69% 7.31% 56.78% 71.05% 94.00% 83.32% 63.12% 81.72%

MFCC-HTK (13) 94.85% 5.15% 76.76% 81.22% 95.87% 88.89% 78.93% 88.24%
MFCC-opt (13) 95.44% 4.56% 79.38% 84.00% 96.34% 90.38% 81.63% 89.96%
MFCC-opt (20) 96.37% 3.63% 81.28% 85.10% 97.21% 91.35% 83.15% 90.95%
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Figure 30. Classification performance using various alternatives for the representation of the anuran
call spectrum.

Regarding these results, it can be concluded that the cepstral representation of the anuran call
spectrum offers the best performance from among the set of alternatives explored. The FBE approach
can increase the accuracy over the MPEG-7 (but not over MFCC), although it does incur a noticeable
decrease in other metrics, such as precision and sensitivity.

It can also be concluded that exploring the MFCC option space can slightly increase every
performance metric (a value between 0.5% and 3% with the same number of features).

Moreover, extracting MFCC is much more efficient in terms of computing requirements than
obtaining MPEG-7 features [26]. They are therefore much more convenient for implementation on
real-time low-priced nodes.
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4.2. Breaking Down the Improvement in Classification Performances.

In the previous section, it has been demonstrated that the representation of the spectrum with the
Filter Bank Energy offers a similar classification result to that from using the MPEG-7 feature, although
the use of MFCC clearly improves the classification performance. However, one question arises: What
is the contribution towards the improvement of the performance of each stage on the way from FBE
to MFCC?

In order to answer that question, the sounds in the dataset have been featured using the same
number of parameters (18) and several extraction techniques (8) corresponding to each stage towards
increasing performance:

1. MPEG-7 features (extracted with the options described in Table 5).
2. FBE (extracted with the options described in Table 5).
3. FBE in log-scale, that is, extracted with the same options used in the previous stage but using a

logarithmic scale to represent the energies.
4. FBE in mel-log-scale, that is, extracted with the same options used in the previous stage but using

a mel scale to represent the frequencies. In fact a mel filter bank, as described in Section 2.4.2,
was used.

5. FBE in mel-log-scale with optimum options, that is, extracted with the same options used in the
previous stage but using the optimum values for the remaining extracting options.

6. DCT (Discrete Cosine Transform) of the FBE in mel-log-scale, that is, the DCT of stage 4. This result
is in fact a set of Mel Frequency Cepstral Coefficients (MFCC) but obtained with options that are
not the default options defined in HTK, nor the optimum values obtained in Section 3.

7. MFCC with optimum frame duration (Tw = 20 ms), that is, extracted with the same options used
in the previous stage but using the optimum frame duration.

8. MFCC with optimum options, that is, extracted with the same options used in the previous stage
but now using the optimum values for the limits of low frequency (L f = 1000 Hz) and high
frequency (H f = 5000 Hz) of the spectrum.

Table 11 and Figure 31 summarize the classification performance metric for the eight stages
between MPEG-7 and optimum MFCC. In each stage, the Geometric Mean (GM) metric was used to
select the best classifier.
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Figure 31. Classification performance using various alternatives for the representation of the anuran
call spectrum.



Sensors 2018, 18, 1803 27 of 31

Table 11. Classification performance using various alternatives for the representation of the anuran
call spectrum.

ACC ERR PRC SNS SPC ROC F1 GM

MPEG-7 84.56% 15.44% 56.80% 77.69% 90.28% 84.22% 65.63 83.75%
FBE 93.69% 7.31% 56.78% 71.05% 94.00% 83.32% 63.12% 81.72%

LogFBE 94.74% 5.26% 88.31% 73.31% 95.37% 85.06% 80.12% 83.62%
MelLogFBE 94.15% 5.85% 81.58% 82.52% 95.41% 89.19% 82.05% 88.73%

MelLogFBE-opt 92.87% 7.13% 78.16% 86.25% 94.31% 90.37% 82.00% 90.19%
MelLogDCT 94.85% 5.15% 79.15% 81.91% 95.78% 89.12% 80.51% 88.58%

MFCC-optTw 93.10% 6.90% 82.31% 84.44% 94.02% 89.36% 83.36% 89.10%
MFCC-opt 96.37% 3.63% 81.78% 85.09% 91.17% 91.33% 83.40 90.93%

From these results, it can be concluded that using the log scale increases the GM by approximately
two points, and using the mel scale raises this value by about five points. On the other hand,
the representation of the spectrum in the cepstral domain appears to have no effect on classification
performance. However, the GM can be further improved by optimizing the frame duration (with an
effect of about 0.5 points) and the range of frequencies with an effect of about two points. The overall
effect of the application of the steps from the FBE to the optimum MFCC increases the GM by the
amount of more than nine points.

4.3. Reducing the Spectrum Representation Vector

In Environmental Monitoring Systems, the goal for the optimal representation of the spectrum of
a sound is not only its ability to be used as features in a classification process. The size of the feature
vector is also a key element because it exerts a direct impact on the storage capacity and computing
power required in the WSN nodes, and also on the demand for network throughput. For this reason,
reducing the number of optimal MFCC features leads to a more efficient implementation.

The classification performance metrics of the best classifier vs. the number of optimal cepstral
coefficients is depicted in Figure 32. As can be observed, a smaller value of the number of cepstral
coefficients (C) worsens the classifier performance metrics. This effect, however, is limited for a small
reduction of C, and hence using the default number of cepstral coefficients C = 13 (instead of the
maximum C = 20 when M = 20) only means a slight reduction in performance (from ACC = 96.37%
to ACC = 95.44%).
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Figure 32. Classification performance metrics of the best classifier vs. the number of cepstral coefficients
(optimal value in every option).



Sensors 2018, 18, 1803 28 of 31

From the discussion in Section 4.2, it is not fully clear the advantage of using MFCC instead of the
simpler FBE in log and mel scales. Both methods obtain similar classification performance metrics,
although the latter requires less computation effort because it obviates the cepstral transform stage.
Nevertheless, if the number of features remains a major concern, then the MFCC offers better results,
as can be concluded from Figure 33, and should therefore be the extracting method selected.
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5. Conclusions

In conclusion, for a good compromise between the classification performance and the WSN
implementation considerations, the default value of 13 features should be maintained, but now with
the options optimally selected. If a major reduction in the number of features is required, then the
MFCC clearly outperforms the FBE.
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