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Abstract
Distinct from cardiac PET performed with preparation to control physiological FDG uptake in the myocardium, standard 
FDG-PET/CT performed with 4–6 h of fasting will show variation in myocardial FDG uptake. For this reason, important 
signs of myocardial and pericardial abnormality revealed by myocardial FDG uptake tend to be overlooked. However, rec-
ognition of possible underlying disease will support further patient management to avoid complications due to the disease. 
This review demonstrates the mechanism of FDG uptake in the myocardium, discusses the factors affecting uptake, and 
provides notable image findings that may suggest underlying disease.
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Introduction

For the better assessment of myocardial disease, long fasting 
or a high-fat, low-carbohydrate diet prior to 2-[18F]-fluoro-
2-deoxy-d-glucose (FDG) positron emission tomography 
(PET) has been performed to suppress the physiological 
FDG uptake in the myocardium. However, standard PET/
computed tomography (CT) performed with 4–6 h of fasting 
cannot control the physiological FDG uptake in the myocar-
dium, thus variety of myocardial FDG uptake is observed. 
Even it is challenging to distinguish from physiological 
FDG uptake, important signs of myocardial and pericardial 
abnormality can be revealed by standard FDG-PET/CT. This 
review presents the mechanism of FDG uptake in the myo-
cardium, discusses the factors affecting uptake, and provides 
notable image findings that may suggest underlying disease.

Mechanism of FDG uptake 
in the myocardium

The energy requirements of the myocardium are supplied 
mainly by fatty acids (FA), carbohydrates, and ketone bod-
ies [1]. The glucose metabolism status of the myocardium 
changes according to the available substrate and myocardial 
function and perfusion. When plasma glucose and insulin 
levels rise, glucose transporters (GLUT) in the myocardium 
(GLUT-1 and GLUT-4) increase the myocardial glucose 
intake. In the fasting state, plasma insulin levels fall and car-
diac energy requirements are supplied mainly by FA follow-
ing the reduction in oxidative glucose metabolism obtained 
from carbohydrates [2]. To reduce physiological FDG uptake 
in the myocardium, 18–24 h fasting is required, because the 
human myocardium preferentially utilizes energy derived 
from free fatty acids rather than from glucose during the 
fasting state in aerobic conditions. Standard FDG-PET/CT 
imaging protocols generally require at least 4–6 h of fasting 
before the examination. Accordingly, the metabolic shift in 
the myocardium is not completely accomplished, and a vari-
ety of myocardial physiological uptake patterns are present 
in standard FDG-PET/CT [3].
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Factors affecting myocardial FDG uptake

Major factors affecting myocardial glucose metabolism 
include sex differences, aging, obesity, and diabetic mel-
litus. Compared with the male myocardium, the female 
myocardium requires more oxygen and FA, and less glu-
cose. Metabolic change also occurs in pathological states 
such as obesity, diabetic mellitus, and nonischemic car-
diomyopathy [4]. Estrogen upregulates nitric oxide syn-
thesis, leading to a reduction in GLUT-4 translocation to 
the cell surface [5, 6]. The higher percentage of body fat 
in females than males leads to higher plasma FA levels 
and incorporation of FA to the heart in females [4, 7]. 
Structural changes in the myocardium such as increased 
myocyte size and fibrosis show progression with age. The 
contribution of FA oxidation to myocardial metabolism 
decreases with age for multifactorial reasons related to 
mitochondrial status, free radical injury, a decline in per-
oxisome proliferator-activated receptor alpha (PPARα) 
activity, and increased pyruvate oxidation [8–12].

An increase in body mass index leads to increased 
myocardial FA metabolism. In females, the dependence 
on myocardial FA metabolism increases with worsening 
insulin resistance, with little change in myocardial glucose 
metabolism; and myocardial volume oxygen consumption 
is greater in obese females than in obese males. In con-
trast, obese males have greater impairment of myocardial 
glucose metabolism than obese females at the same level 
of plasma insulin, suggesting greater myocardial insulin 
resistance [13].

Systemic insulin resistance induces an increase in 
plasma FA delivery, leading to stimulation of FA intake 
to the myocardium. The increased FA metabolism and 
decreased glucose use that occurs in diabetic mellitus is 
related to the proliferator-activated receptor coactivator 1 
alfa signaling network and protein kinase C [14].

Blood glucose level does not directly correlate with 
physiological myocardial FDG uptake [15]. Renal fail-
ure have no influence on physiological myocardial FDG 
uptake 16]. Physiological FDG uptake in the myocardium 
varies among patients and even in the same patient at dif-
ferent time points during scanning, which appears to be 
related to the patient’s metabolic and hormonal status at 
the time of scanning [17].

Myocardial FDG uptake can be influenced by bezafi-
brate, levothyroxine, thiazolidinedione, and benzodiaz-
epine [18, 19]. Bezafibrate reduces serum triglyceride 
levels by altering lipoprotein metabolism [20, 21], and 
also lowers blood glucose, HbA1C, and insulin resistance 
in attenuating the progression of diabetic mellitus type 
2. The expression of glucose transporters and activity of 
phosphofructokinase-1 is decreased in hypothyroid rats 

[22, 23]. The thyroid hormone levothyroxine can stimulate 
glucose transport and glycolysis by upregulating GLUT-4 
transcription [24], and decreased myocardial FDG uptake 
has been reported in patients prescribed levothyroxine 
[19]. Thiazolidinediones are ligands for PPARγ, which 
regulates adipocyte differentiation and glucose homeosta-
sis by improving insulin sensitivity and secretion, glucose 
tolerance, and adipocytokines in patients with diabetic 
mellitus type 2 [25, 26]. This mechanism might be asso-
ciated with reduced FDG uptake in the myocardium. Ben-
zodiazepine receptors are present in the central nervous 
system and in peripheral tissue, including the myocardium 
[27], but the detailed mechanism of increased FDG uptake 
in the myocardium remains unknown.

Myocardial uptake variability

The physiological FDG uptake pattern in the myocardium 
is classified as focal, regional, diffuse type, or none [15, 18, 
28]. As it is not dependent on age, glucose level, weight, or 
FDG dose, the uptake pattern will be poorly-reproducible 
in the following PET examination. Regional FDG activity 
is generally lower in the septum and anterior left ventricular 
(LV) wall than in the lateral and posterior walls [3, 17, 29, 
30]. An experimental animal study found that wall stresses 
were highest in the anterior, lateral, and anterior papillary 
regions of the myocardium, which suggests that increased 
myocardial wall stress leads to increased metabolic demand 
[31]. Predominant regional FDG uptake in the base of the 
myocardium is also a common physiologic uptake pattern 
[28], occurring as ring pattern, over-half-ring pattern, and 
spot pattern (including focal in diffuse FDG uptake) [32] 
(Fig. 1).

A focal FDG uptake pattern is sometimes confirmed as 
accumulation in the LV papillary muscles in their antero-
lateral and infero-posterior locations, where it is commonly 
observed in combination with FDG uptake in the adjacent 
myocardium (Fig. 2). In contrast, isolated FDG uptake in 
the papillary muscle is rare, and may suggest thrombus or 
neoplasm [33].

The basal segment FDG activity was present in 57% of all 
subjects, comprising increased basal-lateral (54%), postero-
basal (32%), basal-anterior-basal (15%), and basal (15%) 
septum patterns [18]. Nose et al. found that the FDG uptake 
pattern in subjects without heart disease was none in 28%, 
diffuse in 34%, focal/diffuse in 21%, and focal in 18% [34]. 
Focal uptake was seen most commonly in the basal wall. 
Uptake pattern was not influenced by age, blood glucose 
level, body weight, or injected dose of FDG. Based on the 
coronary branch territories, mean uptake was higher in the 
left circumflex coronary artery than right coronary artery 
(RCA) territories, and lower in the left coronary artery than 
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RCA territories. A basal–apical gradient analysis showed 
that uptake was significantly higher in the middle territories 
than in the proximal and distal territories [29].

Normal variant finding

Crista terminalis

The crista terminalis is a smooth, crescent-shaped muscle 
band that separates the right atrium (RA) from the right 
atrial appendage [35]. It originates from regression of the 
septum spurium as the sinus venosus is incorporated into 
the right atrial wall. Its thickness varies widely among adults 
(3–6 mm) [36]. The sinoatrial node lies on the upper part of 
the RA, and its identification is important in cardiac electro-
physiology examinations [37]. Because this muscular band 
occasionally shows increased FDG uptake, it should not be 
misinterpreted as myocardial tumor, thrombus, or focal peri-
cardial metastases [38, 39] (Fig. 3).

Fig. 1   Predominant regional 
FDG uptake in the base of the 
myocardium. a ring pattern, b 
over-half-ring pattern, c spot 
pattern

Fig. 2   Papillary muscles. a; FDG uptake at left ventricle papillary 
muscles in the anterolateral locations and infero-posterior locations 
(red arrowheads), b Isolated FDG uptake in the left ventricle (white 
arrowheads) was suspected thrombus but no evidence was found with 
cardiac ultrasonography. The FDG uptake was continued from pupil-
lary muscles with slight FDG uptake, finally the FDG uptake was 
regarded as physiological uptake in pupillary muscles and/or chordae 
tendineae
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Lipomatous hypertrophy of the interatrial septum

Lipomatous hypertrophy of the interatrial septum (LHIS) is 
a benign condition with prevalence of 1–8% that is associ-
ated with aging, sex (female), and obesity [40]. LHIS has a 
dumbbell-shaped appearance with significant thickening of 
the interatrial septum, with 20 mm or more showing with fat 
density on CT that extends to the atrial wall but rarely to the 
interventricular septum, and sparing of the fossa ovalis [41, 
42]. It is composed of mature adipocytes and fetal fat cells 
or brown fat, and FDG uptake is thought to be dependent on 
the volume of brown adipose tissue (BAT) [43, 44] (Fig. 4). 
BAT is an adipose organ that functions to maintain core 
temperature in small mammals and in newborn humans [45]; 
however, FDG uptake representing the metabolic activity of 
BAT proves its existence also in adult humans [46]. Most 
subjects with LHIS are asymptomatic, but it is known to be 
associated with supraventricular arrhythmias, syncope, and 
sudden death [47, 48]. A previous study found that in 82% of 
these patients, focal increased FDG uptake corresponding to 

the regions of LHIS [44]. Brown fat is sometimes apparent 
as focal areas of FDG uptake that are localized to the medi-
astinum around the pericardium and epicardium in up to 
1–2% of patients [49], which can be mistaken as mediastinal 
adenopathy or malignant pericardial infiltration.

Myocardial finding

FDG uptake in the atrial wall

FDG uptake is not usually seen in the atrial wall because of 
its much lower energy consumption compared with the ven-
tricles. Increased FDG activity along with or localized in the 
atrial wall (including the atrial appendage) is associated with 
atrial fibrillation (AF), even in the case of cardiac cham-
ber enlargement. However, not all patients with AF show 
increased FDG activity in the atrial wall [50, 51] (Fig. 5).

Xie et al. proposed that activity in the epicardial adipose 
tissue was an independent factor predicting increased activ-
ity in the atrium [50]. Joseph et al. showed a relationship 
between higher hematopoietic tissue activation and the inci-
dence of AF [52].

The incidence of AF was significant associated with 
SUVmax of FDG in the RA and volume of the left atrium 
(LA). Moreover, a pathological investigation reported infil-
tration of extravascular macrophages and lymphocytes in 
regions with FDG uptake in the atrium [53]. Sinigaglia et al. 
reported a strong association of FDG uptake in the right and 
LA with increased prevalence of stroke in patients with AF 
[54].

Fig. 3   Crista terminalis. Mild focal FDG uptake was observed in the 
right atrium (arrowhead) (a), which corresponded to the crista termi-
nalis confirmed by contrast enhanced CT (b). In addition, linear FDG 
uptake correspond to the fat tissue suggested lipomatous hypertrophy 
(white arrowhead)

Fig. 4   FDG uptake in lipomatous hypertrophy of the interatrial sep-
tum. Focal FDG uptake between left and right atrium (a red arrow-
heads), which corresponded to lipomatous hypertrophy of the intera-
trial septum (b white arrow heads)

Fig. 5   FDG uptake pattern associated with atrial fibrillation. 
Increased FDG activity along with the atrial wall (a red arrowheads), 
FDG uptake at right appendage (b arrowhead) and at left appendage 
(c arrowhead) are all associated with atrial fibrillation
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Increased FDG uptake in the right ventricle

Diffuse FDG uptake in the right ventricle (RV) has been 
identified in the setting of increased ventricular pressure or 
overload in patients with pulmonary hypertension (Fig. 6). 
Enlargement of the LV and RV with a diffuse increase in 
FDG myocardial activity is seen in association with systemic 
hypertension, valvular heart disease, and other myopathies 
[55–58] (Fig. 6). When atrial FDG uptake is confirmed in an 
enlarged atrium accompanied by diffuse uptake in the RV, 
atrial FDG uptake can also be considered to be caused by 
increased pressure or overload [58], and the increased level 
is a marker of poorer prognosis [59]. In our experience, FDG 
uptake in the RV is more frequently seen in healthy young 
adults, but the mechanism is unclear.

Myocardial hypertrophy

The expression of beta-oxidation enzymes is decreased as 
myocardial hypertrophy progresses, leading to decreased 
myocardial FA as glucose use increases in the myocardium. 
Therefore, myocardial FDG uptake increases in left ven-
tricular hypertrophy (LVH), and the uptake is reported to 
be more prominent in hypertrophic obstructive cardiomyo-
pathy than in hypertrophic nonobstructive cardiomyopathy 
[60] (Fig. 7). In contrast, FDG uptake in the myocardium 
can decrease in patients with LVH if the metabolic remod-
eling proceeds as structural remodeling in the form of LVH. 
The decrease in diastolic function leads to a decline in FDG 
uptake. The reduction of FDG uptake in progressive LVH 
that is caused by underlying tissue characterization such 
as fibrosis indicates the risk of myocardium progressing to 
heart failure [61–63].

Focal FDG uptake in the left ventricular apex

Focal FDG uptake in the LV apex is a rare finding, occur-
ring up to 0.6% of oncologic FDG-PET/CT scans [64, 65]. 

A previous study reported that 55% of subjects with focal 
FDG uptake in the LV apex had coronary artery stenosis 
or a history of treatment for coronary disease (Fig. 8), and 
that 10% had apical hypertrophic cardiomyopathy [64]. 
Takanami et al. reported the ‘focal high’ and ‘focal defect 
on diffuse high’ pattern of myocardial FDG uptake in the LV 
apex were correlated with abnormal myocardial perfusion 
imaging (MPI) [66]. Haider et al. observed focal myocardial 
FDG uptake (not limited to the apex) in patients with myo-
cardial abnormalities such as abnormal perfusion, impaired 
LV ejection fraction (LVEF), myocardial ischemia, and scar-
ring. In addition, focal myocardial FDG uptake has been 
identified as a strong predictor of abnormal myocardial func-
tion/perfusion and as an independent predictor of ongoing 
ischemia and myocardial scarring [67].

Fig. 6   FDG uptake in right ventricle. a Diffuse FDG uptake in the 
enlarged right ventricles (arrowhead) caused by increased ventricu-
lar pressure in patient with long history of emphysema. b, c Diffuse 

FDG uptake in the enlarged right ventricles (arrowhead) caused by 
left ventricle hypertrophy. d Diffuse FDG uptake in the enlarged left 
atrium suggested increased atrial pressure

Fig. 7   FDG uptake in left ventricular hypertrophy. Intense FDG 
uptake was confirmed along with the left ventricular wall (a). Con-
trast enhanced CT suggested thickening of left ventricular wall sug-
gesting left ventricular hypertrophy (b). Myocardial FDG uptake 
features are shown with hypertrophic obstructive cardiomyopathy (c) 
and with hypertrophic nonobstructive cardiomyopathy (d) (red arrow-
heads)
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Increased FDG uptake can persist for 48 h after stress-
induced myocardial ischemia in stable coronary artery dis-
ease [68, 69]. Dou et al. reported that ‘focal’ or ‘focal on 
diffuse’ uptake was seen in 86% of patients with unstable 
angina but in only 8% of patients without unstable angina 
[70]. However, it has also been shown that abnormal MPI is 
possible even in the case of low FDG uptake (44%) and basal 
ring uptake (43%), although less commonly for basal ring 
pattern (11%) [66]. Akikawa et al. reported an incidental 
finding of focal myocardial FDG uptake, indicating asymp-
tomatic coronary artery disease, which disappeared follow-
ing successful percutaneous coronary intervention [71].

Apical hypertrophic cardiomyopathy is another possible 
cause of focal FDG uptake in the LV apex (Fig. 8). Its char-
acteristic appearance is an unusual pattern of hypertrophic 
cardiomyopathy with wall thickening limited to the apex of 
the LV. Focal FDG uptake in the LV apex shows a tendency 
to occur more frequently in patients with the echocardiogra-
phy findings of apical wall thickness ≥ 15 mm and asynergy 
in the apex. FDG uptake in the LV apex is seen in patients 
with decreased coronary flow reserve, indicating an associa-
tion with microvascular dysfunction [65].

Localized FDG uptake in the left ventricle

A shift from fatty acid metabolism to glucose utilization in 
the myocardium occurs in ischemia. Based on this mecha-
nism, increased FDG uptake in the LV wall can be recog-
nized in the case of chronic ischemia, termed hibernating 

myocardium [72]. Localized FDG uptake is more likely to 
indicate an ischemic state if the uptake corresponds to the 
coronary artery distribution (Fig. 9). Physiological FDG 
uptake in the posterolateral wall can mimic ischemia in the 
left circumflex coronary artery [18], whereas decreased or 
absent FDG uptake indicates myocardial scarring with irre-
versible functional damage [73] (Fig. 10). A reduction of 

Fig. 8   Focal FDG uptake in 
the left ventricular apex. a 
focal FDG uptake in the left 
ventricular (LV) apex (red 
arrowheads) matched the liner 
unenhanced CT area suggest-
ing chronic ischemic change of 
the apex (white arrowhead). b 
intense focal FDG uptake in the 
LV apex (red arrowheads) was 
matched to the LV aneurysm 
(white arrowhead). c apical 
hypertrophic cardiomyopathy 
can also show focal FDG uptake 
in the LV apex (red arrowheads)

Fig. 9   Myocardial ischemic change. Focal FDG uptake in the anterior 
of myocardium (a, b red arrowheads) had a possibility of ischemic 
change, which is caused by metabolic switch from fatty acid to glu-
cose use. Whereas defect of FDG uptake at apex (c white arrowhead) 
with slight calcification on CT (d white arrow) suggest chronic myo-
cardial infarction
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septal FDG uptake has also been observed in left bundle 
branch block (LBBB) [74].

Decreased FDG uptake also occurs during the time course 
of Takotsubo cardiomyopathy [75] (Fig. 10). In the acute 
and subacute phases, FDG defects are demonstrated in the 
hypo-contractile LV segments even if perfusion is only 
slightly reduced. Later, there is rapid normalization of myo-
cardial perfusion, whereas recovery of glucose metabolism 
is delayed. Although stress-induced catecholamine over-
production and myocardial response are the most important 
mechanisms [76], coronary microvascular dysfunction may 
cause transient perfusion abnormalities, whereas excessive 
catecholamine exposure induces toxic effects in cardiomyo-
cytes, including abnormalities such as glucose metabolism 
disorder [77]. Representative causes of excessive catechola-
mine are pheochromocytoma, stress, medications, and inges-
tion of exogenous substances [78].

History of chemotherapy or radiation therapy

Diffuse and increased FDG accumulation in the myo-
cardium is a possible early sign of cardiotoxicity, which 
has been reported in patients treated with anthracyclines 

such as doxorubicin and adriamycin [79–83], tyrosine 
kinase inhibitors [84], and trastuzumab [83, 85] (Fig. 11). 
Increased FDG uptake in the myocardium during chemo-
therapy including doxorubicin is associated with a decline 
in LVEF [83]. The cardiac FDG uptake has been shown 
to progressively increase during therapy administration 
and remain elevated for at least 1 year [82]. Doxorubicin 
inhibits fatty acid oxidation and mitochondrial oxidative 
phosphorylation [86], leading to Pasteur effect and fur-
ther increasing glucose consumption. Because the increase 
in glucose consumption is transient and disappears rap-
idly after drug removal [87], Bauckneht et al. suggested 
the capability of FDG for selectively tracking the early 
endoplasmic reticulum pentose phosphate pathway (PPP) 
response to oxidative stress [81].

Increased myocardial FDG uptake has been reported 
following radiation therapy for esophageal cancer [88–90] 
and lung cancer [91]. In this setting, FDG uptake has the 
feature of unusual sharp borders that correlate with the 
area of heart involved in the radiation therapy planning 
field, rather than following a typical coronary artery 
distribution [92]. Localized myocarditis with increased 
FDG activity generally occur at radiation doses > 35 Gy 
[88]. In an animal study, increased FDG uptake caused by 
radiation-induced myocardial damage appeared to reflect 
microvascular damage and mitochondrial injury [93].

Possibility of endocarditis

Endocarditis is a life-threatening inflammation of the 
inner lining of the heart (the endocardium), and infec-
tious endocarditis (IE) on both native valve and prosthetic 
valve (PVE), and cardiovascular implantable electronic 
device (CIED) infections are representative diseases. 
Meta-analyses showed that the overall pooled sensitiv-
ity of FDG PET/CT for the indication of IE and PVE is 
61% and 73%, respectively [94]. The European Society 
of Cardiology (ESC) guidelines recommend using FDG-
PET/CT for the diagnosis of endocarditis, expecting the 
reduction in the rate of misdiagnosed IE, classified in the 
Possible IE category with the Duke criteria [95, 96]. In 
addition to the detection of endocarditis, whole-body PET/
CT images can contribute to peripheral embolization and/
or metastatic infection [97]. Focal FDG uptake in the valve 
and devices indeed have possibly of the active endocardi-
tis; however, physiological myocardial FDG uptake and 
overcorrection artifacts caused by metal artifacts may be 
a misinterpretation of the disease [98]. Non-specific FDG 
uptake in the immediate postoperative period can mimic 
the disease, thus the ESC guidelines stated that FDG PET 
result is not reliable within 3 months from prosthetic valve 
implantation [95].

Fig. 10   Catecholamine induced myocarditis. Focal FDG uptake is 
seen in the pheochromocytoma arisen at right adrenal grand (a white 
arrow). Decreased patty FDG uptake in the anterior wall to apex of 
left ventricle (a, b red arrowheads) indicated catecholamine induced 
myocarditis

Fig. 11   Cardiotoxicity induced by Adriamycin. Myocardial dysfunc-
tion was occurred in the patient with diffuse large B cell lymphoma 
treated by R-CHOP. Increased focal FDG uptake in the myocardium 
was confirmed during the therapy. The patient was diagnosed with 
cardiotoxicity induced by adriamycin
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Incidence of cardiac sarcoidosis

Sarcoidosis is a systemic disorder of unknown etiology, 
characterized by the presence of noncaseating granulomas. 
Cardiac involvement occurs in only about 5% of those with 
systemic sarcoidosis, but leads to an adverse prognosis 
that causes approximately 25% of deaths from sarcoidosis. 
According to pathologic assessment, the presence of occult 
cardiac granulomas is around 20–58% in the patient with 
sarcoidosis, which is much higher than might be expected 
[99–101]. The uptake patterns of patchy nonhomogeneous 
FDG uptake or focal-on-diffuse FDG uptake under the sup-
pression of physiological myocardial uptake indicate the 
existence of active cardiac sarcoidosis (CS), and perfusion 
imaging can increase the accuracy of diagnosis [99]. The 
presence of clinical symptoms related to CS and positive 
findings outside the myocardium suggestive of sarcoidosis 
can improve the diagnostic accuracy (Fig. 12).

The prevalence of isolated cardiac sarcoidosis (ICS), or 
sarcoidosis that involves only the heart, occurs in 3.1–25% 
of cases of CS [102]. Therefore, CS is generally an extra 
cardiac sarcoid lesion that can be differentiated from cardiac 
sarcoidosis by the finding of patchy nonhomogeneous FDG 
uptake or focal-on-diffuse FDG uptake.

Possibility of cardiac tumor

The vast majority of cardiac tumors are secondary tumors 
caused by metastatic spread or by direct neoplastic invasion. 

Secondary tumors are 20–40 times more common than pri-
mary cardiac tumors [103–106]. Up to 12% of oncology 
patients have metastases to the heart or pericardium at 
autopsy, although most remain clinically silent [107]. Mela-
noma, breast, lung, and esophageal carcinomas are the most 
common to metastasize to the heart.

Primary cardiac tumors occur with a reported frequency 
of 0.0017–0.33% of the population, among which 75–90% 
are benign, and of which cardiac myxomas account for 
almost one half [108–110]. Cardiac myxomas have the 
typical appearance of a polypoid left intracavitary mass 
rather than a right atrial mass originating from the intera-
trial septum, and characteristically display either no sig-
nificant or mildly elevated FDG uptake [18, 28, 108, 111] 
(Fig. 13). Common complications of myxoma such as val-
vular obstruction and embolism, as well as more generalized 
symptoms, may help identifying the tumor.

Cardiac lipoma is well-circumscribed spherical or ellipti-
cal mass composed of homogeneous yellow fat and located 
most commonly in the epicardium, but can be distributed in 
other areas of the heart such as the endocardium and myo-
cardium [112]. Lipomas show no intense FDG uptake. Other 
possible benign tumors are fibroma and rhabdomyoma, 
which are most common in children.

Approximately 5–25% of primary cardiac tumors are 
malignant [107, 108], most of which show intense FDG 
uptake and SUVmax of 3.5–5 can be optimal cut off value 
for distinguishing malignant from benign cardiac tumor 
[113, 114]. Cardiac sarcoma is the most common primary 
malignant tumor of the myocardium (~ 65% of malignant 
primary cardiac tumors), of which angiosarcoma accounts 
for more than 33% [106, 107, 115]. Angiosarcoma is a highly 
aggressive and infiltrative tumor, located most commonly in 
the RA and pericardium, and shows high FDG uptake [113]. 
Liposarcoma [116] and myeloid sarcoma [117] have been 
reported as FDG-avid lesions arising in the myocardium, 

Fig. 12   Cardiac sarcoidosis. Cardiac sarcoidosis in 70-year-old 
female. The patient showed multiple lymph node swelling on CT and 
suspected malignant lymphoma. FDG-PET/CT showed FDG uptake 
in the lymph nodes, and finally diagnosed with sarcoidosis. FDG-
PET/CT presented intense FDG uptake in the left ventricular wall, 
finally diagnosed with cardiac involvement of sarcoidosis

Fig. 13   Myxoma arisen in left atrium. Contrast enhanced CT imag-
ing demonstrated mass lesion in left atrium, which showed low FDG 
uptake
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whereas osteosarcoma [118] is FDG-avid lesions located in 
the pericardium.

Primary cardiac lymphomas (PCL) are an uncommon 
malignancy, accounting for 1.3% of primary cardiac tumors, 
rather it is much higher incidence as extensive lesion from 
the other [119]. PCL are generally of the aggressive B-cell 
lymphoma type, and most commonly involve the right side 
of the heart, particularly the right atrium. Cardiac lym-
phomas are characterized by significant FDG uptake due 
to their aggressive nature [120, 121] (Fig. 14). No intralu-
minal involvement regardless of surroundings of coronary 
artery may help the diagnosis of cardiac lymphomas. The 
other possible FDG-avid malignant lesion is leukemia such 
as extramedullary AML extending to the myocardium and 
pericardium, which used to be a clinically undetectable 
extramedullary lesion [122]. The value of FDG-PET/CT 
is its ability to differentiate between benign and malignant 
tumors and to optimize the biopsy location.

Possibility of cardiac amyloidosis

High and diffuse myocardial FDG uptake has been reported 
in patients with immunoglobulin-derived light chain (AL) 

amyloidosis deposits in the myocardium [123, 124]. Due to 
the small number of reports and similarity to physiologi-
cal uptake, the typical uptake pattern in cardiac amyloido-
sis is not obvious. In addition, it is uncertain whether the 
FDG uptake in any pathological type of amyloidosis can be 
confirmed. In localized AL amyloidosis, giant cells play a 
role in the production of amyloid, whereas giant cells are 
thought to be unnecessary for the formation and deposi-
tion of amyloid in systemic AL, amyloid A amyloidosis and 
transthyretin amyloidosis. The presence of giant cells and 
other inflammatory cells is thought to lead to increased FDG 
uptake [125, 126]; therefore, intense FDG uptake would be 
more likely in localized AL amyloidosis than in systematic 
amyloidosis [127] (Fig. 15).

Plasma cell malignancies such as multiple myeloma are 
characterized by clonal expansion of terminally differenti-
ated B lymphoid cells, resulting in the production of mono-
clonal immunoglobulins or fragments [124]. FDG-PET/
CT is a reliable method for the detection of active multiple 
myeloma, in which 12–15% of patients develop clinical amy-
loidosis during the course of the disease, and subclinical 
amyloid deposits are found in multiple organs, including 
the myocardium, in up to 30% of myeloma patients [128]. 
Amyloid cardiac involvement can cause life-threatening 
complications; therefore, recognition of AL amyloidosis in 
patients with multiple myeloma is crucial for therapeutic 
decision making.

Extra‑myocardial finding

FDG uptake in the coronary arteries

In atherosclerotic lesions, arterial inflammation indicates 
high risk for the progression of such as calcium deposition, 

Fig. 14   Primary cardiac lymphoma. Intense FDG uptake at left lateral 
wall was pathologically diagnosed diffuse large B cell lymphoma

Fig.15   Cardiac amyloidosis. 
Moderate FDG uptake was con-
firmed in left ventricle wall in 
the patient with AL amyloidosis 
(a, b red arrowhead). Different 
color scale of FDG PET/CT 
imaging demonstrated that FDG 
uptake existed in inner layer of 
left ventricle wall, which were 
matched to the area with high 
intensity in PSIR MRI image 
(d, e) and the uptake in PiB 
PET/CT imaging (f) suggesting 
the amyloid deposit. The FDG 
uptake in the right atrium was 
cause by overload pressure of 
right atrium
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plaque rupture, and plaque vulnerability, leading to future 
cardiovascular disease [129, 130]. FDG activity within 
plaques correlates with inflammation in atherosclerosis, 
especially for increased macrophage infiltration [131]. The 
higher levels of FDG uptake in the carotid arteries and the 
aorta increase the risk of cardiovascular disease [132, 133]. 
FDG accumulation was increased in the ascending aorta and 
left main coronary artery of patients who presented with 
acute coronary syndrome [134].

In evaluation of FDG uptake in vulnerable plaque in the 
coronary arteries, patients follow a high-fat, low-carbohy-
drate diet prior to FDG-PET with the aim of minimizing 
myocardial glucose uptake to better visualize coronary FDG 
uptake [134, 135]. In standard FDG-PET/CT examination, as 
suppressed myocardial FDG uptake is not always expected, 
this finding would be confirmed occasionally. Moreover, 
because of the limited spatial resolution of PET imaging, 
partial volume effect, and motion, it remains challenging to 
identify FDG uptake in the coronary arteries. Although the 
proximal coronary arteries can be assessed by PET imaging 
[134], the mid and distal coronary vasculature is obscured 
by physiological uptake in the myocardium, and half of all 

coronary territories cannot be interpreted despite optimal 
myocardial suppression protocols [136–138]. Accordingly, 
high FDG uptake in the proximal coronary arteries may indi-
cate active plaque causing cardiovascular disease, and can 
be encountered in a standard FDG-PET/CT scan (Fig. 16).

Coronary vasculitis is uncommon but can cause severe 
and life-threatening complications such as coronary artery 
aneurysm, coronary artery stenosis, intraluminal thrombo-
sis, and microcirculation abnormalities. Takayasu arteritis 
(TAK), giant cell arthritis (GCA), polyarteritis nodosa, 
ANCA vasculitis, Erdheim-Chester disease, Kawasaki dis-
ease, Bechet’s disease, immunoglobulin G4 (IgG4) related 
periarteritis, are all associated with coronary vasculitis 
[139, 140]. The development of coronary artery stenosis in 
patients with TA is an extension of the inflammatory process 
and intimal proliferation in the ascending aorta. The inci-
dence of coronary artery disease in TA has been reported 
as 10–45% in autopsy cases [141, 142]. FDG uptake in the 
coronary arteries was not confirmed in cases of TA accom-
panied by coronary ostial stenosis [143] (Fig. 16). Coronary 
artery involvement in IgG4 related disease can be confirmed 
as increased FDG uptake in the coronary arteries [144] 
(Fig. 16). This finding is caused by perivascular immuno-
inflammation related to IgG4, which occurs in smaller ves-
sels including the coronary arteries, as well as in large ves-
sels [145, 146].

FDG uptake in the pericardium

The underlying causes of uptake in the pericardium are 
neoplastic disease, infectious disease, and noninfectious 
disease. Considering of physiological FDG uptake in the 
myocardium, pericardial FDG uptake can be recognized in 
the specific condition as suppressed myocardial FDG uptake, 
very high and/or mass-like FDG uptake in the pericardium, 
uptake around the atrium, where FDG uptake is generally 
low, and the presence of some extent of pericardial effusion, 
which appears as a space between the myocardium and peri-
cardium. Therefore, if pericardial abnormality is suspected, 
it is recommended that the patient preparation is designed to 
suppress myocardial physiological FDG uptake, by such as 
prolonged fasting and following a high-fat/low-carbohydrate 
diet [147]. Fever, subacute course, large effusion or tam-
ponade, and aspirin or NSAID failure are specific clinical 
features identifying high risk for specific causal conditions 
and complications [148].

The most common malignancy of the pericardium is 
metastatic pericardial tumor, of which the primary lesion 
is most commonly from the lung, breast, or lymphoma. It is 
important to consider a previous history of malignancy in 
diagnosis (Fig. 17).

Primary tumor in the pericardium is rare, but includes 
mesothelioma, sarcoma, and lymphoma, which can be 

Fig. 16   FDG uptake in coronary artery. Incidental findings of FDG 
uptake in the proximal of right coronary artery (a red arrowhead), 
suggesting the active plaque in the artery (b white arrowhead). 
The patient with Takayasu arthritis showed intense FDG uptake at 
ascending aorta (c), and the uptake reached the origin of right coro-
nary artery (d). FDG uptake (e red arrowhead) in swollen left coro-
nary artery (f white arrowhead) was diagnosed involvement of IgG4 
related disease in coronary artery representing perivascular immuno-
inflammation
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identified by FDG avidity in the pericardium [147]. The 
common feature of malignant disease of the pericardium is 
accompanying pericardial effusion, but this feature is also 
associated with generalized conditions such as hypoalbu-
minemia and anemia that occur in various types of progres-
sive disease, including malignancy [149].

In patients who have no previous history of malignancy, 
acute pericarditis is caused by cancer pathogenesis in up to 
5% of cases [148]. The incidence of malignancy increases 
to 23% when the pericarditis is accompanied by pericardial 
effusion [150, 151]. FDG-PET/CT can detect the primary 
lesion and tumor extension, and the identification of a peri-
cardial lesion may result in changes to the more effective 
treatment plan.

Viral pericarditis is the most common and least severe 
type of acute pericarditis. It is usually self-limiting and 
rarely progresses to cardiac tamponade [148]. Clinically, 
viral pericarditis mimics idiopathic pericarditis in its mani-
festation. Although a mild disease in most cases, when com-
bined with myocarditis there is a high risk of heart failure 
and the prognosis is poor [150]. Bacterial and fungal peri-
carditis is more common in immunocompromised patients 
and accompanied the infection in adjacent organs. A sensi-
tivity of FDG-PET/CT is lower than echocardiography and 
CT for the diagnosis of pericarditis.

Tuberculous pericarditis has high morbidity and mortality 
and frequently results in constrictive pericarditis [152]. In 
addition to its value in evaluating pericarditis, FDG-PET/
CT is useful for detecting extrapulmonary tuberculosis [153] 
(Fig. 17). The pericardial FDG uptake was characteristi-
cally diffuse or multifocal in acute tuberculous pericarditis 
and diffuse or regional in acute idiopathic pericarditis. The 
degree of FDG uptake in the pericardium and the medias-
tinal and supraclavicular lymph nodes is higher in acute 
tuberculous pericarditis than in idiopathic pericarditis [154].

The utility of SUV values for distinguishing between 
benign and malignant pericardial disease remains controver-
sial, as the values vary broadly in both settings [155]. Zhang 
et al. reported that mean SUVmax was 1.75 (range 1.0–9.2) 
in a tumor group, which was significantly higher than that in 
a nontumor group (mean SUVmax, 1.1; range 0.7–2.2), but 
the differences were so small with a certain level of overlap.

Radiation-associated pericarditis can develop during 
or immediately after radiation therapy, but most typically 
presents around 1 year after the end of radiation treatment. 
Pericarditis is usually accompanied by asymptomatic peri-
cardial effusion, with subsequent fibrosis in some patients 
[156]. The lower threshold of the radiation dose leading to 
radiation-associated heart disease is ~ 15 Gy, and cardiac 
complications increase at doses > 40 Gy [157]. Patients 
with radiation-induced pericarditis typically present with 
FDG uptake consistent with the radiation field; therefore, 
information in the radiation dose report can help distinguish 
between radiation-induced pericarditis and other pericardial 
disease [18].

Epipericardial fat necrosis is a benign condition that com-
monly presents as acute pleuritic chest pain [158]. CT may 
show focal increased attenuation within the epipericardial 
fat [159], and it demonstrates low FDG uptake (Fig. 18).

Possibility of systemic inflammatory disease

In systemic inflammatory disease, pericarditis can occur 
[160] in granulomatosis with polyangiitis (GPA) [161], 

Fig. 17   Pericardial lesions. FDG-PET/CT depicted pericardial meta-
static lesions (red arrowhead) in patient with gastric cancer (a). Con-
trast enhanced CT showed just a lesion matched to lesion showing 
FDG uptake (b). Malignant lymphoma lesion was involved in the 
pericardium (c, d). Focal FDG uptake in the pericardium was proved 
pericardial invasion of tuberculosis

Fig. 18   Epipericardial fat necrosis. CT showed small nodular lesion 
in the epipericardial fat (a white arrowhead), and it demonstrated low 
FDG uptake (b red arrowhead)
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eosinophilic granulomatosis with polyangiitis (EGPA) 
[162], systemic lupus erythematosus (SLE) [163], sys-
temic sclerosis, mixed connective tissue disease, adult-
onset still disease (AOSD) [164], and relapsing polychon-
dritis (Fig. 19). GPA, EGPA, SLE (rare), and relapsing 
polychondritis can accompany cardiac artery disease; 
myocarditis may occur in EGPA, SLE, and AOSD; endo-
carditis can occur in GPA and SLE (Libman-Sacks endo-
carditis) [165]; cardiomyopathy in SLE; and valvular 
disease in SLE and relapsing polychondritis. Although 
the features of FDG uptake in the myocardium and peri-
cardium have been reported for some types of systematic 
disease, it remains challenging to identify these system-
atic diseases by FDG-PET/CT imaging alone.

CT portion of PET/CT

The CT portion of PET/CT can provide valuable informa-
tion for identification of myocardial disease and/or other 
related disease. Lee et al. demonstrated incidental cardiac 
and pericardial abnormalities on chest CT, but it could be 
identified under the contrast media to be able to identify 
the hidden disease clearly [166]. The CT scanning during 
PET/CT examination is obtained with low dose radiation, 
without electrocardiogram gating and contrast media; thus 
identification of myocardial and pericardial abnormalities 
would be limited.

As the presence of coronary calcification is a risk fac-
tor for acute coronary events, its presence on CT scanning 
during PET/CT can identify individuals at risk for acute 
coronary events [167, 168]. Moreover, low-attenuation 
noncalcified plaque, positive remodeling, and small spottily 
distributed calcifications were reported to be associated with 
an increased likelihood of adverse events [169]. Intense FDG 
uptake in the coronary arteries indicates vascular inflam-
mation and is associated with the progression of coronary 
artery calcification. However, sites of calcification on CT 
consistently demonstrate no or very minimal uptake of FDG, 
suggesting that inflammation is not a major component 
in the formation of atherosclerotic plaques [170–174]. A 
mild degree of calcification on CT is characteristic of acute 
coronary events, whereas diffused high-attenuation calcific 
plaques are related to chronic coronary events [175].

A curvilinear dark line in the myocardium indicating 
fibrosis or fatty metaplasia is seen in 22–62% of patients 
with a history of myocardial infarction [176] (Fig. 20). This 
finding is confirmed also in LV aneurysms that developed 
from myocardial infarction [177]. Other entities that show 
abnormal myocardial fat include arrhythmogenic right 
ventricular cardiomyopathy or dysplasia (ARVC), cardiac 
lipoma, LHIAS, tuberous sclerosis, complex tuberculosis, 
dilated cardiomyopathy, and muscular dystrophy [176].

Fig. 19   Pericardial lesion associated with systemic disease. a FDG 
uptake could be confirmed in the thickened pericardium, suggest-
ing pericardium associated with SLE. b Moderate FDG uptake was 
seen in the part of thickened pericardium. It was acute pericarditis 
occurred in the patient was Sjögren syndrome showing the atrophic 
change in both parotid grands (c)

Fig. 20   Incidental CT findings in FDG-PET/CT. A curvilinear dark 
line (white arrowhead) in the myocardium indicating fibrosis in 
patients with a history of myocardial infarction (a). The interventricu-
lar septum was visualized in patient with low hemoglobin concentra-

tion due to the decreased CT density in blood pool (b). The patient 
had a history of occluding interatrial septal defect (c). A high-density 
foci (white arrowhead) in the interatrial septal indicated the operative 
site
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Myocardial calcification is a reliable sign of previous 
myocardial infarction. Septal involvement and regional myo-
cardial thinning help to differentiate these lesions from those 
of calcific pericarditis [166].

The possibility of congenial heart disease and heart 
failure can be implied by irregularly shaped myocardium 
(Fig. 20). Aortic stenosis may be suspected by aortic valve 
calcification with LV and aortic dilatation or LV hypertrophy 
supported by FDG uptake features. Mitral annulus calcifica-
tion is a degenerative process of the fibrous support structure 
of the mitral valve. It may not affect the function of mitral 
valve, but it is an additional marker of atherosclerosis [178].

Visualization of the interventricular septum suggests 
abnormally low hemoglobin concentration, in patients with 
glycogen and iron storage diseases and also in patients with 
iron overload caused by multiple blood transfusions in the 
presence of normal hemoglobin levels [179] (Fig. 20). On 
thoracic CT, a CT density threshold of 35 HU has been used 
to differentiate between anemic and nonanemic states [180, 
181].

Conclusion

Due to the variety of physiological FDG uptake in the myo-
cardium, the interpretation of cardiac FDG uptake in stand-
ard FDG-PET/CT is usually uncertain. However, recogni-
tion of possible underlying disease based on knowledge of 
common patterns of myocardial FDG uptake will support 
further patient management to avoid complications due to 
the disease.
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