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Abstract

Background: Binary classification rules based on a small-sample of high-dimensional
data (for instance, gene expression data) are ubiquitous in modern bioinformatics.
Constructing such classifiers is challenging due to (a) the complex nature of underlying
biological traits, such as gene interactions, and (b) the need for highly interpretable
glass-box models. We use the theory of high dimensional model representation
(HDMR) to build interpretable low dimensional approximations of the log-likelihood
ratio accounting for the effects of each individual gene as well as gene-gene
interactions. We propose two algorithms approximating the second order HDMR
expansion, and a hypothesis test based on the HDMR formulation to identify
significantly dysregulated pairwise interactions. The theory is seen as flexible and
requiring only a mild set of assumptions.

Results: We apply our approach to gene expression data from both synthetic and real
(breast and lung cancer) datasets comparing it also against several popular
state-of-the-art methods. The analyses suggest the proposed algorithms can be used to
obtain interpretable prediction rules with high prediction accuracies and to successfully
extract significantly dysregulated gene-gene interactions from the data. They also
compare favorably against their competitors across multiple synthetic data scenarios.

Conclusion: The proposed HDMR-based approach appears to produce a reliable
classifier that additionally allows one to describe how individual genes or gene-gene
interactions affect classification decisions. Both real and synthetic data analyses suggest
that our methods can be used to identify gene networks with dysregulated pairwise
interactions, and are therefore appropriate for differential networks analysis.

Keywords: High dimensional model representation, Classification, Disease prediction,
Log-likelihood ratio, Expression analysis
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Background

The notion of a simple binary classification, as one of the corner stones of modern
data analysis, has been considered in many different contexts and an abundance of algo-
rithms have been proposed for this task. While research has recently shifted focus to
classification rules in the context of big data, many bioinformatics applications deal with
small-sample, high-dimensional prediction problems. Current high-throughput “omics”
technologies measure tens of thousands of molecular features for each experimental unit
(for instance, a patient’s tissue sample); however, research data is still usually limited to
small sizes, rarely more than a few hundred units, impeding reliable analysis. Additionally,
data might be heavily imbalanced, which adds to the challenge of correct classification
in a small-sample, high-dimensional setting, with the minimum misclassification error
criteria being too unreliable for consistent feature selection across multiple datasets [1, 2].

In contrast to many applications where machine learning methods are used merely to
predict and do not have to provide explicit decision rules, the bioinformatics applica-
tions demand highly interpretable glass-box models to explain how a specific decision
is obtained. In many instances it is important to know which features, e.g., genes, are
used by the classifier, whether these features are biologically relevant, whether the dis-
tributional differences in features across two classes indicate biological variability or are
merely artifacts of the measurement/normalization process, and what is the uncertainty
of prediction at a new test point?

Answers to these questions are necessary to hypothesize about biological mechanisms
of complex diseases such as cancer and to evaluate clinical utility of developed decision
rules for tasks such as diagnosis and prognosis. But they are also necessary to explain how
certain patterns in the data might motivate different actions, such as choosing a specific
treatment over another for targeted therapy, exploring alternative treatments, or how to
form hypotheses on the biological mechanisms that can potentially be targeted in drug
discovery applications.

The small-sample high-dimensional nature of the problem, interpretability of outputted
statistics, and complex feature dependencies, force the development of methods with few
degrees of freedom that place strong assumptions (e.g. distributional assumptions) on the
classification problem. For example, linear discriminant analysis (LDA) assumes features
are Gaussian and have the same covariance matrix in both classes, quadratic discriminant
analysis (QDA) assumes features are jointly Gaussian with different class-conditioned
covariances, and a logistic regression model assumes that the log-likelihood ratio is an
additive function of features. The common idea behind these methods is that although
the “optimal” decision rule might be very complex (e.g., a high dimensional separating
surface), it can be well approximated by a low dimensional model, and an appropriate
family of models should contain a point close to the “best” low dimensional represen-
tation that can be reliably approximated given the observed data. In the current paper
we follow a rather similar general approach, but apply a much more flexible method for
deriving classifiers that allow for more flexible classification rules.

Recent studies emphasize the importance of gene synergies and genetic interactions
for reliable analysis [3]. However, two general themes of the recent method develop-
ments are leveraging big data, such as the cancer genome atlas (TCGA), or taking
advantage of side information such as sets of co-mutated genes or disease protein sub-
networks, e.g. [4, 5]. Such information may not be readily available or may not be
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easily applicable to the current dataset, as cancer gene interactions are highly context
dependent [6].

Utilizing pairwise interactions for reliable prediction aside, detecting disease-associated
genetic interactions has been studied as a “gene discovery problem” To that end, mutual
information based synergy scores are proposed, e.g., [7, 8]. However, reliably inferring
mutual information from data is a challenging task, which can be circumvented by quan-
tizing expression values, building dendrograms based on expressions, utilizing ranked
expressions instead of raw continuous values, or defining new statistics based on gene-
pair expression rankings [7-10]. In [9] it is stated that dendrogram and doublet (a specific
collection of transformations merging gene pair expressions into one-dimensional values)
based methods are “helpless for discovering pair-wise gene interactions” The informa-
tion theoretic score of [8] cannot be easily utilized to test significance, using limited
permutations of data to approximate the null, hypothesis which is computationally inten-
sive [9]. Finally, [9] proposes a new conversion transformation, the absolute difference of
ranked expressions constructing a t-statistic, which seems to balance performance and
computation cost.

High dimensional model representation

Consider a set of predictors as a random vector and a dependent variable as a function
of predictors, e.g., class labels as a function of observed expressions. High dimensional
model representation (HDMR) is a recently proposed framework to decompose func-
tions of a random vector, i.e., the dependent variable, into a hierarchy of low dimensional
models based on partial marginals of the full joint distribution [11]. Intuitively speak-
ing, HDMR expansion optimally decomposes a high dimensional non-linear system
into a hierarchy of lower dimensional non-linear systems, simplifying the process of
studying each high-dimensional component. It enjoys several interesting properties. For
example, the d order expansion is the best representation, in mean square error (MSE)
sense, to estimate the dependent variable given its marginal distribution with all subsets
of the predictors with at most d elements. Additionally, higher order expansion terms
are independent of the lower order terms. HDMR assumptions are mild, only requir-
ing certain moments to exist. Unfortunately, computing the HDMR expansion requires
complete knowledge of the full joint distribution, and potentially solving large families
of highly complex integral equations unless simplifying assumptions are made or spe-
cial cases are considered [12]. This can be a deal breaker in many practical applications,
where it is not always possible to obtain the full joint distribution given the small sam-
ple size. In this work, as a workaround, we propose algorithms that aim to approximate
the HDMR expansion without directly estimating the full joint distribution and solving
integral equations.

Our contribution

The novelty of the proposed classification framework is three-fold. (1) Our approach
provides a hierarchy of low dimensional representations of data, possibly allowing for
analyzing progressively more complex interactions among features. (2) We propose a
regression based approach to circumvent solving complex integral equations. (3) We can
easily study the effects of any specified subsets of variables, and assess how their inter-
actions affect the classifier output. As a side note, the proposed framework can also
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easily combine different parametric and non-parametric methods for computing log-
likelihood ratios, an interesting property that adds further flexibility. However, we leave
this extension for future work.

The paper is organized as follows. We first briefly overview the theory of HDMR expan-
sion, and how it can be used for binary classification, considering in particular the special
case of second order HDMR expansion. We then explain the regression-based algorithm
of approximating the second order HDMR expansion and perform synthetic simulations
comparing our method with several other popular classification rules proposed in the lit-
erature. Finally, we provide several real data examples, studying breast cancer, leukemia,

and lung cancer.

Methods

Here we describe our classification methodology based on the HDMR expansion, studied
in detail in [11, 13]. We briefly review the theory, and then show how it applies to binary
classification.

HDMR expansion

HDMR provides a hierarchy of functions that describe how the interactions of variables
affect the output. In particular, assuming output Z as a function of input random vector
X = [X1,---,Xp), ie, Z = h(X), HDMR studies how 4(X) can be decomposed to a
hierarchy of partial observations. Let F = {1,---,D}. The HDMR expansion of order d
is the collection of functions 4, (X)) for all # C F with |u| < d that minimize the mean
square error (MSE) of estimating Z given E (Z|X,,) for all # under the condition that for all
feucE (hu (Xu) |Xu\f) = 0, which is equivalent to a hierarchical orthogonality criterion
[13], i.e., HDMR terms of different orders are independent of each other. From [13] we

have
h(X) =ho+ Y h(X.), 1
o
hy = / h(x)w(x)dx, (2)

h, = /h(x)w(x,u)dx,u

- Zhv(xv) - Z /hv(xv)wfudxfw (3)

vCu vEUVOUFD
Eq. 3 suggests that in the general case of dependent variables a component function,
hy(xy,), depends on all other expansion terms that have a non-empty intersection with
u. However, assuming elements of X are independent, the last term of (3) equals zero.
While this greatly simplifies the process of computing the HDMR expansion, the indepen-
dence assumption can be heavily violated for expression data. We hereafter use E;(Z|X)
to denote the 4 order HDMR expansion.

Approximate second order HDMR for classification
We now focus on the second order HDMR expansion for correlated features. Observe

that under the independence assumption, we have

E> (ZIX) = wo + wE (ZIXy) + wypE (ZIXyp) (4)
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for some wo, wr, wr,r € R. In case of dependent features, we still assume the second order
HDMR expansion follows a structure similar to (4), except that the coefficients wy, wy ¢
are different than the independent case. Now, consider a binary classification problem
with class labels y = 0, 1 and feature index set F. Let X be a random unlabeled observation
with true label y,. Given a training sample §, it is desired to design a decision rule that
assigns a label, J, to X so that y, = y, with high probability. Note that given the full joint
distribution of X and yy, one could have easily computed P(y, = 1|X), or equivalently
the log-likelihood ratio L(X) = log(P(yx = 1|X)/P(yx = 0]X)), and use a decision rule
Yx = 1rx)>T, where 1, is the indicator function of statement g being correct and T is a
threshold.

However, the full joint distribution is typically not available, and is usually estimated
using 8. Alternatively, many models assume the classification rule belongs to a family
parametrized by 6, which is estimated from S. For example, a generalized linear model
(GLM) with the logit link assumes L(X) = By + ZfeF Br Xy, where X is the value of X for
feature £, Here 6 is the collection of By and p/’s. However, such model may be insufficient
when pairwise feature interactions are of interest, and it can be difficult to train a GLM
considering all potential pairwise interactions using LASSO and elastic net penalties due
to the potentially large number of feature pairs. Assuming Z = L(X), and 8 is the training
sample, we have

EXLXOIX,8) =co+ Y ¢rSXp) + Y ¢S p),
feF fifieF

for some co, f Cfif € R where

S(Xp) = Elog L(Y)|Xy, 8), (5)
S(X;,5) = E(log L(X)| Xy, 8) — Elog L(X)| Xy, 8)
— E(log L(X)|Xy, 8), (6)

It now remains to estimate coefficients ¢y and ¢4, which is part of our classification
algorithm discussed in the next section. Note that we also assume an external mechanism
which already outputs E(L(X)|Xy,8) and E(L(X) 1XF. 5 8).

Identifying pairwise feature interactions

An important application is identifying feature interactions that are significantly different
between the classes, i.e., identify u = {f;, f;j}’s for which 4, 7 0. We have the following
hypothesis test:

Hy:h,=0vs. Hy:h, #0. (7)

Note this is a very difficult problem in general, and only the special case of Gaus-
sian features is studied here. Assuming f; and f; are jointly Gaussian in each class, for an
HDMR expansion of first order to be able to grasp the exact form of the log-likelihood
ratio we need (1) all features of u to be independent given class label y, or (2) have the
same covariance in both classes (assuming M{) # Mfl for all f € F). In either case we have
LX) = ap + Zf asL(X|Xy), for some coefficients ag,as € R. It is straightforward but
tedious to show that other cases result in a second order expansion. Therefore, we can
reformulate the hypothesis test of Eq. 7 as
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Hp: p{;’ﬁ = p{i’fj =0 orEgﬁ = E{’f’ V.S.

Hy: (ol #£00r g £0) andsl? 2 £, (8)

where pjy[i g

and Ef,’ﬁ are the correlation coefficient and covariance matrix of feature pair
fif; in class y, respectively. Figure 1 provides several examples on cases with and without
pairwise feature interactions. In cases (a), (b), and (d) there are no pairwise feature inter-
actions. Case (c) denotes a degenerate case and is studied in the Supplementary. Cases (e)
and (f) depict feature pairs with pairwise interactions.

Testing conditional independence is a statistically difficult problem [14], and has been
studied for certain cases in [14]. As an approximation, we adopt the following approach.
Let PJ/,’f’ be the p-value of an independence test performed on data in class y. We use
the Pearson linear correlation test for Gaussian data. Assuming points in different classes
are independent, we treat them as independent tests, and use Fisher’s method for meta-
analysis: C = —2 (log (Pgﬁ> + log (Pfﬁ» follows a x? distribution with 4 degrees of
freedom under the null, giving us the final p-value. We use the likelihood ratio test of [15]
with the x2 adjustment to find p-values of E/gd? = Z"ff’ Finally, we use the union bound
and add the two p-values to obtain our final p-value, which is an overestimate. We here-
after call this approach multiple test mixing for pairwise interactions (MTM) and note
that it is appropriate for differential network analysis. Indeed, identifying feature pairs
with interesting interactions, i.e., pairwise dependencies that require looking at a second
order expansion, instead of a first order expansion, are a goal of co-expression and differ-
ential network analysis. Different modes of co-expression is discussed in [16], and some
of its applications, such as expression analysis, functional classification, and gene-disease
prediction, are described in [17, 18]. Differential network analysis is further discussed
in [19, 20].

3

(_/ feature 1 feature 1 r—

(a) (b) (c)

L/féature 1 feature 1 0 feature 1

(d) (e)

Fig. 1 An example of different cases that might occur for two Gaussian features in a binary classification
problem, where the two classes are denoted by red and green: (a) independent and equal variances, (b)
independent and unequal variances, (c) correlated and equal covariances with degenerate means, (d)
correlated and equal covariances with generic means, (e) correlated, unequal covariances, and unequal
mean vectors, and (f) correlated, unequal covariances, and equal means vectors

feature 2
eature 2.
feature

&

feature 2
feature 2
feature
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The classification algorithm

Here we describe our approach to build a classifier that is inspired by second order HDMR
expansion of the log-likelihood ratio. Again suppose sample § is collected, and for each
set u such that |u| < 2, we have a method that outputs the log-likelihood ratio of the test
point belonging to class 1, i.e., we have a method that outputs L(X,|8) for all u such that
|u| < 2. Given all these values, it remains to combine them into a test score. However, in
a small-sample problem the number of feature pairs can be much larger than sample size.
This creates an ill-posed problem as the number of equations is smaller than the number
of parameters to estimate. Therefore, many classical methods for obtaining the model
parameters from data, such as maximum likelihood, are not applicable. Not being able to
compute the exact second order HDMR expansion by framing it as a regression problem
is the main reason we need to look at alternative training methods, and is the main reason
we label the concomitant classifier design approach as “HDMR expansion inspired” or as
an “HDMR expansion perspective” for classification.

To circumvent the ill-posed problem, we use a variation of objective functions mostly
studied in compressed sensing, e.g. [21], that estimate a sparse signal given 1-bit quan-
tized observations. The connection between these objectives and a convex relaxation to
the logistic regression problem is discussed in [22]. Heuristically speaking, given a feature
vector in the form of log-likelihood ratios of partial observations x,, here we find weights
that maximize the distance between the average points of each class. The heuristic for
using such objective function is as follows. On one hand, HDMR obtains the weights
that result in the “best” low dimensional representation, i.e., the MSE estimate of the
log-likelihood ratio, yielding low prediction errors. On the other hand, weights that max-
imize the distance between the projections of the center points of the two classes into
a one dimensional space should also yield low prediction error. Hence, such objective
function should result in a model with an error probability close to that of the HDMR
expansion. Here we have used the HDMR theory to obtain the functional form of the solu-
tion, and use algorithms borrowed from 1-bit compressed sensing to estimate the HDMR
coefficients.

In many high-dimensional statistics applications, it is common to favor some bias to
reduce estimation variance. Examples and a detailed discussion on this issue is provided
in [23]. In order to reduce variance in our setting, we remove the weakest classifiers, in
forms of single feature classification rules or relatively independent feature pairs whose
information is already provided in the first order expansion. We compute

1 1
W= " > Lxfl8) — p > LxlS), ©)

xeSl xESo

where §, is the restriction of 8§ to points in class y, and #, is sample size in class y. We
remove features for which # < T1, where T} is a threshold. For feature pairs we compute
#ifi defined as

1 1 , .
— > LlplS) — > —LxsplS) — ¥ — o, (10)
ni no
x€81 x€80
and remove feature pairs for which |ii| < Tb, for some threshold T,. Feature pairs
for which #f > T, are risk increasing pairs, and feature pairs for which ¥/ < —T;

are risk decreasing pairs. We now find weights that combine S(X|X,, 8) of feature and
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class 1

e Ciass O

>
&

Fig. 2 The illustration of the b* selection process. Given V(X) vectors for the two classes, denoted by red and
green crosses, the b* is chosen to maximize the distance between the center of projections of V(X) vectors
onb

feature pairs with large # and |#ifi|, respectively. Although the HDMR expansion of
the log-likelihood ratio is unique, the actual true weights may be complicated to derive.
Since we mostly compare the HDMR expansion against a specific threshold to assign a
label to a newly observed point, we may consider the following optimization problem to
approximately solve for the desired weights.

b* = argmaxy, p,=1 n% Z b.V(x) — nio Z bV |, (11)
x€81 x€80

where V (x) is the collection S(X¢|8)’s for all features f such that 7 > T} and S(Xp, 5 |8) of
all feature pairs f;, fj such that |#ifi| > Ty, and “” denotes inner product. Figure 2 depicts
how b* is selected given vectors V(X) for the training data. Given a new observation X,
we find R(X) = b*.V(X), and we assign class label Y = 1rx)>1, where T is a thresh-
old. Note T1, T, and T are parameters of the model. Here they are selected using a grid
search within cross validation; however, efficient parameter tuning strategies should be
explored (see the Conclusion and Future Work section). We hereafter refer to this classi-
fication rule as linear approximation second order HDMR expansion (LAS-HDMR). The
pseudo-code of LAS-HDMR is provided in Algorithm 1. To summarize, given the data,
the machinery that outputs log likelihood ratios of features and feature pairs, and the
algorithm parameters, LAS-HDMR computes the risks of individual features and feature
pairs, removes weak ones, and computes the weights that maximize the distance between
the centers of each class. The overall pipeline is provided in Fig. 3.

The block model extension
The optimization problem in Eq. 11 maximizes the Euclidean distance between the cen-
ters of points in different classes, which might be most suitable for cases where elements
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Algorithm 1 Pseudo-code of LAS-HDMR
Require: L(x|x,) for all 4 with |#| < 2 and all training points (x, y), thresholds T7, T3,

and 7, and new observation X.

1: For each feature f compute # defined in Eq. 9.

2: For each feature pair f;, f; compute #ifi defined in Eq. 10.

3: Construct V(x), the collection of S(xy) for features f such that ¥ > Tiand S (xf; J;) for
features fi, f; such that |Hili| > Ts.

4: Compute b* using Eq. 11.

5. Compute R(X) = b* - V(X) for observation X.

6: Compute V= 1roo)>T-

Ensure: Y.

of V(x) are independent. However, the feature pairs in LAS-HDMR can be heavily cor-
related. Therefore, it might be useful to merge heavily correlated feature pairs in blocks,
average feature pairs of each block, and use the average log-likelihood of each block in
V (x). Note that almost any community detection algorithm over graphs can be used to
cluster feature pairs into blocks, where each node is a feature pair and the edges measures
the correlations between log-likelihood ratios of the two feature pairs (see [24, 25] for a
review on graph community detection). We consider the following simple block construc-
tion scheme. For each feature f; construct risk increasing and risk decreasing blocks Pfi
and N/, respectively, as follows:

Pi={fi:f # £,/ > Ty), (12)
N = {f; o # £, P < —T). (13)

Afterwards, for each block P and N/i compute P and eri, the risks of positive and
negative risk feature pairs containing f;, being the average risks of feature pairs in the
block. We then remove “weak” blocks. Weak risk increasing blocks are those for which
< T3, and weak risk decreasing blocks are those for which LS —T3. Note T3 is a
parameter of the model that is tuned via a grid search within cross validation. Now, given
observation x, V(x) is comprised of the log-likelihood ratio of single features for which
# > T} and average S (Xf,z) of risk increasing and risk decreasing blocks that had absolute
average risk large than 73. We again use Eq. 11 to obtain HDMR coefficients. Finally, given
new observation X, V(X) is formed, R(X) = b*.V(X) is computed, and V= Liro0)>T1y) 18

1: Fix internal ‘ 2: Train internal 3: Remove weak
parameters ‘ classifiers classifiers

LAS-HDMR 5
5 Ct\)/r(\;;mcl ._5‘ 6: Compute weights

LABS-HDMR
LABS-HDMR

4b: Remove weak

4a: Construct
blocks

LABS-HDMR
blocks

Fig. 3 The overall pipeline of LAS-HDMR and LABS-HDMR. In step 1 the algorithm parameters and the
internal classification machineries are selected. In step 2 classifiers using individual features and feature pairs
are trained and log likelihood ratios are saved. In step 3 weak classifiers (based on r and |rf"fl |) are removed.
LAS-HDMR moves to step 5, but LABS-HDMR moves to steps 4a and 4b, in which feature pairs construct
blocks, and weak blocks are removed. In step 5 the final feature vector V(X) is constructed and in step 6 the
weights used to combine elements of V(X) are computed
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the predicted label. We hereafter call this classification algorithm linear approximation of
block second order HDMR expansion (LABS-HDMR). The pseudo-code of LABS-HDMR
is described in Algorithm 2, and the overall pipeline is provided in Fig. 3.

Algorithm 2 Pseudo-code of LABS-HDMR
Require: L(x|x,) for all # with |u| < 2 and all training points (x, y), thresholds 71, Ty, T3

and 7, and new observation X.
1: For each feature f compute # defined in Eq. 9.
For each feature pair f;, f; compute #ifi defined in Eq. 10.
Construct positive and negative risk blocks for each feature f.
Construct V'(x), the collection of S(xs) for features f such that 7> T, M}: for

features f; that AL T3, and M};j for features f; that PN < —Ts.

5: Compute b* using Eq. 11.
6: Compute R(X) = b* - V(X) for observation X.
7. Compute Y= 1roo)>T-

Ensure: Y.

Synthetic simulations

Here we perform several simulations to study LAS-HDMR and LABS-HDMR classi-
fiers in more detail. We use a synthetic model developed to mimic microarrays and gene
expression levels for data generation. The original model is proposed in [26], and has been
extended in [27, 28]. Here we use the extended model of [27] in which features are mark-
ers or non-markers. Markers are either global or heterogeneous, and comprise blocks of
size k, where features in the same block are dependent and features in different blocks are
independent of each other. Each block of global markers in class 0 is Gaussian with zero
mean and covariance o Zo, where diagonal elements of Xy are 1 and off-diagonal ele-
ments are po. Global markers in class 1 are either synergetic or marginal. In the synergetic
case mean vector of each block in class 1is [1,1/2,---,1/k], and in the marginal case it
is[1,0,---,0]. The covariance matrix of the Gaussian distribution is 012 ¥;. Diagonal ele-
ments of X; are 1 and off diagonal elements are p;. Heterogeneous markers are similar to
global markers in class 0 but comprise ¢ subclasses in class 1, where in each subclass cer-
tain points follow a distribution similar to class 1 global markers and the remaining points
are similar to class 0 markers. Non-markers are either low variance or high variance. Low
variance non-markers are similar to class 0 markers. High variance non-markers are inde-
pendent of each other, and each HV non-marker follows a Gaussian mixture of the form
PN (O, 002) + (1 — p)N (1,012), where p is drawn uniformly at random over the interval
[0, 1]. Note 0@, o, po, p1, k, and c are parameters of the model. Figure 4, adopted from
[26], shows an illustration of the feature types developed in this synthetic model.

We now study how LAS-HDMR and LABS-HDMR perform under this model. In this
simulation, all features are heterogeneous markers, to create a more difficult problem. We
fix |F| = 60, c = 2, k = 10, 002 = 0.25, and 012 = 0.64 and consider 4 scenarios: (1)
synergetic markers with pg = p1 = 0.5, (2) synergetic markers pg = 0.1, and p; = 0.9,
(3) marginal markers with pg = p; = 0.5, and (4) marginal markers with pg = 0.1 and
p1 = 0.9. We generate a stratified sample of size # (to be specified below) with an equal
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RS 2

-—— -

Class 1
Subclass 0 Subclass 1
..............)(..........

SAMPLES
<

Class 0
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Global Heterogeneous High-variance Low-variance
markers markers non-markers non-markers
A e e mm m m m m mm mm FEATURES e i o i ot o s e o o s

Fig. 4 Anillustration of global markers, heterogeneous markers, and non-markers of the data generation
model for continuous observations, adopted from [26]

number of points in each class for training, and a stratified sample of size 2000 with an
equal number of points in each class for testing. Given training data, several classifiers are
trained, which are then applied to the test data. We compute the receiver operator charac-
teristic (ROC) curve and the area under curve (AUC) averaging over 100 iterations. Note
large test sets were used to accurately compute prediction errors. Despite the test data
being balanced, we believe AUC is a more reliable performance statistic than accuracy, as
experimental data are typically imbalanced. That being said, in the current setup, for each
point on the ROC curve obtained for threshold 7, accuracy is 1 — 0.5(P; + Prr), where P;
and Py are probabilities of Type I and Type II errors, respectively.

In addition to LAS-HDMR and LABS-HDMR we implement the following classifiers
for comparison: regularized quadratic discriminant analysis (RQDA) with regularization
value ranging from 0 to 1 in steps of 0.1, regularized linear discriminant analysis (RLDA)
with regularization value ranging from 0 to 1 in steps of 0.1, linear support vector machine
(SVM), random forest (RF) with the number of tree ranging from 10 to 100 in steps of 20, k
nearest neighbors (kNN) with k = 3,5, - - - , 30, and generalized linear models with linear
and quadratic probit links using LASSO and elastic net penalties (@ = 0.5) with penalty
coefficients A = 0.01 : 0.01 : 0.1. These methods are discussed in detail in [29-31].

For each family with multiple tuning parameters and for each sample size, we report
the largest AUC among all tested parameter values over the test data. Figure 5 plots the
AUC:s over test data averaging over 100 iterations as the sample size increases from 20 to
80 in steps of 4. When features have similar correlation matrices in both classes, classical
methods such as RLDA and RQDA perform best and are closely followed by LAS-HDMR
and LABS-HDMR. However, when correlation coefficients differ between the two classes
LAS-HDMR and LABS-HDMR outperform other tested classifiers. Here we observe little
difference between LAS-HDMR and LABS-HDMR, suggesting we do not need to merge
feature pairs into blocks and the number of feature pairs to consider is not too large for
this problem. We leave a more thorough comparison of LAS-HDMR and LABS-HDMR
for future work. ROC plots are provided in the Supplementary.
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Note that we started from the problem of finding the “best” second order represen-
tation of the log-likelihood ratio, but, due to computational difficulties, had to make
several assumptions and approximations along the way. Therefore, it is possible that we
end up mis-specifying the exact second order HDMR decomposition. In such scenarios,
it can be very probable that another method outperforms LAS-HDMR and LABS-
HDMR. Note LAS-HDMR and LABS-HDMR enjoy competitive overall performance in
all tested scenarios, and outperform other methods when correlation coefficients dif-
fer between the classes. They are competitive methods, and hence can be suitable for
a wide range of problems. Note that settings where LAS-HDMR and LABS-HDMR
do not perform best correspond to those in which correlation coefficients are equal
in both classes, for which RLDA and linear probit models perform best. This suggests
maybe in these cases the first order HDMR expansion is more appropriate to repre-
sent the data (LDA is equivalent to a first order HDMR expansion under its modeling
assumptions), although variances are slightly different between the classes. The small
sample sizes used in this simulation may impede quadratic classifiers to satisfacto-
rily estimate the distribution parameters, which may result in their poor performance.
Similar patterns are observed in [32, 33]. Additionally, given that the first order expan-
sion is sufficient to represent data, a second order HDMR model might suffer curse of

dimensionality.
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Identifying pairwise interactions

Here we evaluate the performance of MTM in identifying significant pairwise fea-
ture interactions. A comparison of MTM with the method of [9] is provided in the
Supplementary. We fix |[F| = 5000, with 20 global markers, 80 heterogeneous mark-
ers, and 2000 high variance non-markers. We again assume k = 10, ¢ = 2, 002 = 0.25,
012 = 0.64, and consider the 4 scenarios of the previous section for mean types and cor-
relation coefficients. Figure 6 provides the ROC curves of MTM for different marker and
correlation values when n = 40, averaging over 100 iterations. MTM performs best when
correlations are different between the two classes: red and blue lines denoting unequal
correlations for synergetic and marginal markers, respectively, enjoy a higher probably
of detection compared with black and magenta lines denoting equal correlations for
synergetic and marginal markers, respectively. Note the mean types (marginal or syner-
getic) have little effect on the ROC curves. Figure 7 provides ROC curves of the equal
correlation cases for different sample sizes, averaging over 100 iterations. As expected,
with increase in the sample size it becomes easier to detect pairwise interactions. To
benchmark MTM we compared it with the absolute conversion method of [9], which is
proposed as a “fast” algorithm. However, we observed it is computationally more inten-
sive than MTM. We considered marginal and synergetic markers with equal correlations,
fixed n = 40, and reduced the number of iterations to 50. Results are provided in the
Supplementary, in which MTM outperforms the method of [9].

Experimental data analysis

We apply LAS-HDMR, LABS-HDMR, and the comparison classifiers of the previous
section to datasets studying relapsing breast and lung cancer patients. We also evaluate
if MTM can detect significant pairwise gene interactions in realistic settings. We specif-
ically selected datasets resulting in tasks more challenging than healthy versus normal
labels. Such datasets are in particular challenging as data can be small in size and imbal-
anced (only a small portion of followed up patients may relapse). Additionally, breast
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Fig. 6 ROC curves of MTM method for detecting pairwise feature interactions for different marker and
correlation types when n = 40. Marker's class-conditioned means have almost no effect on the ROC curves
as we look for certain structures on the covariance matrix; however, correlation structures have a much larger
impact on ROCs. Probability of detection of much lower when correlations are equal for a fixed false alarm rate
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Fig. 7 ROC curves of MTM for detecting pairwise interactions for different sample sizes for (a) marginal and
(b) synergetic markers with equal correlations in both classes. Marker means have almost no effect on the
ROCs. MTM's ability to grasp dysregulated interactions in the challenging case of equal correlation
coefficients rapidly improves as sample size increases

and lung cancers are well studied in the literature, allowing us to evaluate if the detected
patterns are biologically plausible. A leukemia dataset is studied in the Supplementary.

Breast cancer
The data obtained in [34] and [35] deposited on gene expression omnibus (GEO) database
[36] with accession number GSE25066, containing expression levels of 397 relapse free
and 111 relapsing breast cancer patients, all of whom went through neoadjuvant taxane-
anthracycline chemotherapy. Data is based on the GPL96 platform, and is already pre-
processed and normalized. The dataset contains 22,283 probes, of which 20,967 map to
genes. We only use probes that map to genes in our analysis. First, 100 relapsing and
360 non-relapsing patients randomly select as training data, and the remaining points are
used for testing. The likelihood ratio test (LRT) statistic of [37], which is equivalent to
the optimal Bayesian filter scoring function under independent Gaussian models [27, 38]
under Jeffreys prior, is used to select the top 100 differentially expressed genes. We iterate
100 times.

2D and 3D t-SNE [39] plots using the cityblock distance are provided in Fig. 8, sug-
gesting the two classes do separate. It seems each class contains a few points which may
truly belong to the other class, i.e., each class is polluted with a small subpopulation truly
belonging to the other class. Alternatively, larger follow-up times may be necessary to fur-
ther determine if certain non-relapsing patients relapse, and hence should belong to class
1. The large number of non-relapsing patients that resemble relapsing patients reduces
the measured AUC. Table 1 lists the AUC of different classifiers on this dataset (over the
hold out test data). Figure 9a provides the ROC plots.

As Table 1 suggests, all methods do not enjoy a high AUC. We observed that the variant
of LAS-HDMR using RQDA with A = 0.8 achieved the highest AUC. The largest AUC

Table 1 AUC of classification algorithms for the cancer datasets

method LAS-HDMR  LABS-HDMR  RQDA RLDA SVM RF kNN GLM
breast cancer  64.21% 69.95% 62.70%  66.04%  5534%  60.87%  58.18%  67.55%
lung cancer 66.56% 67.67% 6547%  6662%  6303% 6687%  61.60%  68.22%

Page 14 of 27



Foroughi pour et al. BMC Bioinformatics (2020) 21:156 Page 15 of 27

8
15
Al
e, 00.0'
4t 10 - S %0 ¢ 0
o ."..‘.0.“
2t o $Y8e " esher,
o g s ologeAasd. o
2 of g XA PRIy s o
g g r ‘o‘ ',0 oy
. £ o PO 3 A0
; v 5 ™, ;13 Sy A
g A 3 2 .g‘r & o..’ Se
7l 1]
) : "‘.::5 T ey
*eoed B 0 of o
8 oo 8 4 .. ® o0
.. ° e Po -15 =L
10 F DAY o nonrelapsing | 10 o non-relapsing
-12 s s s . . . 5 2 10 v
-25 -20 -15 -10 -5 0 5 10 -10 40 30
t-SNE component 1 t-SNE component 1 -SNE component 2
(a) (b)
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for the variant of LAS-HDMR using RLDA was 63.12% obtained for A = 0.9. In con-
trast, LABS-HDMR seems to enjoy the highest AUC, obtained using RQDA with A = 0.1,
which is the closest tested variant to conventional QDA. This may suggest that a second
order expansion is not satisfactory enough for this dataset, emphasizing the need to look
at higher order expansions. Finally, Fig. 10a provides the Kaplan-Meier survivorship plots
based on the assigned labels to the test data, averaging over 100 iterations for LAS-HDMR
and LABS-HDMR. The figure provides extra assurance that indeed the proposed algo-
rithms separate the two classes, the approximate second order HDMR expansion of the
log-likelihood ratio, i.e., R(X), is an appropriate statistic to denote the “risk” of an event,
and the proposed methods can be further used in conjunction with other data analysis
tools. As t-SNE plots in Fig. 8 suggest, many low risk patients resemble high risk patients,
and we expect a well-designed classification rule to mislabel such points; otherwise, the
separating plane (curve) should be extremely complex, raising serious concerns of over-
fitting. This explains why many high risk patients have not relapsed up to the follow-up
time.

Although LAS-HDMR and LABS-HDMR may not yield high classification accuracy
similar to other classification algorithms, their glass box nature simplifies the process of
identifying genes and gene pairs that contribute the most to the classifier’s prediction. We
use all of the data for training, and use RQDA with A = 0.8 to obtain the log-likelihood
ratios. Table 2 lists the top 10 genes of LAS-HDMR and their risks. Many of the top
genes, such as IL8 [40], also known as C-X-C motif chemokine ligand 8 (CXCL8), and
growth regulating estrogen receptor binding 1 (GREB1) [41] are suggested to be affected
in breast cancer. Table 3 lists the top 10 LAS-HDMR gene pairs. Comparing Tables 2 and
3 we observe that gene interactions tend to have a larger risk than individual features.
Note all risks describe the average increase/decrease of the log likelihood ratio, and are
hence on the same scale for all genes and gene pairs. Scatter plots of several gene pairs
with interesting interactions is provided in the Supplementary). For example, we observed
either GREBL1 or carboxypeptidase B1 (CPB1) are over-expressed among non-relapsing
patients, and under-expression of both GREB1 and CPB1 is necessary to have a high risk



Foroughi pour et al. BMC Bioinformatics

(2020) 21:156

true positive
o
&
T

true positive
o
B

false positive

(a)

0.4 L/ =——LAS-HDMR | 4 0.4 ———LAS-HDMR | 4
= = =LABS-HDMR = = =LABS-HDMR
0.3 ——— RQDA 0.3 | —— RQDA Bl
= = =RLDA = = =RLDA
02 SVM 02 SVM J
kNN kNN
0.1 —RF 0.1 —RF 1
GLM GLM
0 L L - - 0 L L L -
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

false positive

(b)

Fig. 9 ROC curve of different classifiers for the (a) breast and (b) lung cancer datasets: (a) In the breast cancer
dataset LABS-HDMR uses RQDA to infer log-likelihood ratio of partial observations, greatly improves RQDA'’s
accuracy, and is followed by GLMs. LAS-HDMR closely follows GLM and RLDA, uses RQDA in its design,
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the lung cancer dataset GLM performs best, but is closely followed by LAS-HDMR and LABS-HDMR, which
both improve on the AUC of the intrinsic machinery they use for computing log-likelihood ratio of partial
observations

of relapse. Finally, many of the top gene-gene interaction pairs contain GREBI, signal
peptide CUB domain EGF-like 2 (SCUBE2), GATA Binding Protein 3 (GATA3), and IL8,
suggesting their interaction might be key to studying breast cancer. The variant of LABS-
HDMR that achieved the highest AUC used RQDA with A = 0.1, and is studied in detail

in the Supplementary.

Now we look for significant pairwise gene interactions. First, for each gene, we only con-
sider the probe ranking highest by LRT so that probes mapping to the same genes do not
disrupt the analysis, resulting in 13,211 different genes. This results in 87,258,655 tests.
We observed that MTM can be heavily affected by small subpopulations, heavy tails, and
outliers, and therefore used MATLAB’s built in isoutlier function with its default set-
tings to remove potential outliers before further analysis. Bounding the false discovery
rate (FDR) by 5% using the Benjamini-Hochberg (BH) procedure [42] 1,275,351 pairwise

o o
o © 4 ©
® & © a -
1
-
1
r

survivorship
1
1

o
N
o

——— LABS-HDMR low risk
——— LABS-HDMR high risk

= = =LAS-HDMR low risk “\ﬁ_\_
= = =LAS-HDMR high risk

0 0.5 1 1.5 2 25 3
time(years)

(a)

o
3

o
@
a

survivorship

S
©
a

S
©

oS
%
a

o
)

o
3
o

e
3

=4
@
o

[ |=—LABS-HDMR high risk

LABS-HDMR low risk

= = =LAS-HDMR low risk

= = =LAS-HDMR high risk

2 4 6 8 10 12
time(years)

(b)

Fig. 10 Kaplan-Meier survivorship plots for the (a) breast and (b) lung cancer datasets. (a) In the breast
cancer dataset high/low risk patients have a high/low chance of relapse withing the follow-up time. (b) In the
lung cancer dataset high/low risk patients have a high/low chance of relapse or death due to cancer withing
the follow-up time. Both LABS-HDMR and LAS-HDMR do separate the patients given input expression levels
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Table 2 Top breast cancer genes used for classification by LAS-HDMR

Rank Gene Risk Rank Gene Risk
1 ORM1, ORM2 092 6 ACADSB 0.75
2 IL8 0.87 7 PTOV1 0.75
3 ZNF395 0.85 8 ZNF673 0.75
4 GREB1 0.8 9 AR 0.74
5 TBC1D9 0.78 10 LGALS8 0.71

interactions are significant (about 1.46% of tested hypotheses). Table 4 lists several of
the top gene pairs and their adjusted p-values. Figure 11 provides scatter plots of sev-
eral gene pairs. We observe many interesting patterns that require further investigation:
(1) under-expression of both SAM pointed domain containing ETS transcription factor
(SPDEF) and MLPH, also known as synaptotagmin-like protein 2A (SLAC2A), increases
the risk of relapse, (2) over-expression of anterior gradient protein 2 homolog (AGR2) and
N-Acetyltransferase 1 (NAT1) is an indicator of low risk, over-expression of AGR2 and
under-expression of NAT1 is an indicator of “medium” risk, and under-expression of both
AGR?2 and NAT1 is an indicator of high risk, (3) over-expression of NAT1 or DNALI1 is
an indicator of low relapse risk. Comparing Fig. 11a and d suggests solute carrier fam-
ily 2 member 10 (SLC2A10) and MLPH are heavily correlated with a positive correlation
coefficient, which is indeed observed in the data as well.

Considering a weighted graph where nodes are genes and edge weights are — log p-value
of the gene pair, we observed many detected gene pairs construct highly connected clus-
ters. To verify if the selected gene pairs are biologically relevant we (a) associated each
gene with its smallest gene pair p-value, (b) selected the top 200 genes, (c) constructed
their graph, (d) used community detection algorithm of [43] to identify network clus-
ters, (e) selected the genes corresponding to the largest cluster, and (f) used Ingenuity
Pathway Analysis' (IPA) [44] to identify the networks associated with these genes only
using experimentally observed results as well as the top canonical pathways. The top
canonical pathways and the largest detected network are provided in Figs. 12 and 13,
respectively. Note the top ranking IPA gene network is identified with cellular develop-
ment, cellular growth, and cell cycle functions. The log fold changes, computed using
method of [45], were used to identify over/under-expressed genes in the network; how-
ever, as data is highly heterogeneous, these effects might not be highly pronounced.
Many of the selected genes are connected directly or indirectly with only one gene in
between. Literature review suggests many of the top IPA pathways are also affected in
breast cancer.

We now randomly leave out one point in each class, train LAS-HDMR, and look at
the genes and gene pair that yield the highest scores in absolute values for these two test
points. The minimum value for HDMR terms, either S(Xy) or S(Xj, /) was —3.62 and
—0.59 for the points in classes 0 and 1, corresponding to gene pairs GREB1 and NAT1, and
ZNF673 and ZNF391, respectively. The largest values were 3.64 and 14.32 respectively,
corresponding to the ERBB2 gene, and gene pair ZNF395 and PTOV1. Figure 14 plots
how the different genes and gene pairs are combined to arrive at the final log-likelihood
ratio estimate.

LQIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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Table 3 Top LAS-HDMR gene pairs of the breast cancer dataset

Rank Gene 1 Gene 2 Risk
1 GREB1 SCUBE2 224
2 GREB1 CPB1 223
3 ORM1, ORM2 GREB1 222
4 GREB1 IL8 222
5 ZNF395 GREB1 2.1

6 GREB1 GATA3 207
7 GREB1 NAT1 2.06
8 GREB1 TBC1D9 2.05
9 GREB1 ACADSB 203
n10 ORM1, ORM2 SCUBE2 202

Lung cancer

Data obtained in [46] is deposited on GEO with accession number GSE68465, contain-
ing expressions of 443 lung cancer patients. 279 patients whose cancer relapsed or died
within the follow up time comprise class 1, and the remaining 164 patients comprise class
0. This dataset is based on the GPL96 platform. We again only use probes mapping to
genes, perform a log-normalization step, randomly select 250 points in class 0 and 140
points in class 1 for training, use the remaining points for testing, use the top 100 LRT
genes for classifier design which we evaluate on test data, and iterate 100 times. Before we
train the classifiers we provide 2D and 3D t-SNE [39] plots using the cityblock distance in
Fig. 15, suggesting the two classes do separate; however, many patients who relapsed or
died within six year (high risk) resemble those who survived (low risk). Both t-SNE plots
suggest there are at least two high risk subpopulations.

Table 1 lists the AUCs (over test data), and Fig. 9b provides the ROC curves. Again we
observe that none of the classifiers enjoy a very high AUC, and both LAS-HDMR and
LABS-HDMR enjoy competitive performance compared with other classifiers. This may
again suggest that a quadratic model might not be enough to capture the complicate struc-
ture of data. In this dataset, the variants of LAS-HDMR and LABS-HDMR achieving the
highest AUCs are RLDA with A = 0.1 and RLDA with A = 0.2, respectively. Figure 10b
provides the Kaplan-Meier survivorship plots based on the assigned labels to the test data,
averaging over 100 iterations for LAS-HDMR and LABS-HDMR, providing extra assur-
ance that indeed the proposed algorithms separate the two classes. Here, the large ratio
of high risk patients who resemble low risk ones in the t-SNE plots of Fig. 15 suggest that

Table 4 Top breast cancer gene pairs and adjusted p-values (x 1072%)

Rank gene 1 gene 2 adj p-value
1 SPDEF MLPH <1074
2 MSN SPDEF <107
3 SCGB2A2 SCGB1D2 <107
4 TFF3 SPDEF <107
5 RHOB SPDEF <1074
11 SLC44A4 SPDEF 00014
12 SPDEF FAM174B 0.0064
13 FOXA1 NATI 0.0128
14 GATA3 SPDEF 0.0477

15 TSPAN1 SPDEF 0.0477
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Fig. 11 Scatter plots of gene pairs with significant interactions for the breast cancer dataset. Red denotes
relapsing breast cancer patient within the follow-up time and blue denotes patients who did not relapse: (a)
decreased expression of SPDEF and MLPH increases relapse risk, (b) over-expression of both AGR2 and NAT1
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over-expression of either gene is an indicator of low relapse risk, (d) decreased expression of both SPDEF and
SCL2A10'is an indicator of high relapse risk

a reasonable decision rule would mislabel many high risk patients as low risk, explaining
the low survivorship of the estimated low risk patients in Fig. 10b.

Table 5 lists the top 10 genes of LAS-HDMR and their associated risks. We again
observe that many of the top genes, such as bromodomain PHD finger transcription fac-
tor (BPTF) [47] and LUC?7 like 3 pre-MRNA splicing factor (LUC7L3) [48], are shown or
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Fig. 13 The largest IPA gene network corresponding to the largest gene cluster of MTM for the breast cancer
dataset. Red/Green denote genes which have increased/decreased expression among relapsing patients
compared with non-relapsing patients. Solid/Dashed lines denote direct/indirect interactions. Genes
highlighted with magenta borders are identified with cellular development, cellular growth, and cell cycle
functions. ESRT and CCND1 seem to be interacting with each other as well as many other genes whose
interactions are affected in breast cancer. The faded colors denote smaller fold changes. As many genes
involved in breast cancer relapse are heterogeneous with a small sub-population heavily affected, fold
changes might fail to grasp the extent of the gene effect

suggested to be affected in lung cancer. Table 6 lists the top 10 gene pairs and their asso-
ciated risks. A deeper analysis, including the results of LABS-HDMR, is provided in the
Supplementary.

For each gene we only use the probe ranking highest by LRT giving us 13,211 different
genes and 8,758,655 pairwise dependence tests. We also perform outlier detection to fur-
ther improve identifying general gene interaction patterns. Bounding FDR by 5% using
BH 701410 gene pairs are significant, about 0.8% of all tests. Table 7 lists several of the top

test point in class 0

test point in class 1

Risk of a gene/genepair

| 1 | I 1 | I I 1 L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

gene/gene pair index

Fig. 14 The associated un-normalized risk scores, i.e., S(X¢) and S(thfl), of two test points. Genes and gene
pairs which are not used in the decision rule automatically get a risk of zero. Note most genes/gene pairs
assign a larger risk to the point in class 1 (high risk patients) to the point in class 0 (low risk patient)
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risk) patients: (@) 2D and (b) 3D plots. In both figures blue and red denote the surviving and relapsing/dead
patients, respectively. Both t-SNE plots suggest there are at least two high risk subpopulations
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gene pairs and their adjusted p-values. Figure 16 provides scatter plots. We again observe
MTM detects interesting pairwise interactions: (a) It seems there is a subpopulation of
high risk lung cancer patients with poor survival for whom BCL2 associated transcription
factor 1 (BCLAF1) is under-expressed and interleukin enhancer binding factor 3 (ILF3)
is over-expressed. For other patients, irrespective of their label, these two genes are pos-
itively correlated. (b) Patients for whom both laminin subunit gamma 2 (LAMC2) and
cadherin 3 (CDH3) are over-expressed have a high chance of relapse/death, those for
whom CDH3 is over expressed and LAMC2 is under-expressed have a “medium” chance
of relapse/death, and those for whom both CDH3 and LAMC?2 are under-expressed have
a low chance of relapse/death. (c) Under expression of either BCLAF or SOS Ras/Rho
guanine nucleotide exchange factor 2 (SOS2) can be used as an indicator of poor survival.
(d) Patients for whom both Annexin A1 (ANXA1) and CDH3 are over-expressed have a
medium chance of relapse/death, those for whom CDH3 is over expressed and ANXA1
is under-expressed have a high chance of relapse/death, and those for whom both CDH3
and ANXA1 are under-expressed have a low chance of relapse/death. Finally, we again
perform the IPA analysis similar to the breast cancer dataset, expect we include highly
probable interactions in the analysis as well as experimentally observed ones. Figure 17
plots the detected network, which is associated with cell cycle, cellular assembly and
organization, and cellular function and maintenance. Again observe many of the selected
genes are connected with at most two genes in between. A deeper analysis is provided in
the Supplementary.

Table 5 Top lung cancer genes used for classification by LAS-HDMR

Rank Gene Risk Rank Gene Risk

1 BPTF 2.5955 6 KIAAT033 1.5576
2 SEC63 24024 7 LUC7L3 1.398
3 UBXN4 1.7646 8 SON 1.3294
4 SRSF2IP 1.6672 9 PPIG 1.277
5 ATRX 1.5954 10 SF3B1 1.2601
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Table 6 Top LAS-HDMR gene pairs for the lung cancer dataset

Rank Gene 1 Gene 2 Risk

1 ATRX DDX17 0.4683
2 ZEB1 BCLAF1 0.4663
3 IQGAP1 BPTF 0.4583
4 SON UBXN4 0.4486
5 PRMT2 RUFY3 0.4433
6 ATP6V1G2, BAT1 SEC63 0.4402
7 LUC7L3 SMC5 04275
8 RBL2 MLL 0.3951
9 SRSF2IP ENC1 0.3643
10 SPINT UBE2W 0.356
Discussion

In the simulations and real data analyses we observed that both LAS-HDMR and
LABS-HDMR enjoy competitive prediction accuracies compared with several popular
classification rules. Additionally, they explicitly reveal how individual features or pairwise
feature interactions motivate certain decisions, and how unique patterns of a new obser-
vation motivate its predicted label. Scatter plots of breast and lung cancer gene pairs in
Figs. 11 and 16, respectively, suggest a quadratic classifier is adequate for predicting class
labels from each gene pair; however, AUCs are not very high. This suggests higher order
expansions, i.e., the joint interaction of three genes or more, are necessary to increase pre-
diction accuracy. In these datasets we observe LABS-HDMR assigns larger risks to the
top gene pairs compared with individual genes (see Tables 2 and 3 for breast cancer and
Tables 5 and 6 for lung cancer), suggesting gene interactions are crucial to reliable predic-
tion; not that linear classifiers miss important information in the data, but that pairwise
interactions seem to carry more information about class labels than individual genes. In
the leukemia dataset (studied in the Supplementary) we observed both LAS-HDMR and
LAS-HDMR perform competitively, but all methods seem to enjoy high AUCs (AUC was
larger than 94% for all classifiers). In particular, we observed highest AUCs for linear clas-
sifiers, suggesting there is no need to use more complex rules. In particular, quadratic
rules such as RQDA perform inferior to LAS-HDMR and LABS-HDMR. Finally, in the
leukemia dataset we observe gene pairs have much smaller risks compared with individual
genes.

Table 7 Top lung cancer gene pairs and adjusted p-values (x 10~8)

Rank Gene 1 Gene 2 adj p-value
1 BCLAF1 ILF3 <1074
2 CDH3 CST6 0.0001
3 LAMC2 CDH3 0.0001
4 CDH3 PLAU 0.0006
5 S100A10 CDH3 0.0014
6 SMARCC1 BCLAF1 0.0015
7 BCLAF1 PCM1 0.004

8 ITGA3 CDH3 0.004

9 KRT19 CDH3 0.0064
10 BCLAF1 UBN1 0.0088
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Fig. 16 Scatter plots of gene pairs with significant interactions for the lung cancer dataset. Blue denotes
patients who survived for at least sic years after diagnosis (low risk) and red denotes patients who died or
relapsed within six years (high risk). It seems: (@) for a subpopulation of high risk patients BCLAF1 has
decreased expression and ILF3 is over-expressed, (b) decreased expression of LAMC2 and CDH3 is an
indicator of low risk, decreased expression of LAMC2 and over-expression of CDH3 is an indicator of

“medium’” risk, and over-expression of both is an indicator of high risk, (c) decreased expression of BCLAF1 or

SOS2 compared with each other is an indicator of high risk, and (d) decreased expression of CDH3 is an

over-expression of both results in medium risk

indicator of low risk, over-expression of CDH3 and low expression of ANXAT is an indicator of high risk, and

MTM is an interesting test, allowing to extract co-expression patterns that differ

between the two classes, i.e., identify pairwise interactions that differ between the two

classes. MTM efficiently takes advantage of information in the data and is computation-

ally fast. This is in contrast to several recent pipelines proposed for analyzing gene-pairs

that are rather computationally intensive or may rely on large datasets (see [4, 5, 7—10] for

examples).

Conclusion and future work

Glass box models for binary classification open many avenues of research for analyzing

genomic data as they enable us to make meaningful hypotheses about the underlying bio-

logical dysfunctions that are involved in a disease. To that end, HDMR seems to be an

interesting theory for studying low dimensional glass-box models. The limitation of this

approach in its current form is the assumption of known mechanisms that output the

log-likelihood ratios given any partial observation. On the other hand, different feature

sets can use different classification rules tailored to their joint distribution. This provides
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Fig. 17 The largest IPA gene network corresponding to the largest gene cluster of MTM for the lung cancer
dataset. Green/Red denote decreased/increased expression among high risk patients compared with low risk
patients. Solid/Dashed lines denote direct/indirect interactions. Genes highlighted with magenta borders are
associated with cell cycle, cellular assembly and organization, and cellular function and maintenance. Many
dysregulated gene pairs seem to be affected via a mediating gene. Note the effect of each individual gene is
more pronounced than the breast cancer dataset

HDMR with tremendous flexibility, for instance, we may use QDA for some feature while
a GLM is used for another feature pair. While this is a very exciting potential benefit of
HDMR, we did not really exploit it in our current analysis and leave its careful consider-
ation for possible future work. Another future direction for improving LAS-HDMR and
LABS-HDMR is the development of more efficient methods of parameter selection to
reduce computation cost of the currently implemented grid search approach.

The ability of MTM to identify pairwise interactions containing information not
encoded in the likelihood function of each feature is a very practical contribution of our
work. Here, instead of determining if two features are dependent, the goal is to verify if the
pairwise interactions contain additional information about the classes which no model
can extract by observing features individually. To do so, we developed a test where the null
assumes the first order HDMR expansion is sufficient to explain the class differences. In
the case of Gaussian features this translates into testing specific structures on the covari-
ance matrices. Synthetic simulations and experimental data analyses suggest that MTM
is indeed a powerful tool to extract dysregulated pairwise gene co-expression patterns
that motivate new hypotheses about cancer biology. In the real data analyses we observed
many pairs might have a gene in common, for instance, SPDEF in the breast cancer dataset
and BCLAF1 and CDH3 in the lung cancer dataset. These patterns motivate hypotheses
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not only about gene pairs, but more generally about heavily correlated marker families.
Graph representations are interesting tools for analyzing families of pairwise interactions,
and graph community detection algorithms can infer marker interaction blocks given
pairwise interaction graphs. However, future work should investigate the use of HDMR
for directly inferring such structures. To that end, LABS-HDMR seems to be an ideal first
step, where its constructed blocks can be potential first approximations to marker families
of interest.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-3486-x.

Additional file 1: Supplementary. The supplementary contains extra information regarding the synthetic
simulations and real data analysis. It also studies a Leukemia dataset not discussed in the main manuscript.

Abbreviations

AGR2: Anterior gradient protein 2 homolog; ANXAT: Annexin A1; AUC: Area under the ROC curve; BCLAF1: BCL2
associated transcription factor 1; BH: Benjamini-Hochberg step-up procedure; BPTF: Bromodomain PHD finger
transcription factor; CDH3: Cadherin 3; CPB1: Carboxypeptidase B1 ; CXCL8: C-X-C motif chemokine ligand 8; FDR: False
discovery rate; GATA3: GATA binding protein 3; GEO: Gene expression omnibus; GLM: Generalized linear model; GREB1:
Growth regulating estrogen receptor binding 1; HDMR: High dimensional model representation; ILF3: Interleukin
enhancer binding factor 3; IPA: Ingenuity pathway analysis; kNN: k nearest neighbors; LABS-HDMR: Linear approximation
of block second order HDMR expansion; LAMC2: Laminin subunit gamma 2; LAS-HDMR: Linear approximation second
order HDMR expansion; LASSO: Least absolute shrinkage and selection operator; LDA: Linear discriminant analysis; LRT:
Likelihood ratio test; LUC7L3: LUC7 like 3 pre-MRNA splicing factor; MSE: Mean squared error; MTM: Multiple test mixing
for pairwise interactions; NAT1: N-Acetyltransferase 1; QDA: Quadratic discriminant analysis; RF: Random forest; ROC:
Receiver operator characteristic; RLDA: Regularized linear discriminant analysis; RQDA: Regularized quadratic discriminant
analysis; SLC2A10: Solute carrier family 2 member 10; SOS2: Ras/Rho guanine nucleotide exchange factor 2; SPDEF: SAM
pointed domain containing ETS transcription factor; SCUBE2: Signal peptide CUB domain EGF-like 2; SLAC2A:
Synaptotagmin-like protein 2A; SVM: Support vector machine; TCGA: The cancer genome atlas

Acknowledgements
Not applicable.

Authors’ contributions

AF and GR developed the proposed approach and performed analyses. AF drafted the initial manuscript. LAD, AF, MP,
and GR provided comments on the draft and helped edit the manuscript. All authors reviewed and approved the final
manuscript. AF is currently at the Jackson laboratory for genomic medicine.

Funding
This work was supported by the National Science Foundation (DMS 1853587 and DMS 1923038 to GR). The funding body
did not play any role in the design of the study, analysis and interpretation of data, or in writing the manuscript.

Availability of data and materials
All cancer data used in this work is publicly available via GEO database accession numbers GSE25066 and GSE68465. The
synthetic datasets are available upon request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese laboratories, 2015 Neil Ave.,
43210 Columbus, USA. 2Depar‘[mem of Mathematics, The Ohio State University, 100 Math Tower, 31 West 18th Ave,,
43210 Columbus, USA. 3Department of Biomedical Informatics, The Ohio State University, 1585 Neil Ave, 43210
Columbus, USA. 4Co\lege of Public Health, 250 Cunz Hall, 1841 Neil Ave., 43210 Columbus, USA.

Received: 27 November 2019 Accepted: 8 April 2020
Published online: 25 April 2020

Page 25 of 27


https://doi.org/10.1186/s12859-020-3486-x

Foroughi pour et al. BMC Bioinformatics (2020) 21:156 Page 26 of 27

References

1.

2.

19.
20.

21.
22.
23.
24.
25.
26.
27.

28.

29.

30.

31
32.

33.

34.

35.

36.

37.

38.

Sima C, Dougherty ER. What should be expected from feature selection in small-sample settings. Bioinformatics.
2006;22(19):2430-6.

Sima C, Dougherty ER. The peaking phenomenon in the presence of feature-selection. Pattern Recognit Lett.
2008;29(11):1667-74.

Tutuncuoglu B, Krogan NJ. Mapping genetic interactions in cancer: a road to rational combination therapies.
Genome Med. 2019;11(1):62.

Regan-Fendt KE, Xu J, DiVincenzo M, Duggan MC, Shakya R, Na R, Carson WE, Payne PR, LiF. Synergy from gene
expression and network mining (syngenet) method predicts synergistic drug combinations for diverse melanoma
genomic subtypes. NPJ Systs Biol Appl. 2019;5(1):1-15.

Deng X, Das S, Valdez K, Camphausen K, Shankavaram U. SI-biodp: Multi-cancer interactive tool for prediction of
synthetic lethality and response to cancer treatment. Cancers. 2019;11(11):1682.

Henkel L, Rauscher B, Boutros M. Context-dependent genetic interactions in cancer. Curr Opin Genet Dev. 2019;54:
73-82.

ChenY, Cao D, Gao J, Yuan Z. Discovering pair-wise synergies in microarray data. Sci Rep. 2016;6:30672.
Watkinson J, Wang X, Zheng T, Anastassiou D. Identification of gene interactions associated with disease from
gene expression data using synergy networks. BMC Syst Biol. 2008;2(1):10.

Xing P, Chen'Y, Gao J, Bail, Yuan Z. A fast approach to detect gene-gene synergy. Sci Rep. 2017;7(1):1-8.
Chopra P, Lee J, Kang J, Lee S. Improving cancer classification accuracy using gene pairs. Plos ONE. 2010;5(12):.

Li G, Rabitz H. General formulation of HDMR component functions with independent and correlated variables. J
Math Chem. 2012;50(1):99-130.

LuR, Wang D, Wang M, Rempata GA. Estimation of Sobol’s sensitivity indices under generalized linear models.
Commun Stat-Theory Methods. 2018;47(21):5163-95.

Hooker G. Generalized functional ANOVA diagnostics for high-dimensional functions of dependent variables. J
Comput Graph Stat. 2007;16(3):709-32.

Shah RD, Peters J. The hardness of conditional independence testing and the generalised covariance measure. arXiv
preprint arXiv:1804.07203. 2018.

Gupta AK, Tang J. Distribution of likelihood ratio statistic for testing equality of covariance matrices of multivariate
Gaussian models. Biometrika. 1984;71(3):555-9.

Crow M, Paul A, et al. Exploiting single-cell expression to characterize co-expression replicability. Genome Biol.
2016;17(1):101.

van Dam S, Vésa U, et al. Gene co-expression analysis for functional classification and gene-disease predictions.
Brief Bioinforma. 2017;19(4):575-92.

Ruan J, Dean AK, et al. A general co-expression network-based approach to gene expression analysis: comparison
and applications. BMC Syst Biol. 2010;4(1):8.

Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8(1):565.

Gill R, Datta S, Datta S. A statistical framework for differential network analysis from microarray data. BMC
Bioinformatics. 2010;11(1):95. https://doi.org/10.1186/1471-2105-11-95.

Plan'Y, Vershynin R. One-bit compressed sensing by linear programming. Commun Pure Appl Math. 2013;66(8):
1275-97.

Plan'Y, Vershynin R. Robust 1-bit compressed sensing and sparse logistic regression: A convex programming
approach. IEEE Trans Inf Theory. 2013;59(1):482-94.

Wasserman L. All of Nonparametric Statistics, 1st edn. New York: Springer; 2010.

Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3):75-174.

Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis. Phys Rev E. 2009;80(5):
056117.

Hua J, Tembe WD, et al. Performance of feature-selection methods in the classification of high-dimension data.
Pattern Recog. 2009;42(3):409-24.

Foroughi pour A, Dalton LA. Heuristic algorithms for feature selection under Bayesian models with block-diagonal
covariance structure. BMC Bioinformatics. 2018;19(3):70.

Foroughi pour A, Dalton LA. Robust feature selection for block covariance Bayesian models. In: Proceedigns of IEEE
International Conference on Acoustics, Speech and Signal Processing; 2017. p. 2696-700.

Fukunaga K. Introduction to Statistical Pattern Recognition, 2nd edn. Boston, MA: Academic Press; 1990. https://doi.
0rg/10.1016/B978-0-08-047865-4.50005-3. http://www.sciencedirect.com/science/article/pii/
B9780080478654500053.

Theodoridis S, Koutroumbas K. Pattern Recognition, 4th edn. Boston, MA: Academic Press; 2009. https://doi.org/10.
1016/B978-1-59749-272-0.50005-0. http://www.sciencedirect.com/science/article/pii/B9781597492720500050.
Bishop CM. Pattern Recognition and Machine Learning, 1st edn. New York: Springer; 2006.

Lu J, Plataniotis KN, et al. Regularized discriminant analysis for the small sample size problem in face recognition.
Pattern Recog Lett. 2003;24(16):3079-87.

Wu B, Abbott T, et al. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry
data. Bioinformatics. 2003;19(13):1636-43.

[toh M, Iwamoto T, et al. Estrogen receptor (ER) mRNA expression and molecular subtype distribution in
ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat. 2014;143(2):403-9.

Hatzis C, PusztaiL, et al. A genomic predictor of response and survival following taxane-anthracycline
chemotherapy for invasive breast cancer. JAMA. 2011;305(18):1873-81.

Edgar R, Domrachev M, et al. Gene expression omnibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res. 2002;30(1):207-10.

Pearson ES, Neyman J. On the problem of two samples. In: Neyman J, Pearson ES, editors. Joint Statistical Papers
1967;1930. p.99-115.

Foroughi pour A, Dalton LA. Optimal bayesian filtering for biomarker discovery: Performance and robustness.
|IEEE/ACM Trans Comput Biol Bioinforma (to appear). 2018.


https://doi.org/10.1186/1471-2105-11-95
https://doi.org/10.1016/B978-0-08-047865-4.50005-3
https://doi.org/10.1016/B978-0-08-047865-4.50005-3
http://www.sciencedirect.com/science/article/pii/B9780080478654500053
http://www.sciencedirect.com/science/article/pii/B9780080478654500053
https://doi.org/10.1016/B978-1-59749-272-0.50005-0
https://doi.org/10.1016/B978-1-59749-272-0.50005-0
http://www.sciencedirect.com/science/article/pii/B9781597492720500050

Foroughi pour et al. BMC Bioinformatics (2020) 21:156 Page 27 of 27

39. Maaten Lvd, Hinton G. Visualizing data using t-sne. J Mach Learn Res. 2008;9(Nov):2579-605.

40. Finak G, Bertos N, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14(5):
518-27.

41. Rae JM, Johnson MD, et al. GREB1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer
Res Treat. 2005;92(2):141-9.

42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J R Stat Soc Ser B (Methodol). 1995289-300.

43. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech
Theory Exp. 2008;2008(10):10008.

44, Kramer A, Green J, et al. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2013;30(4):523-30.

45. Zhou W, Wang V, et al. A standardized fold change method for microarray differential expression analysis used to
reveal genes involved in acute rejection in murine allograft models. FEBS Open Bio. 2018;8(3):481-90.

46. Shedden K, Taylor JMG, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site,
blinded validation study. Nat Med. 2008;14(8):822-7.

47. Dai M, LuJ-J, et al. BPTF promotes tumor growth and predicts poor prognosis in lung adenocarcinomas.
Oncotarget. 2015;6(32):33878-92.

48. LuY, Wang L, et al. Gene-expression signature predicts postoperative recurrence in stage | non-small cell lung
cancer patients. PloS ONE. 2012;7(1):30880.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

o gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC




	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	High dimensional model representation
	Our contribution

	Methods
	HDMR expansion
	Approximate second order HDMR for classification
	Identifying pairwise feature interactions

	The classification algorithm
	The block model extension

	Synthetic simulations
	Identifying pairwise interactions

	Experimental data analysis
	Breast cancer
	Lung cancer

	Discussion
	Conclusion and future work
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3486-x.
	Additional file 1

	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

