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Abstract: Cyclic nucleotide phosphodiesterases (PDEs) represent one of the key targets in the
research field of intracellular signaling related to the second messenger molecules cyclic adenosine
monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP). Hence, non-invasive
imaging of this enzyme class by positron emission tomography (PET) using appropriate isoform-
selective PDE radioligands is gaining importance. This methodology enables the in vivo diagnosis
and staging of numerous diseases associated with altered PDE density or activity in the periphery
and the central nervous system as well as the translational evaluation of novel PDE inhibitors
as therapeutics. In this follow-up review, we summarize the efforts in the development of novel
PDE radioligands and highlight (pre-)clinical insights from PET studies using already known PDE
radioligands since 2016.

Keywords: positron emission tomography; cyclic nucleotide phosphodiesterases; PDE inhibitors;
PDE radioligands; radiochemistry; imaging; recent (pre-)clinical insights

1. Introduction

This follow-up of our first review in 2016 [1] aims to report on (I) novel radioligands
for imaging of cyclic nucleotide phosphodiesterases (PDEs) with positron emission to-
mography (PET) and (II) recent (pre-)clinical insights from PET studies using already
known PDE radioligands. The biological and pathophysiological background of PDEs has
previously been summarized [1] and thus, this review will be focused only on the current
radiotracer development as well as the latest research findings. Briefly, PDEs are a class
of intracellular enzymes that are expressed throughout the body. They are encoded by
21 genes and divided into 11 families that are subdivided into various subfamilies with
different isoforms. Their central role is to hydrolyze the second messenger molecules, cyclic
adenosine monophosphate (cAMP) and/or cyclic guanosine monophosphate (cGMP) and,
therefore, to regulate the intracellular levels as well as the signaling cascades of these cyclic
nucleotides. Several PDE inhibitors have been developed as therapeutics for treatment
of various diseases like neurological, cardiovascular, immune or inflammatory disorders,
cancer, and metabolism. However, the link between altered PDE expression and/or activity
and pathophysiological effects often remains unclear. Hence, in vivo imaging and quan-
tification of PDEs with appropriate radioligands for PET is commended as an important
research and translational tool in related (pre-)clinical investigations.

To the best of our knowledge, there is still a lack of PET radioligands for the PDE
families 3, 6, 8, 9, and 11. Herein, we will review novel radioligands as well as current
results from (pre-)clinical PET studies related to the PDEs 1, 2A, 4, 5, 7 and 10A.
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2. PDE1 Radioligands

PDE1 is one of dual-substrate specific PDEs that hydrolyses both cyclic nucleotides
cAMP and cGMP. The special characteristic of the PDE1 family is the calcium/calmodulin-
dependent regulation of the enzyme activity. Hence, PDE1 is suggested as an integration
point for intracellular calcium and cyclic nucleotide signaling cascades [2]. The PDE1
enzyme is encoded by the three genes PDE1A, PDE1B and PDE1C, which are all expressed
in the brain where PDE1B represents the most abundant PDE1 isoform. In the periphery,
PDE1A is predominant in the kidneys, while PDE1C is highly expressed in the heart [3].
It is presumed, that PDE1-specific inhibitors might be suitable for the treatment of vari-
ous neuropsychiatric and neurodegenerative diseases, like attention deficit hyperactivity
disorder, depression, Parkinson’s disease and Huntington’s disease [4–7].

The first 11C- or 18F-labeled radioligands for PET imaging of PDE1 have been claimed
in a patent in 2011 [8] as already reviewed by Andrés et al. [9]. However, it seems that fur-
ther publications regarding subsequent biological investigations of these PDE1 radioligands
are up to now not available. At the international symposium of functional neuroreceptor
mapping of the living brain (NRM) in 2018, Kealey et al. [10] reported on the preliminary
in vivo evaluation of the novel PDE1-specific radioligand (±)-[11C]PF-04822163 ([11C]1,
see Scheme 1). Out of a series of quinazoline-based PDE1-selective inhibitors developed
by Humphrey et al. [11], compound 1 proved to be the most potent candidate (Scheme 1)
and was thus selected for 11C-labeling. Starting from the corresponding phenol precursor,
[11C]1 has been synthesized by O-methylation using [11C]CH3I [10] (Scheme 1).
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PET imaging studies in rats showed high initial brain uptake of [11C]1 with a peak
standardized uptake value (SUV) of 7 at 1 min post injection (p.i.), followed by a fast
washout [10]. In the target region striatum, only slightly higher accumulation of [11C]1
compared to the reference region cerebellum was observed, indicating high non-specific
binding. Metabolite analysis revealed low in vivo stability with 45% and 30% of intact
[11C]1 in plasma at 5 min and 10 min p.i., respectively, while a single polar radiometabolite
was detected [10]. Kealey et al. suggested that the fast degradation of [11C]1 causes
the rapid brain clearance, but further studies to investigate the radioligand kinetics and
specificity of binding are required [10]. Overall, the short brain retention and low metabolic
stability might limit the applicability of [11C]1 for PET imaging of the PDE1 enzyme in
the brain.

3. PDE2A Radioligands

The cAMP and cGMP dual-substrate specific PDE2A enzyme is abundantly expressed
in the brain, particularly in structures of the limbic system [12,13], indicating an important
role in the pathophysiology of neurodegenerative and neuropsychiatric diseases like
Alzheimer’s disease, schizophrenia and dementia [14,15].

Since 2016, only one novel 18F-labeled radioligand for PET imaging of PDE2A,
[18F]BIT1 ([18F]2, see Figure 1), has been reported by our group [16]. This benzoimidazotr-
iazine-based compound is a result of medicinal chemistry studies [17] to develop a PDE2A-
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specific radioligand with improved metabolic stability compared to our previous series
of pyridoimidazotriazine derivatives with [18F]TA5 ([18F]3, Figure 1) as the most potent
candidate [1,18]. The structural modification of compound 3 led to our novel derivative 2
with a 16-fold decreased selectivity over PDE10A, which is also highly expressed in the
striatum [3], while keeping the high PDE2A inhibitory potency [16,17] (Figure 1).
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Figure 1. Molecular structures and IC50 values for PDE2A and PDE10A of ([18F])2 [16,17], ([18F])3 [18], ([18F])4 [19] and the
PDE2A inhibitor PF-05180999 [20].

The in vitro metabolic stability of 2 has been proven by incubation with mouse liver
microsomes and thus, this compound was selected for 18F-labeling starting from the corre-
sponding nitro precursor (see Scheme 2). Metabolism studies in mice revealed sufficient
stability with 78% of intact [18F]2 in the brain at 30 min p.i. [16] demonstrating that the
structural modifications resulted in a significantly improved in vivo stability compared
to [18F]3 (10% intact radioligand in the mouse brain at 30 min p.i. [18]). In PET imaging
studies with mice, [18F]2 showed good brain penetration with a SUV of 0.7 at 5 min p.i.
However, a homogenous and non-specific activity distribution in the whole brain was
observed which is consistent with the in vitro autoradiography on pig brain sections in-
dicating high off-target binding of [18F]2 [16]. Thus, we are currently working on further
derivatives with enhanced PDE2A specificity and high metabolic stability.
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Scheme 2. Radiosynthesis of [18F]2 [16] (EOB = end of bombardment).

Besides the ongoing efforts of our group to develop a suitable PDE2A radioligand,
Chen et al. [21] reported on the pre-clinical evaluation of the already known and highly
PDE2A-selective [18F]PF-05270430 ([18F]4, see Figure 1), developed by Pfizer Inc. [14,19],
in non-human primates. Briefly, [18F]4 has previously been evaluated in healthy volunteers
showing its suitability for PET imaging of PDE2A in the human brain [1,22,23]. The aim
of the PET study in monkeys, performed in parallel, was to verify whether [18F]4 is an
appropriate radioligand for target occupancy studies in the assessment of novel PDE2A
inhibitors as therapeutics [21]. Chen et al. performed the radiosynthesis of [18F]4 by
two different methods using (I) tetra-n-butylammonium [18F]fluoride ([18F]TBAF) in tert-
amyl alcohol according to Zhang et al. [19] or (II) K+/[18F]F−/K2.2.2-carbonate complex as
described by Morley et al. [24] but in N,N-dimethylformamide (DMF) instead of dimethyl
sulfoxide (DMSO) [21] (see Scheme 3).
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In vivo metabolism studies in rats revealed 30–46% and 93–95% of intact [18F]4 at
30 min p.i. in plasma and striatum, respectively [21]. Chen et al. reported that most of
the more polar radiometabolites are not supposed to enter the brain. However, only the
results from analysis of the rat striatum (caudate nucleus and putamen) are provided. In
rhesus monkeys, interanimal differences in metabolism have been described with 71%,
35%, and 55% of intact radioligand in plasma at 30 min p.i. [21]. Furthermore, it is stated
that the results of the radiometabolite analysis of rat and monkey plasma are comparable
indicating no significant species differences in the in vivo degradation of [18F]4. Baseline
PET imaging studies in rhesus monkeys showed high activity uptake in the PDE2A-rich
brain regions caudate nucleus and putamen as well as fast clearance from the whole
brain [21]. Dose-dependent blocking of [18F]4 uptake was achieved with a reduction of
73% in striatal binding potential at 2 mg/kg of PF-05180999 [20] (Figure 1) as blocking
agent indicating high specific binding of the radioligand. Target occupancy (TO) studies
with PF-05180999 and [18F]4 in cynomolgus monkeys revealed a dose-dependent range
of striatal TO values from 3% to 72% consistent with the mean plasma exposure of PF-
05180999 (40.2–240.0 ng/mL with an estimated target binding half maximal effective
concentration of 69.4 ng/mL) [21]. Thus, [18F]4 is stated as a suitable radioligand to measure
the relationship between plasma concentration of the PDE2A inhibitor PF-05180999 and
its TO in the monkey brain by PET. Interestingly, a considerably higher brain uptake of
[18F]4 in cynomolgus monkeys compared to rhesus monkeys was observed while showing
similar uptake patterns, kinetics and blocking effects [21]. Chen et al. discussed two
possible reasons for that, namely higher PDE2A brain levels or slower metabolism in
cynomolgus monkeys. However, metabolism studies of [18F]4 have not yet been performed
in cynomolgus monkeys and thus, the different brain uptake levels in these two monkey
species remain unclear [21]. Based on the published results from the pre-clinical [19,21]
and first in-human studies [22,23], [18F]4 is regarded as particularly suitable radioligand
for visualization and quantification of the PDE2A enzyme in the brain by PET.

4. PDE4 Radioligands

The intensively studied cAMP-specific PDE4 family is encoded by the four genes
PDE4A, B, C, and D [25,26]. Out of these, PDE4B and PDE4D are the most abundantly
expressed PDE4 mRNAs in the periphery while in the brain PDE4B is the main present
isoform [3,27]. Alterations of PDE4 activity are related to disorders of the neurological,
immune and inflammatory system, particularly depression, Alzheimer’s disease, chronic
obstructive pulmonary disease and asthma [27–31].
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4.1. Recent [11C]Rolipram Positron Emission Tomography (PET) Studies

In various (pre-)clinical studies, the well-known and non-subtype-specific PDE4 ra-
dioligand [11C]rolipram [32,33] (see Figure 2) has been demonstrated to be valuable for
in vivo evaluation of the enzyme and the related cAMP signaling pathways by PET [9,34–37].
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and the PDE4 inhibitors GSK356278 [41] and roflumilast [42].

Accordingly, a lot of new insights from PET studies with [11C]rolipram have been
published between 2017 and 2020. Fujita et al. [43] reported on a ~20% decrease of
[11C]rolipram binding in the brain of unmedicated patients with major depressive disorder
(MDD) compared to healthy controls indicating a significantly impaired cAMP signaling.
Treatment with a selective serotonin reuptake inhibitor (SSRI) resulted in an increased
uptake of [11C]rolipram of about 12% demonstrating a clear tendency to normalize cAMP
signaling [43]. These results correspond to earlier findings and further support the im-
portance of cAMP signaling for the etiology of depression. However, it has been found
that there is no correlation between [11C]rolipram binding and either severity of baseline
symptoms nor improvement of depressive or anxiety symptoms during SSRI treatment
raising questions about the role of cAMP signaling in MDD. Fujita et al. [43] discussed sev-
eral reasons for that, namely interactions between age and gender and the cAMP cascade
as well as the heterogeneity of MDD and/or the target due to the fact that [11C]rolipram
binds non-specifically to all four PDE4 subtypes. With regard to the latter, maybe a PDE4B-
specific radioligand would be more useful to clarify the link between cAMP signaling and
depression because of the high expression levels of the PDE4B isoform in the brain.

The first clinical PET study using [11C]rolipram to investigate the role of PDE4 in
Parkinson’s disease (PD) was published in 2017 [44]. In L-DOPA-treated PD patients with
no concurrent diagnosis of mild cognitive impairment or dementia, a 5–32% decrease of
the [11C]rolipram volume of distribution (VT) has been observed compared to healthy
controls. The reduction of VT was significant in the subcortical nuclei, striatum, thalamus,
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hypothalamus and frontal cortex regions indicating impairment of PDE4 expression that
correlated with working memory deficits in these PD patients [44]. Nevertheless, disease
duration- and age-related changes in PDE4 levels need to be further investigated because of
the small and wide cross-sectional cohort of PD patients and healthy controls [44]. Notably,
in a previous study [45] Niccolini et al. reported on a decreased PDE10A expression in the
striatum and pallidum of patients with moderate/advanced PD. Referring to that, a link
between reduced PDE10A and PDE4 levels with the manifestation of motor and cognitive
symptoms, respectively, in PD is proposed [44].

Interestingly, a recent [11C]rolipram PET study [46] revealed a significantly higher
[11C]rolipram VT in PD patients with excessive daytime sleepiness (EDS) compared with
patients without EDS but not compared to healthy controls. This increased [11C]rolipram
VT was specifically found in brain regions regulating the sleep-awake cycle, like caudate
nucleus, hypothalamus, hippocampus and limbic striatum [46]. The PDE4 upregulation is
suggested to be not caused by treatment with dopamine agonists, because there was no
difference in the medication between the groups of PD patients in this study [46]. These
results indicate that EDS in PD is associated with increased PDE4 expression in related brain
regions or that altered PDE4 expression might represent a possible mechanism causing
the pathophysiology of EDS in PD [46]. Modulation of PDE4 in PD with EDS is suggested
to be a suitable pharmacological target to enhance daytime sleepiness and behavioral
changes related to sleep deprivation. However, further studies in larger cohorts of patients
and healthy controls are required to understand the relationship between altered PDE4
expression and PD as well as sleep dysfunction in PD [46].

In 2018, a [11C]rolipram PET study explored the blockade of PDE4 in the healthy hu-
man brain in vivo by means of enzyme occupancy investigations [47]. For that purpose, the
non-subtype-selective PDE4 inhibitor GSK356278 [41] (see Figure 2) was used as blocking
agent. The [11C]rolipram VT was significantly decreased at 3 h, but not at 8 h after a single
oral dose of GSK356278 (14 mg) indicating good brain penetration and PDE4 binding of
this inhibitor [47]. Based on the GSK356278 plasma concentration and the [11C]rolipram
free-plasma fractions (fp), a mean PDE4 occupancy of 49% and 19% at 3 h and 8 h post-
dose, respectively, was assessed. There was no evidence for indirect pharmacokinetics
of GSK356278 in the human brain, suggesting that the estimated in vivo half maximal
effective concentration (EC50(PDE4) = 46 ng/mL) is useful to calculate PDE4 occupancy
and to determine optimal doses of GSK356278 for future clinical development [47].

Another PDE4 occupancy study in non-human primates using [11C]rolipram PET
has been reported by Takano et al. in 2018 [48]. The aim was to investigate whether
roflumilast [42,49] (see Figure 2) enters the brain and demonstrates specific target occu-
pancy. Roflumilast is the first PDE4 inhibitor that has been approved for treatment of
severe chronic obstructive pulmonary disease (COPD) [50]. In roflumilast-treated rhesus
monkeys, a reduced [11C]rolipram accumulation in all brain regions, a faster washout and
a decreased VT have been observed [48]. These results indicate that roflumilast is brain-
penetrant and shows a dose-dependent PDE4 binding. The estimated PDE4 occupancy was
<50% even at a dose of 200 µg/kg. Thus, Takano et al. stated that higher doses of roflumi-
last would be needed to confirm whether in vivo maximal PDE4 occupancy as measured
with [11C]rolipram can reach 100% [48]. Apart from that, the obtained data may suggest
that 30–40% of in vivo brain PDE4 occupancy, which corresponds to the clinical dose of
roflumilast, might be an acceptable level of PDE4 inhibition not to induce severe nausea
and emesis [48]. Further (pre-)clinical studies are required to investigate the relationship
between roflumilast treatment, PDE4 occupancy in the brain, effects on cognitive domains,
and occurrence of nausea and emesis [48]. For that purpose, Takano et al. suggested that
PET studies using subtype-specific PDE4 radioligands instead of [11C]rolipram would be
more effective to understand the function of the PDE4 isoforms [48].

In 2019, Ooms et al. [51] reported on a [11C]rolipram PET study to investigate the
interaction between PDE4 and the disrupted in schizophrenia protein 1 (DISC1) in a
DISC1 locus impairment mouse model (DISC1 LI). Disruption of the scaffold protein
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DISC1 leads to mental manifestations, like mood symptoms [52,53]. DISC1 is suggested
as a potential PDE4 inhibitor and it is thus feasible that the absence of DISC1 would
increase PDE4 activity [51–53]. PET imaging in DISC1 LI mice revealed a 41% higher
[11C]rolipram VT and a significant increase in [11C]rolipram VT/fp of 73% compared to
wild-type mice [51]. These results are in good agreement with the ex vivo PDE4 enzyme
activity assay, where a 25–50% increased PDE4 activity in brain homogenates of DISC1
LI mice has been shown [51]. Overall, this study demonstrates that [11C]rolipram PET is
suitable to measure protein-protein interactions between DISC1 and PDE4 in vivo, that
might also be interesting to be examined in further neuropsychiatric disorders in which
DISC1 is dysregulated, including Huntington’s disease [51].

A recent clinical PET study in patients with the McCune-Albright syndrome (MAS)
revealed a higher [11C]rolipram uptake in bones affected by fibrous dysplasia, as identified
by [18F]NaF bone PET scans, compared to unaffected bones of MAS patients and healthy
controls [54]. The genetic mutation in MAS leads to dysregulation of the cAMP pathway-
associated G-protein and thus, to increased cAMP signaling and PDE4 activity. These
results indicate that PDE4 upregulation is co-localized with areas of active bone remodeling
in fibrous dysplasia. However, displacement studies are needed to verify whether the
increased [11C]rolipram uptake is caused by specific PDE4 binding [54].

4.2. Novel PDE4 (B, D) Radioligands Apart from [11C]Rolipram

In 2017, Zhang et al. [55] reported on the novel PDE4B-preferring radioligand [18F]PF-
06445974 ([18F]5, see Figure 3). The aims of this work were to develop (I) a brain-penetrant
PDE4B-specific inhibitor for treatment of brain diseases to enhance the therapeutic efficacy
while suppressing/avoiding gastrointestinal side effects which are suggested to be partially
associated with inhibition of the PDE4D isoform, and (II) a PDE4B-selective radioligand for
accurate target occupancy as well as enzyme density and biodistribution determinations
by PET.

Out of a tricyclic pyrrolopyridine series [55], compound 5 showed highest inhibitory
potency towards PDE4B in the subnanomolar range, good to moderate selectivity over the
isoforms PDE4A/C/D (Figure 3) and a favorable pharmacokinetic profile. Furthermore,
ex vivo liquid chromatography–tandem mass spectrometry (LC-MS/MS) studies in rats
and 129/B6 PDE4D KO mice revealed high brain permeability and excellent brain uptake
of 5 which was significantly reduced after pre-administration of rolipram indicating high
specific binding. Thus, 5 was selected for 18F-labeling starting from the corresponding
nitro precursor [55] (see Scheme 4).

PET studies in cynomolgus monkeys revealed high accumulation of [18F]5 in thalamus,
followed by putamen and caudate nucleus, various cortical regions, and lower levels in
cerebellum and hippocampus with peak SUVs of about three within less than 30 min p.i.
in all brain regions [55]. This brain accumulation was significantly reduced after pre-
administration of a structurally distinct PDE4B-preferring inhibitor (IC50(PDE4A/B/C/D)
= 3/6/3.5/660 nM [55]) with an estimated PDE4B occupancy of ~92% [55]. In conclusion,
these preliminary results indicate that [18F]5 is a promising PDE4B-preferring radioligand
for in vivo target occupancy measurements. Zhang et al. already announced further
studies regarding metabolic stability, radiation dosimetry and additional PDE4B occupancy
determination [55] which will certainly be followed with high interest.
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diseases including Alzheimer ś disease [57]. Thus, Jia et al. selected the recently developed 
bioavailable sEH/PDE4 dual inhibitors MPPA (compound 6) and a related derivative 

(compound 7) for treatment of inflammatory pain as lead compounds [56,57] (see Figure 

3). Starting from the respective phenol precursors, the sEH/PDE4 radioligands [11C]6 and 

Scheme 4. Radiosynthesis of [18F]5 [55].

For PET imaging of neuroinflammation, two novel 11C-labeled radioligands that are
dual specific for the soluble epoxidase hydrolase (sEH) and PDE4 were reported in 2019 by
Jia et al. [56]. Multi-target drugs for treatment of complex diseases are regarded to be more
efficient than the traditional single-target approach because therapeutics often interact with
multiple targets [60–64]. Both, sEH and PDE4, are critical enzymes in neuroinflammation
and play an important role in the progression of various neurodegenerative diseases includ-
ing Alzheimer’s disease [57]. Thus, Jia et al. selected the recently developed bioavailable
sEH/PDE4 dual inhibitors MPPA (compound 6) and a related derivative (compound 7)
for treatment of inflammatory pain as lead compounds [56,57] (see Figure 3). Starting from
the respective phenol precursors, the sEH/PDE4 radioligands [11C]6 and [11C]7 have been
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synthesized in a home-built automated multi-purpose 11C-radiosynthesis module [56] (see
Scheme 5).
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Jia et al. reported that their radiosynthesis approach enabled the automated 11C-
labeling reaction as well as purification and formulation for routine production suitable for
preparation of clinical doses of the radioligands [56]. This facilitates future studies for the
planned biological evaluation of [11C]6 and [11C]7.

Very recently, Wakabayashi et al. [58] reported on the development of four highly
PDE4D-specific radioligands, [11C]T1650, [11C]T1660, [11C]T1953 and [11C]T2525 ([11C]8–
11, see Figure 3), for brain PET imaging of the enzyme especially related with neu-
ropsychiatric disorders like major depression (MD). In contrast to the above discussed
work of Zhang et al. [55], where specificity towards the PDE4B isoform was preferred,
Wakabayashi et al. stated that selective PDE4D inhibition may preserve antidepressant
effects while decreasing side-effect liability [58,65]. Thus, it seems that this interesting
question requires further investigations to elucidate the correlation between selective phar-
macological inhibition of PDE4B or PDE4D enzyme activity and related side effects. Out of
a large series of compounds, the four pyridinyl core derivatives 8, 9, 10 and 11 have been
selected for 11C-labeling based on their high inhibitory potencies for PDE4D and selectivity
over PDE4B (Figure 3), moderate computed lipophilicities (cLogD7.4 = 2.7–3.9), favorable
PET multi parameter optimization scores (MPO = 2.6–3.9) as well as sufficient peak uptake
in mouse brain (SUV ≥ 1). Starting from the corresponding desmethyl precursors, the re-
spective radioligands have been synthesized by O- or N-methylation using [11C]CH3I [58]
(see Scheme 6).

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 45 
 

 

[11C]7 have been synthesized in a home-built automated multi-purpose 11C-radiosynthesis 

module [56] (see Scheme 5). 

 

Scheme 5. Radiosyntheses of [11C]6 and [11C]7 [56]. 

Jia et al. reported that their radiosynthesis approach enabled the automated 11C-la-

beling reaction as well as purification and formulation for routine production suitable for 

preparation of clinical doses of the radioligands [56]. This facilitates future studies for the 

planned biological evaluation of [11C]6 and [11C]7. 

Very recently, Wakabayashi et al. [58] reported on the development of four highly 

PDE4D-specific radioligands, [11C]T1650, [11C]T1660, [11C]T1953 and [11C]T2525 ([11C]8–

11, see Figure 3), for brain PET imaging of the enzyme especially related with neuropsy-

chiatric disorders like major depression (MD). In contrast to the above discussed work of 

Zhang et al. [55], where specificity towards the PDE4B isoform was preferred, Waka-

bayashi et al. stated that selective PDE4D inhibition may preserve antidepressant effects 

while decreasing side-effect liability [58,65]. Thus, it seems that this interesting question 

requires further investigations to elucidate the correlation between selective pharmaco-

logical inhibition of PDE4B or PDE4D enzyme activity and related side effects. Out of a 

large series of compounds, the four pyridinyl core derivatives 8, 9, 10 and 11 have been 

selected for 11C-labeling based on their high inhibitory potencies for PDE4D and selectiv-

ity over PDE4B (Figure 3), moderate computed lipophilicities (cLogD7.4 = 2.7–3.9), favora-

ble PET multi parameter optimization scores (MPO = 2.6–3.9) as well as sufficient peak 

uptake in mouse brain (SUV ≥1). Starting from the corresponding desmethyl precursors, 

the respective radioligands have been synthesized by O- or N-methylation using [11C]CH3I 

[58] (see Scheme 6). 

 

Scheme 6. Radiosyntheses of [11C]8, [11C]9, [11C]10 and [11C]11 [58]. Scheme 6. Radiosyntheses of [11C]8, [11C]9, [11C]10 and [11C]11 [58].



Int. J. Mol. Sci. 2021, 22, 3832 10 of 44

PET studies in rhesus monkeys revealed high initial brain uptake of the four radi-
oligands with peak SUVs of 3.3 to 5.1 at 4–5 min p.i. [58]. In plasma, [11C]9 and [11C]11
showed high stability while for [11C]8 and [11C]10 moderate stability was observed. After
pre-administration of rolipram (0.1–0.5 mg/kg), no blocking effect was detected regarding
[11C]11 uptake and for [11C]10 only little effect was achieved by faster washout while
VT and VT/fp increased. These results indicate no specific PDE4D binding of these two
radioligands [58]. For [11C]9, an earlier and higher peak SUV (4.15 at 2.3 min vs. 3.52
at 5.5 min), faster washout as well as decreases in VT and VT/fp by 37% and 45%, re-
spectively, were observed under blocking with rolipram (1 mg/kg). The highest levels of
[11C]9 specific binding were detected in cortex and hippocampus and the estimated PDE4D
occupancy by rolipram was 79% [58]. Little blocking effects for [11C]8 were achieved
with 48% and 41% decreased VT and VT/fp, respectively, using rolipram (1 mg/kg). The
[11C]8 VT was reduced by 37% after pre-administration of the PDE4D-specific allosteric
inhibitor BPN14770 [59] (3 mg/kg, Figure 3) with a slightly higher peak SUV (3.9 at 4 min
vs. 3.28 at 5 min) and faster washout. Furthermore, a homogenous activity distribution
under blocking with BPN14770 was observed which might indicate the formation of brain-
penetrating radiometabolites as reported for the rat brain with only about 60% of intact
[11C]8 at 30 min p.i. [58]. PDE4D occupancy using [11C]8 was estimated with 63% and 93%
at 0.2 mg/kg and 1 mg/kg of rolipram, respectively, and 63% at 3 mg/kg of BPN14770.
Wakabayashi et al. concluded that due to very similar non-displaceable binding levels with
both blocking agents, [11C]8 shows PDE4D-specific binding [58]. For both radioligands,
[11C]8 and [11C]9, an atypical increase of the VT over the scanning period were observed,
hampering robust quantification of PDE4B in the brain by PET [58].

Although [11C]9 showed higher metabolic stability in monkeys, Wakabayashi et al.
selected [11C]8 for a first PET study in two healthy volunteers [58]. In the human brain,
a high uptake with peak SUV of 4.39 at 4 min p.i. was observed that slowly declined
and plateaued from 30 min to 120 min (SUV ~2). In plasma, activity decreased by 71%
from 60 min to 120 min indicating fast clearance while several radiometabolites have been
detected with only 30% and 5% of intact [11C]8 at 30 min and 120 min p.i., respectively.
Thus, the higher uptake and slow washout in brain compared to plasma might reflect the
formation of brain-penetrating radiometabolites, as already detected in rats and mentioned
above. Moreover, the radiometabolite profiles of [11C]8 in rat, monkey and human plasma
were very similar [58]. Pre-administration of BPN14770 (50 mg/kg) revealed a significant
blocking effect with 30% and 33% decrease of SUV (at 60–120 min) and VT, respectively. The
highest VT reduction was observed in hippocampus and amygdala, and lowest decrease in
basal ganglia, thalamus and cerebellum indicating specific PDE4D binding of [11C]8 [58].
Nevertheless, the occurrence of brain radiometabolites limits the suitability of [11C]8 for
correct quantification of PDE4D in the brain by PET. These results also led to the exclusion
of [11C]9 for human PET studies due to the close molecular structure and the similar
performance in monkeys compared with [11C]8 [58]. In conclusion, none of the four novel
PDE4D-selective radioligands turned out to be suitable for PET imaging of the PDE4D
isoform in the brain due to high non-specific binding ([11C]10 and [11C]11) and/or the
formation of brain-penetrating radiometabolites ([11C]8 and [11C]9) [58].

At the virtual meeting of the society of nuclear medicine and molecular imaging
(SNMMI) in 2020, Telu et al. [66] reported on further seven PDE4D-specific radioligands
(see Scheme 7 for [11C]12, [11C]13 and [18F]14), for drug development and investigation
of PDE4D regulation in neuropsychiatric disorders. All of the novel ligands showed high
inhibitory potencies with IC50 values for PDE4D in the subnanomolar and low nanomolar
rage as well as good selectivity towards PDE4B (exact data not published). The related ra-
dioligands have been synthesized starting from the corresponding desmethyl or iodonium
salt precursors [66] (Scheme 7).
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PET studies in rhesus monkeys revealed that all of the radioligands readily entered
the brain with fast washout. However, only [11C]12 and [11C]13 showed moderate brain
uptake (peak SUV ~ 3) and considerable PDE4D-specific binding as determined under
blocking with either rolipram or BPN14770 [66]. Telu et al. stated that the observed VT
time stability for both radioligands indicate possible accumulation of radiometabolites in
the brain but was thought sufficient for PDE4D quantification by PET since the normalized
VT improves towards the end of the scan period (120 min). Out of this compound series,
[11C]13 is suggested to be the most appropriate PDE4D radioligand and thus, possibly will
be further investigated in target occupancy studies by PET [66].

5. PDE5 Radioligands

The cGMP-specific PDE5 enzyme is widely distributed in peripheral tissues like
lung, bladder, penis, stomach, thyroid, pancreas, heart, and intestine where it regu-
lates vascular smooth muscle contraction by controlling the intracellular cGMP con-
centration [2,3,67,68]. In the brain, the PDE5 expression levels are rather low [3,69]. Nev-
ertheless, pharmacological inhibition of PDE5 activity in the brain is suggested to play an
important role in cognition-related neural function and can promote beneficial effects on
cognition and memory in both physiological and pathophysiological conditions [70]. PDE5
inhibitors are also gaining importance for treatment of neurodegenerative and neuropsychi-
atric disorders such as Alzheimer’s disease, epilepsy, stroke, depression and Huntington’s
disease [69–71].

In 2017, Chekol et al. [72] reported on two novel PDE5-specific radioligands, [11C]15
and [18F]16 (see Figure 4), for evaluation of the enzyme expression and occupancy in lung,
heart and brain by PET.
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Figure 4. Molecular structures and IC50 values for PDE5 of ([11C])15 and ([18F])16 [72], ([18F])17 [73] and ([18F])18 [74],
([11C])19 and ([11C])20 [75], ([11C])21 [76,77]as well as the PDE5 inhibitors tadalafil [78,79], vardenafil [78,80] and silde-
nafil [78–80].

Out of a series of pyridopyrazinone derivatives, compounds 15 and 16 showed highest
inhibitory potency towards PDE5 (Figure 4) and were subsequently selected for radiolabel-
ing. Starting from the corresponding desmethyl or tosylate precursors, [11C]15 and [18F]16
have been synthesized by N-methylation using [11C]CH3OTf or nucleophilic aliphatic
substitution via the K+/[18F]F−/K2.2.2-carbonate complex [72] (see Scheme 8).
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Biodistribution studies in mice revealed initial uptake of both radioligands at 2 min p.i.
in kidneys, liver, lungs and intestine with hepatobiliary excretion [72]. Highest uptake was
observed in lungs at all time points with fast washout. [18F]16 showed a three- to fourfold
higher % injected dose (%ID) in blood at 30 min p.i. compared to [11C]15 which might be a
result of circulating radiometabolites of [18F]16. For both radioligands, myocardial uptake
and retention was negligible, consistent with the low PDE5 expression in the healthy
heart. In contrast, myocardial uptake in transgenic mice with cardiomyocyte-specific
bovine PDE5 overexpression (PDE5-TG) was significantly higher with a 10-fold and 16-fold
increase for [11C]15 and [18F]16, respectively. In the brain, [11C]15 and [18F]16 displayed
relatively high uptake with 4%ID and 2.4%ID at 2 min p.i., respectively, while longer
retention was observed for [11C]15 [72]. Pre-treatment with tadalafil [78,79] (10 mg/kg; see
Figure 4) revealed a significantly reduced lung retention by 32% and 70% for [11C]15 and
[18F]16, respectively. This result indicates that the accumulation of both radioligands in the
lungs is only partially due to PDE5-specific binding, especially for [11C]15. A substantial
tadalafil blocking effect was observed in PDE5-TG mice with 80% and 87% decreased
myocardial retention for [11C]15 and [18F]16, respectively, indicating PDE5-specific binding
of both radioligands in the heart. Brain uptake of neither [11C]15 nor [18F]16 was reduced
under blocking conditions because of the very limited brain penetration of tadalafil [72]
demonstrating that this PDE5 inhibitor is not suitable as blocking agent for brain target
investigations. Metabolism studies in mice revealed moderate to low in vivo stability
of the radioligands with 30% and 5–7% of intact [11C]15 and [18F]16 in plasma at 30
min p.i., respectively. Negligible radiometabolite levels have been detected in the brain
with about 90% of intact [11C]15 and [18F]16 at 30 min p.i. [72]. For PET studies in PDE5-
TG mice, Chekol et al. selected [18F]16 due to the higher myocardial uptake compared
to [11C]15. In the PDE5-overexpressing heart, [18F]16 showed a high peak SUV of 6.7
followed by a brief transient equilibrium between 2 and 10 min p.i.. This myocardial
uptake was decreased rapidly under administration of tadalafil at 10 min after injection
of the radioligand indicating reversible binding. Brain PET imaging has been performed
in rats with [11C]15 and [18F]16 [72]. Both radioligands crossed the blood–brain barrier
(BBB) with peak SUVs of 3–4 for [11C]15 and 1.2–1.6 for [18F]16 and were retained in
the brain with a relatively homogenous distribution. Self-blocking with 16 revealed no
significant difference in [18F]16 uptake possibly due to the low PDE5 levels in the brain
or non-saturable binding [72]. Thus, Chekol et al. suggested a lysosomal trapping of
both radioligands that is supported by the high non-displaceable fractions in lung [72].
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In vitro autoradiography with [11C]15 and [18F]16 on rat brain slices has been performed
to further verify this assumption. A homogenous distribution of both radioligands in the
grey matter was observed with moderate decrease of 45% and 35% for [11C]15 and [18F]16,
respectively, under self-blocking conditions (20 µM of each). This blocking effect was
achieved to a much lesser extent using the non-selective PDE inhibitor IBMX (1 mM) or
the PDE5-specific inhibitors vardenafil [78,80] (see Figure 4) and tadalafil (20 µM of each).
Chekol et al. stated that these results correspond to the hypothesis of lysosomal trapping of
both radioligands [72]. In conclusion, [18F]16 is suggested as a suitable PDE5 radioligand
for imaging and quantification of the enzyme expression in the myocardium of heart failure
patients and for myocardial target occupancy studies to investigate by PET novel PDE5
inhibitors as potential therapeutics [72]. The observed high non-specific retention of both
radioligands in the brain might limit their suitability for brain PET imaging of PDE5 [72].

For PET studies of PDE5 in the brain in particular, the INSERM branch at Clermont-
Ferrand, France, developed in cooperation with our group the novel radioligand [18F]17 [73]
(see Figure 4). Based on our first PDE5 radioligand [18F]ICF24027 [1,74] ([18F]18, Figure 4)
reported in 2016, structural modifications have been done to improve the metabolic stability
by introducing the fluorine-containing moiety in another position of the molecule [73,81].
Out of a series of PDE5-specific quinoline-based ligands, compound 17 is the most promis-
ing derivative (Figure 4). Since nucleophilic 18F-labeling of a secondary carbon is challeng-
ing, two strategies regarding an appropriate leaving group have been pursued, via the
tosylate and the nosylate precursor [73] (see Scheme 9). Interestingly, highest radiochem-
ical yields for automated radiosynthesis of [18F]17 were achieved by using the nosylate
precursor and [18F]TBAF with the addition of small amounts of water to the reaction
mixture [73].
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disease and thus, [11C]19 and [11C]20 were generated to investigate PDE5 in the brain by 

PET. For that purpose, radioligands with subnanomolar potency and high target selectiv-

ity are required as mentioned above. Out of a series of novel naphthyridine and 1H-pyr-

roloquinolinone analogs [75,82], the most potent candidates 19 and 20 displayed picomo-

lar inhibitory potency towards PDE5 and excellent selectivity over PDE6 (Figure 4), which 

shows high similarity in the catalytic site with PDE5 [82]. Besides, Xu et al. [77] reported 

on the development of [11C]21 for PET imaging of PDE5 in the heart. Briefly, the 4(3H)-

pyrimidine lead compound 21 has previously been developed by Wang et al. [76] as 

highly potent PDE5 inhibitor (Figure 4) for the treatment of pulmonary arterial hyperten-

sion and is currently being investigated in a phase II clinical trial. 
The radioligands [11C]19, [11C]20 and [11C]21 were prepared by O- or N-methylation 

of the corresponding desmethyl precursors using [11C]CH3OTf in a home-built automated 

multipurpose 11C-radiosynthesis module [75,77] (see Scheme 10). This radiosynthesis ap-
proach enabled the robust production of [11C]19, [11C]20 and [11C]21 in good radiochemical 

yields and sufficient molar activities (Scheme 10) for future pre-clinical evaluation of these 

highly potential PDE5 radioligands [75,77]. 

Scheme 9. Radiosynthesis of [18F]17 [73].

In vitro autoradiography on porcine brain slices revealed moderate binding of [18F]17
in cerebellum, cortex and hippocampus [73] that are regions with identified PDE5 ex-
pression in the human brain [69]. Only a 10–25% decrease of [18F]17 accumulation in
all investigated brain areas has been achieved using sildenafil [78–80] (see Figure 4) or
compound 17 (1 µM of each) as blocking agents indicating high non-specific binding of
the radioligand [73]. We assume that the inhibitory potency of [18F]17 might be too low
due to the poor expression of PDE5 in the brain and thus, radioligands with subnanomolar
potency might be needed for accurate PDE5 imaging in that regard. In biodistribution
studies in mice, sufficient brain uptake of [18F]17 with a peak SUV of 1.1 at 5 min p.i. and
a fast washout have been observed. High initial [18F]17 uptake was shown in lungs and
heart with SUVs of 8.7 and 5.0 at 5 min p.i., respectively, consistent with the high PDE5
levels in these tissues [73]. Metabolism studies in mice revealed fast degradation of the
radioligand with only 13% and 24% of intact [18F]17 in plasma and brain at 30 min p.i.,
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respectively, while high fractions of more polar radiometabolites have been detected in the
brain [73]. In conclusion, [18F]17 proved to be inappropriate for in vitro or in vivo imaging
and quantification of the PDE5 enzyme due to high non-specific binding, low metabolic
stability and the formation of brain-penetrating radiometabolites.

In 2019 and 2020, three novel 11C-labeled PDE5 radioligands, [11C]19, [11C]20 and
[11C]TPN171 ([11C]21, see Figure 4) have been published by collaborating research groups
from Hebei, China, and Indiana, USA [75,77]. Dong et al. [75] focused on the PDE5 enzyme
as a promising non-beta amyloid-related target for treatment and imaging of Alzheimer’s
disease and thus, [11C]19 and [11C]20 were generated to investigate PDE5 in the brain
by PET. For that purpose, radioligands with subnanomolar potency and high target se-
lectivity are required as mentioned above. Out of a series of novel naphthyridine and
1H-pyrroloquinolinone analogs [75,82], the most potent candidates 19 and 20 displayed
picomolar inhibitory potency towards PDE5 and excellent selectivity over PDE6 (Figure 4),
which shows high similarity in the catalytic site with PDE5 [82]. Besides, Xu et al. [77]
reported on the development of [11C]21 for PET imaging of PDE5 in the heart. Briefly, the
4(3H)-pyrimidine lead compound 21 has previously been developed by Wang et al. [76] as
highly potent PDE5 inhibitor (Figure 4) for the treatment of pulmonary arterial hyperten-
sion and is currently being investigated in a phase II clinical trial.

The radioligands [11C]19, [11C]20 and [11C]21 were prepared by O- or N-methylation
of the corresponding desmethyl precursors using [11C]CH3OTf in a home-built automated
multipurpose 11C-radiosynthesis module [75,77] (see Scheme 10). This radiosynthesis ap-
proach enabled the robust production of [11C]19, [11C]20 and [11C]21 in good radiochemical
yields and sufficient molar activities (Scheme 10) for future pre-clinical evaluation of these
highly potential PDE5 radioligands [75,77].
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6. PDE7 Radioligands

PDE7 is a cAMP-specific enzyme that is encoded by the two genes PDE7A and
PDE7B [2,3,83]. PDE7A is expressed in high levels in spleen, heart, skeletal muscle
and various immune cells and at low levels in the brain while PDE7B is predominantly
distributed in striatal brain regions [3,84–88]. Although only little is known about the
(patho-)physiological effects of the enzyme activity, selective PDE7 inhibitors are regarded
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as potent therapeutics for inflammatory and neurological disorders related with T-cell acti-
vation, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and addiction [89–95].

The first PDE7 radioligands [18F]MICA-003 and [11C]MICA-005 [1,96,97] ([18F]22 and
[11C]23, see Figure 5) have been reported by Thomae et al. in 2015, which failed for PET
application due to the formation of brain-penetrating radiometabolites. In the last five
years, only two further radioligands for imaging of the PDE7 enzyme in the brain have been
published. Very recently, the tritiated PDE7B-specific radioligand [3H]24 [98] (Figure 5)
has been described by Chen et al., which is structurally related to [18F]22 and [11C]23. The
aim of this work was the fast evaluation of the distribution of novel PDE7B ligands in the
rat brain by ex vivo LC-MS/MS screening to identify promising candidates as suitable
radioligands for target occupancy studies. Out of six investigated highly potent PDE7B
inhibitors, compound 24 (5 µg/kg) showed a striatal accumulation of 0.25%ID/g brain
tissue and the highest striatum-to-cerebellum ratios of 2.4, 2.9 and 2.2 at 5 min, 30 min and
60 min p.i., respectively, indicating reasonable target specificity [98].
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Figure 5. Molecular structures and IC50 or EC50 values for the PDE7 isoforms of ([18F])22 and ([11C])23 [96,97], ([3H])24 [98],
and ([11C])25 [99].

Thus, 24 has been selected for 3H-labeling to further validate its PDE7B-specific bind-
ing by ex vivo autoradiography on rat brain slices. At 10 min p.i., [3H]24 (22 kBq/g,
Am = 3.5 GBq/µM; 2.7 µg/kg) displayed a striatum-to-cerebellum ratio of 2.6 consistent
with the ex vivo LC-MS/MS results of unlabeled 24 [98]. In rat brain homogenates, a sat-
urable PDE7B-specific binding of [3H]24 has been observed, with an estimated dissociation
constant (KD) of 0.8 nM and an enzyme density (Bmax) of 58 fmol/mg, which could be
displaced under self-blocking conditions at 10 µM of 24 and in a dose-dependent manner
by a structurally distinct blocking agent (Ki(PDE7) = 120 nM) [98]. In conclusion, these
preliminary results indicate that compound 24 is a very promising candidate regarding the
development of a corresponding PET radioligand for in vivo visualization and quantifica-
tion of the PDE7B enzyme in the brain. With that regard and although PDE7A levels in the
brain are lower than for PDE7B [3,84,85], selectivity of 24 over the PDE7A isoform would
also be of great interest.

The second novel PDE7 radioligand [11C]MTP38 [99] ([11C]25, see Figure 5), which
is structurally unrelated to [18F]22 and [11C]23, has been developed by Obokata et al. in
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2020. Based on a series of bicyclic triazolopyrazine derivatives (patent pending: WO
2018/038265), compound 25 showed favorable inhibitory potency towards PDE7A and
PDE7B as well as high selectivity over all other PDEs (Figure 5) and various further off-
targets. For the radiosynthesis of [11C]25, a two-step one-pot strategy has been applied
starting from the corresponding bromo precursor [99] (see Scheme 11).
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In vitro autoradiography on brain slices of rat and rhesus monkey revealed high
accumulation of [11C]25 in the striatum, which was significantly reduced by pre-incubation
with either 25 (10 µM) or the PDE7 inhibitor MTP-X (4 µM; Ki(PDE7) = 10 nM) indicating
saturable and PDE7-specific binding of the radioligand [99]. In PET studies, [11C]25 rapidly
entered the brain with peak striatal SUVs of >4 at 1 min p.i. in rats and around 5 at 3–4 min
p.i. in rhesus monkeys, respectively. In rats, a striatum-to-cerebellum ratio of 1.5 from
5 min to 60 min was estimated, which declined to 1.1 under blocking conditions, further
supporting the specificity and time-stability of the striatal [11C]25 binding. Additionally,
a high [11C]25 uptake in the olfactory epithelium was detected in both species. Brain
clearance was slightly slower in rhesus monkeys than in rats but, generally, a fast washout
was observed. After pre-treatment with 25 or MTP-X, the striatal activity levels in rats and
rhesus monkeys were significantly decreased demonstrating high PDE7-specific binding
of [11C]25 in vivo consistent with the in vitro results [99]. Metabolite analysis revealed
moderate in vivo stability of [11C]25 in monkeys with 27% of intact radioligand in plasma
at 90 min p.i. while one major and more polar radiometabolite was detected [99]. Striatal
PDE7 occupancies of 53% and 87% at 30 mg/kg of MTP-X have been estimated in two
monkeys, respectively [99]. Based on these promising pre-clinical results, Obokata et al.
suggest [11C]25 to be an appropriate radioligand for in vivo investigation of the PDE7
enzyme in the brain [99].

Very recently, the first-in-human PET study using [11C]25 has been published by
Kubota et al. [100]. PET scans in seven healthy volunteers displayed a high initial brain
uptake of [11C]25 with peak SUV values between 4 and 8 [100]. The activity in the non-target
region cerebellar cortex decreased rapidly while a slow washout from PDE7-rich brain areas
like pallidum and putamen was observed indicating specific binding of the radioligand.
The highest VT and non-displaceable binding potential (BPND) values of [11C]25 were
assessed in the pallidum (4.2 and 0.55) and the putamen (3.9 and 0.46) followed by pons,
thalamus and caudate nucleus, which is consistent with the known distribution pattern of
PDE7 in the brain [100]. However, some activity accumulation was detected in the cerebral
white matter as previously shown in rats and rhesus monkeys [99,100]. In these pre-clinical
studies, the activity uptake in the cerebellum could not be reduced in blocking experiments
and thus, the authors suggested that this might reflect non-specific binding of [11C]25 rather
than possible accumulation of brain-penetrating radiometabolites [100]. This assumption
is further supported by the low inter-subject variability and the high time-stability of
the estimated [11C]25 VT values in all brain regions over 60–80 min scan duration [100].
Metabolite analysis revealed around 50% of intact [11C]25 in plasma at 90 min p.i. while
two more polar radiometabolites were detected [100]. Accordingly, the in vivo degradation
of [11C]25 in humans seems to proceed slower than in monkeys (27% of intact radioligand
at 90 min p.i. [99]). Overall, these preliminary results clearly demonstrate the suitability of
[11C]25 for imaging of the PDE7 enzyme in the human brain by PET, but further evaluation
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of the radioligand binding specificity and test-retest reproducibility of the [11C]25 PET
data in a larger cohort are required [100]. In conclusion, access to the first appropriate
PDE7 radioligand might enable future (pre-)clinical PET studies including target occupancy
assessments by PDE7 inhibitors and investigations of altered PDE7 availability in related
brain disorders.

7. PDE10A Radioligands

The PDE10A enzyme shows many similarities with the PDE2A isoform, namely the
dual-substrate specificity by degrading both cyclic nucleotides cAMP and cGMP as well
as the distribution pattern in the brain [3]. PDE10A is most abundantly expressed in
the basal ganglia, predominantly in striatal medium spiny neurons, with highest levels
in caudate nucleus and nucleus accumbens [101–103]. Accordingly and comparable to
PDE2A, PDE10A activity is related to neurodegenerative and neuropsychiatric diseases like
Huntington’s disease, Parkinson’s disease, Alzheimer’s disease, dementia, schizophrenia
and depression [104–109].

7.1. Recent PET Studies Using Already Known PDE10A Radioligands

The well-known PDE10A-specific inhibitor MP-10 [110] (see Figure 6) serves as molec-
ular lead structure for various PDE10A radioligands as has already been reviewed [1,9]. In
2016, Ooms et al. [111] reported on in vitro and in vivo investigations of the correlation be-
tween intracellular cAMP levels and PDE10A activity using the structurally MP-10-related
PDE10A radioligand [18F]JNJ42259152 [112] ([18F]26, Figure 6). Binding studies on rat
brain homogenates revealed a maximum specific binding of 0.75 nM and a KD value of
6.62 nM for [18F]26 at baseline conditions [111]. Increased cAMP concentrations signifi-
cantly affected the KD values in a dose-dependent manner with an up to 48% decrease at
10 µM cAMP indicating an increase of the in vitro PDE10A affinity of [18F]26. Ooms et al.
suggested two possible reasons for that, namely the cAMP-induced (I) conformational
change in the catalytic domain of PDE10A or (II) phosphorylation of PDE10A, both re-
sulting in an elevated enzyme activity and thus, in an increased binding affinity of the
radioligand [111].

To further investigate the cAMP-induced stimulation of PDE10A, PET studies in rats
with [18F]26 and inhibitors of PDE4 or PDE2A, to increase the cAMP levels in vivo, have
been performed [111]. Besides PDE10A, the isoforms PDE4 and PDE2A are also expressed
in the basal ganglia [3] as mentioned above in the respective paragraphs. The [18F]26
BPND in striatum was significantly increased by 67% and 73% at 5 min and 60 min after
pre-treatment with the PDE4 inhibitor rolipram (10 mg/kg). This result clearly shows
that the higher [18F]26 uptake was not induced by an elevated expression of PDE10A
to normalize the cAMP levels which is expected to show only minimal effects at 5 min
after rolipram treatment [111]. Pre-administration of the PDE2A inhibitor JNJ49137530
(10 mg/kg; selectivity over PDE10A > 400 [111]) 30 min before [18F]26 injection also
revealed a 75% increase of the striatal BPND of the radioligand. This effect is suggested
to be caused not only by higher cAMP levels since PDE2A is a dual-substrate specific
enzyme like PDE10A and inhibition of PDE2A leads to a significant increase of cGMP as
well. Hence, the observed higher striatal [18F]26 binding might be induced by elevated
concentrations of both cyclic nucleotides which needs to be further investigated [111]. In
conclusion, this comprehensive study indicates an important role of cAMP on PDE10A
activity as well as possible interactions between different PDEs in the brain [111]. These
proposed mechanisms should be validated in future studies to prove whether prolonged
treatment with PDE inhibitors also gradually activates the PDE10A enzyme and if this
effect can be observed for other PDE isoforms.

In a 2017 published clinical study [113], [18F]26 was used for assessment of the PDE10A
availability in the striatum of patients with progressive supranuclear palsy (PSP) and PD to
possibly differentiate between these two neurodegenerative disorders by PET. Compared
to the healthy human brain, the striatal BPND of [18F]26 was significantly lower in PSP
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patients and showed only slight decrease in PD patients, which is in contrast to previous
results [45]. Koole et al. [113] suggested that the small cohort or the shorter disease duration
of the PD group might cause this observation. The caudate nucleus-to-putamen BPND
ratio of [18F]26 was significantly reduced in both, patients with PSP and PD. Interestingly,
there was no difference in the striatal BPND between the PSP and the PD group. Therefore,
the authors concluded that PDE10A PET imaging might not be suitable for the often
challenging clinical distinction between PSP and PD [113].

1 
 

 

Figure 6. Molecular structures and IC50 or KD/Ki values for PDE10A of the PDE10A inhibitor MP-10 [110,114–117],
the MP-10-derived ([18F])26 [111,112,117,118], ([18F])27 and ([18F])28 [119], ([11C])29 [120,121], and the not MP-10-related
([18F])30 [122,123], ([11C])31 [116], ([11C])32 [124–126], ([11C])33 and TAK-063 [127–129], as well as ([18F])34 [130].
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The next two structurally MP-10-related radioligands discussed here, [18F]TZ19106B
and [18F]TZ8110 [131] ([18F]27 and [18F]28, see Figure 6), have already been evaluated
in rats and monkeys showing their high potential as appropriate radioligands for PET
imaging of PDE10A in the brain [1,119]. In 2018, further investigation of [18F]27 and [18F]28
was reported by Liu et al. [131] aiming at the quantitative comparison of their in vivo
binding and imaging properties. PET studies in non-human primates revealed high uptake
of both radioligands in striatum, fast clearance from non-target brain regions and good time
stability of the striatal BPND. However, [18F]27 showed a considerably higher accumulation
as well as retention in the striatum than [18F]28 with SUVmax values of 1.76 at 90–100 min
p.i. and 0.58 at 30–40 min p.i., respectively [131].

Hence, [18F]27 was selected for displacement studies using MP-10 (0.3–2 mg/kg) as
blocking agent resulting in a significantly reduced striatal uptake with an up to 90% de-
creased BPND demonstrating a high PDE10A-specific binding. Furthermore, administration
of MP-10 (2 mg/kg) at 40 min p.i. of [18F]27 revealed a considerable displacement of the
radioligand in the striatum while activity levels in cerebellum were unaffected indicating
reversible binding of [18F]27. PDE10A occupancy levels of about 35% at 0.3 mg/kg and
90% at 2 mg/kg of MP-10 were estimated by [18F]27 PET. Overall, these results confirm
the high suitability of [18F]27 for brain PET imaging and quantification of the PDE10A
enzyme. Consequently, Liu et al. announced to apply for the United States Food and
Drug Administration (FDA) approval for human application of [18F]27 and to perform first
clinical PET studies [131].

PDE10A plays a key role in the regulation of striatal signaling, which involve dopamin-
ergic and cAMP-dependent pathways [132]. Particularly in medium spiny neurons, the
cAMP levels are modulated by PDE10A and adenylyl cyclase (AC). PDE10A degrades
cAMP while AC catalyzes the conversion of adenosine triphosphate to cAMP. Furthermore,
AC activity is suppressed by dopamine D2 receptor (D2R) signaling. Liu et al. investigated
the correlation between PDE10A and D2R in non-human primates using [18F]27 PET and
the D2R-selective inhibitor (-)-eticlopride [131]. Remarkably, acute pre-treatment with (-)-
eticlopride (0.025 mg/kg) revealed a 34–44% increase of the striatal BPND of [18F]27 [131].
This PDE10A upregulation is suggested to be induced by increased AC activity due to D2R
inhibition and thus, elevated cAMP levels. Accordingly, quantification of PDE10A by PET
might serve as indirect measure to investigate novel cAMP level modulating antipsychotic
drugs [131].

In 2016, Lui et al. [133] reported on a comparative PET study of two PDE10A radioli-
gands in cynomolgus monkeys, the MP-10-derived [11C]TZ164B [121,134] and the struc-
turally not MP-10-related [18F]MNI-659 [122,135–137] ([11C]29 and [18F]30, see Figure 6).
Both, [11C]29 and [18F]30, have already been suggested as highly potent radioligands for
in vivo imaging and quantification of PDE10A in the brain by PET based on pre-clinical
([11C]29) and first clinical ([18F]30) investigations [1]. For the head-to-head comparison of
these two radioligands, double PET scans in the same monkey and at the same day have
been performed [133]. [11C]29 and [18F]30 displayed a high accumulation in the striatum
and an identical distribution pattern in the whole brain with lowest uptake in cerebel-
lum [133]. For [18F]30, the averaged striatal BPND (5.1–5.3) and the area under the curve
striatum-to-cerebellum ratio (AUCSt/Cb = 7.6) were higher than for [11C]29 (BPND = 3.7–4.4;
AUCSt/Cb = 5.9) but not statistically significant due to the large variation of the [18F]30
PET data. These results correlated well with the higher in vitro binding affinity of [18F]30
compared to [11C]29 [133] (see Figure 6). Besides, [11C]29 showed longer striatal retention
(SUVmax ~ 2.7 at 40–60 min p.i.) and relatively slower washout from striatum than [18F]30
(SUVmax ~ 4 at 10 min p.i.). Liu et al. discussed two possible reasons for that, first, the
considerable smaller efflux rate constant of [11C]29 (k2 = 0.13/min vs. 0.28/min for [18F]30)
across the BBB. Second, the higher metabolic stability (70% of intact [11C]29 vs. 50% of
intact [18F]30 in plasma at 60 min p.i.) and thus, a higher concentration of intact [11C]29
in the brain [133]. The longer striatal [11C]29 retention indicates a more stable binding of
that radioligand to PDE10A which might improve the reproducibility of the obtained PET



Int. J. Mol. Sci. 2021, 22, 3832 21 of 44

data especially at later time points [133]. In conclusion, the results of this comparative PET
study additionally verify the suitability of [11C]29 and [18F]30 for in vivo assessment of the
PDE10A enzyme in the brain. It appears that no further investigations of [11C]29 have been
reported since 2016. In contrast, numerous new insights have been published for [18F]30 as
will be discussed in the following paragraph.

Regarding the radiosynthesis of [18F]30, Mori et al. [138] reported on the comparison
between direct 18F-labeling of the corresponding tosylate precursor as previously described
by Barret et al. [122] and a two-step approach by 18F-labeling of bromoethyl triflate and
using the resulting 1-bromo-2-[18F]fluoroethane for 18F-fluoroethylation of the respective
phenol precursor (see Scheme 12). The aim was to establish an appropriate strategy for
routine production of the radioligand with high quality and sufficient activity for clinical
application using an in-house developed automated multi-purpose synthesizer [138,139].
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Scheme 12. Radiosynthesis of [18F]30 by (A) direct 18F-labeling of the tosylate precursor and (B) two-step approach via
18F-fluoroethylation of the phenol precursor [138].

Mori et al. found out that the radiolabeling efficiency of the direct nucleophilic
aliphatic substitution of the tosylate group using the K+/[18F]F−/K2.2.2-carbonate com-
plex is highly dependent on the amounts of precursor and potassium carbonate [138].
A sufficiently high activity of [18F]30 for clinical use (Scheme 12) was obtained by using at
least 4 mg of the tosylate precursor and decreasing the amount of potassium carbonate to
2 nmol. Furthermore, the tosylate precursor proved to decompose under the reaction con-
ditions, which has to be considered for separation of the radioligand from non-radioactive
by-products by semi-preparative high-performance liquid chromatography (HPLC) [138].
In contrast, the 18F-fluoroethylation was performed with only 1.5 mg of the phenol pre-
cursor resulting in clinically useable doses of [18F]30 (Scheme 12) while the radioligand
could readily be purified by semi-preparative HPLC [138]. In conclusion, Mori et al. [138]
have shown that both approaches, the direct 18F-labeling of the tosylate precursor and the
two-step strategy by 18F-fluoroethylation of the phenol precursor, enable the automated
radiosynthesis of [18F]30 in high radiochemical and chemical purity as well as sufficient
radiochemical yields and molar activities for human application.

As mentioned above, a functional association between pharmacological D2R inhibition
and elevated PDE10A activity has been discovered by Liu et al. using [18F]27 PET [131]. In
2017, Fazio et al. [140] reported on a related PET study aiming at (I) the quantitative age-
and gender-related comparison of the availability of the dopamine D2 and D3 receptors
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(D2/3R) and the PDE10A enzyme in the healthy human brain, and (II) the assessment
of the relative distribution of these two targets specifically in the striatum and globus
pallidus. For these purposes, the D2/3R-dual specific radioligand [11C]raclopride and
the PDE10A-selective radioligand [18F]30 have been applied for brain PET imaging in a
cohort of 40 participants with an age range between 27 and 69 years [140]. Regarding the
relationship between D2/3R availability and age, only a trend of negative correlation was
found by a decrease of 4.3% of the striatal [11C]raclopride binding per decade that is in line
with previous findings. In the globus pallidus, no significant differences in D2/3R levels
were observed between the age groups indicating rather stable receptor densities in this
brain region consistent with former results. In contrast, the availability of the PDE10A
enzyme in the striatum measured by [18F]30 PET was significantly decreased by 8% per
decade, as reported previously by Russel et al. [137], while a less pronounced decline was
observed in the globus pallidus [140].

Interestingly, higher striatal BPND values were estimated for both radioligands in
female participants compared to male subjects [140]. For [18F]30, this tendency was also
observed in the globus pallidus. These results indicate gender-related effects on the avail-
abilities of the D2/3R and especially of PDE10A, but further investigations in a lager cohort
with a uniform distribution of male and female participants across the age groups are
required. The regional distribution of [11C]raclopride displayed highest D2/3R density
in the striatum (putamen > caudate nucleus) followed by the nucleus accumbens and
the globus pallidus (external) consistent with previous outcomes [140]. [18F]30 PET re-
vealed high PDE10A availability in the striatum (caudate nucleus and putamen) and
the globus pallidus (internal and external) and negligible enzyme levels in the nucleus
accumbens. This distribution pattern is in agreement with immunohistochemical [101]
and in vitro autoradiographic studies using [18F]30 [141]. Besides, [18F]30 BPND values
showed high variability between individuals as already observed in previous PET studies
in humans [122] and non-human primates [133]. Fazio et al. proposed that this might be
caused either by the characteristics of [18F]30 or by a possible inter-individual variability of
PDE10A associated with different gene variants and activation states which might affect
[18F]30 binding to the enzyme. Overall, the regional uptake of [11C]raclopride and [18F]30
in the human brain revealed a significant correlation of the D2/3R and PDE10A distribution
in the striatum indicating a functional association between these two targets which is
clearly supported by the above discussed findings of Liu et al. [133].

An [18F]30 PET study for in vivo assessment of the PDE10A occupancy in the healthy
human brain has been reported by Delnomdedieu et al. in 2017 [142]. The PDE10A
inhibitor MP-10 was used for that purpose. Additionally, this study was aiming to approve
the ability of MP-10 to enter the brain after oral administration as well as to estimate
appropriate doses for future clinical trials by correlating its serum concentration and the
percentage of enzyme occupancy. Application of 10 mg, 20 mg and 30 mg of MP-10
revealed mean MP-10 serum concentrations of about 31 ng/mL, 75 ng/mL and 99 ng/mL
within 1.5 h after administration, respectively, indicating a dose-related increase of the
systemic exposure to MP-10 [142]. Briefly, a single oral dose of 30 mg of MP-10 revealed
adverse side effects in one volunteer, like fatigue, somnolence and musculoskeletal stiffness,
and consequently lower doses were applied for further investigations [142]. Based on the
[18F]30 PET scans, PDE10A occupancies in whole striatum, caudate nucleus and putamen
of around 21–28% at 10 mg and 52% at 20 mg of MP-10 were estimated consistent with
the observed increased systemic exposure of MP-10 at higher doses. Notably, the mean
occupancy values were consistent regardless whether or not the cerebellum was used as
reference region for the calculations. The MP-10 serum concentration associated with 50%
PDE10A occupancy was estimated to be 93.2 ng/mL [142]. Overall, these results clearly
confirm that MP-10 reaches the striatum after oral administration and binds specifically
to the PDE10A enzyme by displacing [18F]30 in a dose-dependent manner. For future
investigations of the pharmacological activity of MP-10, about 50% PDE10A occupancy at
the well-tolerated single dose of 20 mg is considered sufficient. Moreover, the cerebellum is
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suggested to be suitable as a reference tissue in PDE10A-related PET data analysis. Finally,
[18F]30 proved to be an appropriate radioligand for reliable assessment of the PDE10A
occupancy in the human brain by PET [142].

Furthermore, [18F]30 PET has extensively been used for pre-clinical investigations
in mouse models of Huntington’s disease (HD) [143,144] and for clinical studies in HD
patients [1,136,137,145]. It is postulated that HD symptoms are caused by a dysfunction in
the basal ganglia related to loss of PDE10A and reduced cyclic nucleotide signaling. Thus,
PDE10A inhibitors are recommended as potent therapeutics of HD by elevating cAMP
and cGMP levels, which leads to the compensation of basal ganglia circuitry deficits [143].
In 2016, Beaumont et al. [143] investigated the effects of acute PDE10A inhibition on
regeneration of the basal ganglia circuitry in the Q175 and the R6/2 mouse models of
HD that display reduced PDE10A expression comparable to manifest HD patients. For
that purpose, the PDE10A-specific inhibitors MP-10 and PF-04898798 (KD(PDE10A) =
0.8 nM, >1000-fold selectivity over all other PDEs [143]) were used. The results of this
comprehensive pharmacological study will not be discussed in detail here. In brief, the
authors stated that despite extremely reduced PDE10A levels, acute inhibition of PDE10A
in symptomatic HD mouse models results in considerable functional improvements, for
example due to elevated cAMP and cGMP concentrations and enhanced striatal response to
cortical stimulation [143]. Overall, these findings clearly provide rationale for application
of PDE10A inhibitors in clinical trials to assess related symptom improvement in HD
patients, which are currently in progress with MP-10 [143].

In addition to these pharmacological studies, the striatal PDE10A availability was ex-
amined in Q175 and R6/2 mice compared to wild-type mice by autoradiography and
PET. For ex vivo binding studies, the tritiated PDE10A radioligand [3H]PF-04831704
(KD(PDE10A) = 0.066 nM in mouse striatum [146]) was used. A significant decrease
of the striatal PDE10A Bmax was found in both HD mouse models, in R6/2 mice at early-
and late-symptomatic stages (6 and 15 weeks) while in Q175 mice this reduction was only
significant at mid- and late-symptomatic stages (8 and 12 month). The stage-related decline
of PDE10A levels in the striatum is consistent with the results from PET studies using
[18F]30 in Q175 mice at the mid-symptomatic stage (6 month), where a significant decrease
of the striatal [18F]30 BPND of 52% was found. Moreover, [11C]raclopride PET revealed a
reduction of 40% of striatal D2/3R levels in Q175 mice at the same disease stage. These
results indicate a correlation between PDE10A and D2/3R in HD additionally to the above
discussed findings of Fazio et al. [140] and Liu et al. [131] under physiological conditions.

In 2018, Bertoglio et al. [144] investigated the accuracy of [18F]30 PET to image altered
PDE10A enzyme levels in the Q175 mouse model of HD at the mid-symptomatic stage
(6 month) compared to wild-type mice. Regional quantification and spatial normaliza-
tion of the respective PET images were performed based on additional X-ray computed
tomography (CT) and magnetic resonance imaging (MRI) or the [18F]30 PET data only.
Individual MRI scans revealed a significant reduction of the striatal volume of 7.7% in
Q175 mice consistent with previous findings in animal models of HD [144]. The estimated
striatal BPND of [18F]30 was decreased by 47%, 43% and 32% using the CT, MRI or PET
template-based spatial normalization, respectively. However, the mean [18F]30 BPND in the
striatum of Q175 mice based on the PET template was significantly higher than for CT- or
MRI-related normalizations indicating an overestimation of the PDE10A availability in the
PET template-based approach [144]. Regarding the CT template, larger variability of the
calculated BPND values was observed resulting in reduced statistical power of these data.
Thus, the authors stated that the PET and CT templates display lower detectability of the
HD-related decline of the PDE10A enzyme density in the mouse brain [144]. Furthermore,
striatal volume delineated manually from individual MRI scans was used as additional
independent measurement to quantify [18F]30 BPND. Comparison of these estimated BPND
values with the normalized BPND values from the CT, MRI and PET templates revealed
highest correlation for the use of the MRI template. In conclusion, MRI-based spatial
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normalization is highly recommended for brain PET imaging using [18F]30 to accomplish
correct PDE10A quantification and improve the detectability of HD-related effects [144].

In a recently published clinical PET study, Fazio et al. [145] reported on the evaluation
of PDE10A and D2/3R imaging as biomarkers of the progression of HD using [18F]30
and [11C]raclopride. This comprehensive study included 44 patients with early and late
pre-manifest HD gene-expansion carriers (HDGECs) as well as manifest HDGECs of stage
1 and 2. Compared to healthy controls, [18F]30 PET exhibited significant decreases of the
mean BPND of 41% in the caudate nucleus, 42% in the putamen and 38% in the globus
pallidus averaged for all HDGECs groups reflecting a considerable loss of PDE10A in
these brain regions [145]. Regarding D2/3R levels, a similar trend was observed in the
caudate nucleus and putamen with an averaged decrease of the [11C]raclopride BPND
values of 32% in all HDGECs groups while no significant changes were detected for the
globus pallidus due to the low D2/3R expression in this basal ganglia region [145]. Within
the different HDGECs groups, the striatal PDE10A availability seems to be characterized
by a progressive decline between early and late pre-manifest stages (29–36%), as well as
between the late pre-manifest stage and manifest stage 1 (39–52%). The same significant
stage-related decline was observed for D2/3R levels in the caudate nucleus and putamen
but the decrease of PDE10A occurred earlier and was more pronounced [145]. Additionally,
longitudinal studies at around 22 months after the first PET scans were performed to assess
the effect of the respective disease stage on the rates of change in the PDE10A availability.
These data revealed a further decrease of PDE10A over time with higher annualized rates
of change in the caudate nucleus (5.9%) than in the putamen (4.4%) and the globus pallidus
(4.3%) while a trend of faster decline in the earliest disease stages was observed [145].
Overall, these findings indicate a potential role of PDE10A as neuroimaging biomarker
of HD to evaluate phenoconversion at early disease stages as well as pharmacodynamic
effects of disease-modification strategies during pre-symptomatic phases [145].

Besides the relation between altered PDE10A availability in the basal ganglia and the
progression of HD discussed above, previous findings provide evidence that changes of the
PDE10A expression in extra-striatal brain regions might also be an important pathophysio-
logical feature in that regard [147–149]. In 2016, Wilson et al. [150] reported on a clinical
PET study to examine quantifiable extra-striatal PDE10A levels in the healthy human brain
and in patients with early pre-manifest HDGECs. For that purpose, the PDE10A-specific
radioligand [11C]IMA107 [116] ([11C]31, see Figure 6) was used. The suitability of [11C]31
for in vivo imaging and quantification of PDE10A in the human brain by PET has already
been proven [1,45,116,151,152]. Notably, MRI scans revealed no differences in the volumes
of any extra-striatal brain region between healthy controls and the early pre-manifest
HDGECs group indicating no effect of regional atrophy on the intracellular PDE10A lev-
els in these brain areas [150]. For accurate detection of the relatively low extra-striatal
PDE10A levels [101] by [11C]31 PET, a BPND value of over 0.3 in healthy controls was set as
threshold criterion [150]. In the early pre-manifest HDGECs group, the [11C]31 BPND was
significantly decreased by 25% in the insular cortex and by 42% in the occipital fusiform
gyrus demonstrating a considerable loss of PDE10A in these brain tissues [150]. This
[11C]31 BPND decline correlated well with the reduced radioligand accumulation in the
target region striatum indicating that the activity signal in the PDE10A-poor brain areas is
caused by specific uptake of [11C]31 instead of background noise [150]. In conclusion, the
findings of Wilson et al. support that dysregulation of PDE10A in HD (I) is a very early
pathophysiological event in the disease progression, and (II) does not only occur in the
striatum but also in the insular cortex and the occipital fusiform gyrus. Loss of PDE10A in
these extra-striatal brain regions might be associated with the risk of developing cognitive
and behavioral disorders in manifest HD, but this has to be further investigated [150].

In 2016, Diggle et al. [153] reported on the investigation of PDE10A gene mutations
associated with hyperkinetic movement disorders (hMDs). In eight participants affected
by an early-onset hMD, genetic mapping and whole-exome sequencing identified the
homozygous PDE10A mutations p.Tyr107Cys and p.Ala116Pro [153]. [11C]31 PET was
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performed to quantify the striatal PDE10A levels in one person with the p.Tyr107Cys
variant compared to healthy controls. In this hMD participant, the [11C]31 BPND values
were significantly decreased by 70% in the caudate nucleus, putamen and globus pallidus
indicating substantial reduction of the PDE10A availability in these basal ganglia regions.
MRI scans revealed no differences in striatal volumes of participants with homozygous
PDE10A mutations and healthy controls confirming that the decreased PDE10A levels
observed by [11C]31 PET are not caused by regional atrophy but by striatal dysfunction.
Additionally, PDE10A availability was examined in a motor phenotype displaying knock-in
(KI) mouse model with the p.Tyr97Cys-mutated variant of PDE10A, which is homologous
to the human p.Tyr107Cys variant. Immunoblotting and cAMP-related enzyme activity
assays revealed significantly reduced PDE10A expression and activity in the KI mouse
striatum compared to wild-type mice consistent with the results from the human PET study.
Furthermore, administration of the PDE10A inhibitor MP-10 in wild-type mice exhibited
an up to 400% increased striatal level of the phosphorylated cAMP-response element
binding protein (pCREB), which represents an indirect measure of the intracellular cAMP
concentration. In contrast, no significant changes in the striatal pCREB levels were observed
in KI mice after MP-10 treatment indicating a tremendously reduced downstream pCREB
signaling in the mutated PDE10A variant. Although the authors provided no information
about the applied MP-10 doses in this study, it would be of high interest whether increased
concentrations of MP-10 could induce a pCREB response in the KI mouse model. Moreover,
it should be considered whether the inhibitory potency (IC50) or binding affinity (KD) of
[11C]31 and MP-10 towards the mutated PDE10A enzymes differ from the wild-type
form, which could be of high impact for related imaging and pharmacological studies. In
conclusion, Diggle et al. proposed that homozygous mutations in the PDE10A gene cause
extensive loss of the PDE10A enzyme in the striatum resulting in striatal dysfunction and,
thus, leading to hMDs [153].

In another related study, Niccolini et al. [154] investigated the integrity of striatocor-
tical pathways in two genetic hMDs associated with mutations of PDE10A and adenylyl
cyclase 5 (AC5). PDE10A and AC5 regulate the intracellular cAMP levels in the striatal
medium spiny neurons as mentioned before. Mutations in the PDE10A and AC5 genes
result in functional dysregulation of these enzymes and increased cAMP levels, which is
suggested to cause hMDs [154]. The study by Niccolini et al. included six hMD partici-
pants with heterozygous mutations in PDE10A (p.Phe300Leu and p.Ile625Phe/p.Glu67Gln)
or AC5 (p.R418W) and 16 healthy controls [154]. Quantification of the striatal PDE10A
availability was assessed by [11C]31 PET. In two participants with the p.Phe300Leu variant
of PDE10A, PET imaging revealed a significantly decreased BPND of [11C]31 in the caudate
nucleus (54% or 76%), putamen (71% or 82%) and globus pallidus (66% or 79%) demon-
strating considerably reduced PDE10A availability [154]. Interestingly, the participant with
the p.Ile625Phe/p.Glu67Gln variant of PDE10A displayed a much lesser decline of the
PDE10A levels (14–59%) [154]. Moreover, PET scans in two participants with the AC5
mutation p.R418W revealed a significant decrease of 47% or 67% of the [11C]31 BPND in
the globus pallidus while no changes in the striatum were detected [154].

Additionally, all participants underwent single-photon emission computed tomog-
raphy (SPECT) using [123I]FP-CIT, which is a selective radioligand for quantification of
the dopamine transporter (DAT). In the subjects with the p.Phe300Leu variant of PDE10A,
SPECT scans displayed a significant decrease of 40% or 54% of the [123I]FP-CIT specific
binding ratio (SBR) in the caudate nucleus. Similarly, participants with the AC5 mutation
p.R418W showed a reduction of 32% or 57% of the [123I]FP-CIT SBR exclusively in the
caudate nucleus. These results indicate an impaired striatal pre-synaptic dopaminergic
terminal integrity [154].

Furthermore, MRI scans of all participants were performed for volumetric analysis of
the related brain regions. No significant atrophy was found in the striatum of participants
with the p.Ile625Phe/p.Glu67Gln variant of PDE10A or the AC5 mutation p.R418W. In
the two participants with the PDE10A mutation p.Phe300Leu, significant volume loss in
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the caudate nucleus (31% or 45%), putamen (32% or 48%) and globus pallidus (41% or
50%) was observed. This outcome indicates that the decreased PDE10A and DAT levels
detected by PET and SPECT might be caused by both, basal ganglia dysfunction as well as
atrophy due to the p.Phe300Leu mutation in the PDE10A gene. Thus, the heterozygous
p.Phe300Leu mutation might induce different pathophysiological mechanisms leading to a
different clinical phenotype compared to homozygous PDE10A mutations as investigated
by Diggle et al. [153] and discussed above. Overall, these results point to an association
between PDE10A and AC5 mutations and a pathological reduced expression of PDE10A
and DAT in the basal ganglia as well as dysfunctions within the striatocortical pathways
leading to hMDs [154].

In that regard, Pagano et al. [155] further investigated the relationship between altered
expressions of PDE10A and DAT and the progression of motor symptoms, especially
in early stages of PD. In a cohort of 17 early de novo and 15 early-L-DOPA-treated PD
patients as well as 22 healthy controls, brain PET imaging was performed using [11C]31
and the DAT-specific radioligand [11C]PE2I [155]. The BPND of both [11C]31 and [11C]PE2I
was significantly decreased in the whole striatum, caudate nucleus, putamen and ventral
striatum of early de novo PD patients with less than two years of disease duration. In
the globus pallidus (internal and external) and substantia nigra, only reduced binding
of [11C]PE2I was observed [155]. Moreover, no differences between the [11C]31 BPND
values in contralateral brain regions of early de novo PD patients with unilateral motor
symptoms were detected demonstrating a bilateral reduction of PDE10A. In contrast,
[11C]PE2I binding was decreased in brain areas related to the clinically most affected
side of the body displaying that loss of DAT was only unilateral [155]. Early-L-DOPA-
treated PD patients, which had a three years longer disease duration than the early de
novo PD subjects, showed an additional reduction of the [11C]31 BPND of 17% and 10%
in the caudate nucleus and putamen, respectively. For [11C]PE12I, further decreased
binding of 35% was exclusively detected in the putamen [155]. These results clearly point
to a reduced availability of both PDE10A and DAT in early stages of PD. Compared
to healthy controls, PET imaging in the PD groups revealed a greater decrease of the
PDE10A levels in the caudate nucleus while in the putamen, globus pallidus and substantia
nigra the loss of DAT was more pronounced [155]. Notably, MRI exhibited no volumetric
differences in the respective striatal tissues or the globus pallidus between PD groups
and healthy controls indicating that the reduced binding of [11C]31 and [11C]PE2I was not
caused by regional atrophy. Overall, Pagano et al. concluded that there is an association
between second messenger signaling and dopaminergic function and that pathological
dysregulation of postsynaptic PDE10A might occur prior to dopaminergic terminal loss in
the early progression of motor symptoms in PD [155].

Besides the application of [11C]31 PET for the investigation of altered PDE10A avail-
ability in movement disorders, Tollefson et al. [156] used this approach to examine whether
chronic cocaine use induces changes of the PDE10A levels in the human brain. Briefly,
previous studies in rodents have shown an increased density of striatal medium spiny
neurons (MSN) following exposure to cocaine, which has been reported to persist, even
after 14–30 days of abstinence [156–159]. Therefore, and due to the high expression of
PDE10A in MSN, Tollefson et al. assumed that participants affected by cocaine use disor-
der might display elevated PDE10A levels in the striatum [156]. However, PET imaging
in 15 cocaine-consuming participants that were abstinent for at least 10 days revealed
no significant differences in the [11C]31 BPND in striatal regions, midbrain, thalamus or
globus pallidus compared to healthy controls [156]. A negative trend was observed in
the caudate nucleus and globus pallidus with a decreased binding of [11C]31 of 15% and
9%, respectively. Notably, MRI scans displayed a volumetric loss of 10% in the caudate
nucleus of participants with cocaine use disorder, which was unexpected and not consistent
with previous findings [156]. After partial volume correction of the [11C]31 BPND values,
a slight decrease of the radioligand binding of about 8% in the caudate nucleus and 9%
in the globus pallidus was still detected but not significant. Regarding statistical power
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of these data, Tollefson et al. suggested that PET studies in a larger cohort are required.
Additionally, the authors stated further possible reasons for the negative results obtained,
e.g., species differences that might cause the inconsistency of the human PET data with
the findings in rodents after cocaine administration. Besides, the PDE10A levels might not
only be influenced by altered MSN density, but also by cocaine-induced alterations in the
dopamine and glutamate transmission, which affect the cyclic nucleotide signaling [156].
Finally, Tollefson et al. concluded that the negative outcome of this imaging study further
diminishes the prospects for PDE10A inhibitors as a therapeutic target in cocaine use
disorder [156].

In 2017, Yang et al. [160] reported on the in vivo evaluation of another already known
PDE10A-specific radioligand, [11C]LuAE92686 [124–126] ([11C]32, see Figure 6), in non-
human primates. The suitability of [11C]32 for PET imaging and quantification of PDE10A
in the target region striatum has previously been proven in non-human primates and
humans [1,124]. The aim of the current PET study was to further characterize the binding
of [11C]32 to PDE10A regarding specificity and kinetics and to examine whether [11C]32 is
suitable to accurately quantify PDE10A levels in the substantia nigra where this enzyme
is exclusively expressed in nerve fibers and terminals [101,160]. The substantia nigra is
a key nucleus in relation to the basal ganglia and thus, regional dysfunction of PDE10A
is suggested to be associated with the pathophysiology of neuropsychiatric disorders
like schizophrenia [160]. In that regard, correct quantification of PDE10A in this brain
tissue by PET is needed to investigate the effect of altered enzyme density or activity. PET
scans at baseline conditions revealed high binding of [11C]32 in the target region striatum
(BPND ~ 12), as expected, and mean BPND and VT values of 3.7 and 2.3 in the substantia
nigra [160]. Notably, binding to PDE10A in the substantia nigra has been reported for
two other radioligands, [18F]26 and [11C]31 (Figure 6), with a BPND of only 0.4 and 0.5,
respectively. Yang et al. suggested that this might be caused by lower resolution PET
systems in these previous studies [160]. This assumption is further supported by the fact
that the striatal BPND of [11C]32 was 85% higher compared to earlier findings in non-human
primates due to the use of a high resolution research tomograph (1.6 mm vs. 3.5 mm) and
a head fixation device in the present study [124,160]. Pre-treatment with either MP-10
(1.5 mg/kg) or 32 (0.5 and 2 mg/kg) displayed significantly reduced uptake of [11C]32 in
all target regions confirming specific binding of the radioligand. In the substantia nigra, a
decrease in the [11C]32 VT/fp of around 45% using MP-10 and up to 76% for 32 as blocking
agents was observed. The estimated PDE10A occupancies were about 94% for MP-10 as
well as 84% and 96% for the two doses of 32, respectively [160].

Metabolism studies revealed a fast degradation of [11C]32 with only 18% of intact
radioligand in plasma at 60 min p.i. [160] consistent with former results [1,124]. Several
more polar radiometabolites were formed and it could not be excluded that part of these
are able to enter the brain as observed in rats (<15% of radiometabolites in the brain
at 40 min p.i.) [124,160]. Interestingly, the VT values in the reference region cerebellum
continuously increased during the PET scans from 63 min to 123 min p.i. [160] indicating
that activity quantification in this non-target area might be influenced by the presence
of brain-penetrating radiometabolites. Consequently, Yang et al. proposed to shorten
the PET imaging duration to 63 min when using [11C]32, which is sufficient for reliable
estimation of VT values in the non-human primate brain and minimizes the potential
contribution from radiometabolites [160]. However, identification of the brain-penetrating
radiometabolites and investigation of their passage across the BBB are needed to clarify
their impact on the quantification of [11C]32 binding [160]. Notably, a considerably higher
in vivo stability of [11C]32 in humans has been reported (~70% of intact radioligand in
plasma at 60 min p.i. [124]) and thus, the relevance of brain-penetrating radiometabolites
discussed here might be negligible for clinical studies [160]. Overall, these outcomes clearly
support the suitability of [11C]32 PET for quantification of PDE10A levels in striatal brain
regions and the substantia nigra due to the high signal-to-noise ratio and the specific
binding of the radioligand [160].
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Also in 2017, Bodén et al. [161] published the first clinical [11C]32 PET study in patients
with schizophrenia. The aim of this study was to assess whether there is a link between
striatal dysfunction and frequently observed cortical thinning that is already present at
early stages of schizophrenia [161]. For that purpose, quantification of striatal PDE10A
levels by PET using [11C]32 was performed in 16 healthy controls and 10 schizophrenia
patients treated with diazepines. Additionally, all participants underwent MRI scans for
measurement of cortical thickness [161]. PET scans revealed significantly reduced [11C]32
BPND values in the striatum (caudate nucleus and putamen) of patients with schizophrenia
while no differences were observed in the globus pallidus and substantia nigra compared
to healthy controls [161]. These results indicate a decreased availability of striatal PDE10A
in schizophrenia. Bodén et al. discussed that alterations in PDE10A levels might be caused
either by the pathophysiology of the disease or by chronic antipsychotic treatment due to a
possible direct or indirect inhibition of PDE10A [161]. By the latter, the observed reduction
of the PDE10A availability would only reflect a treatment effect. This is not expected,
because it is more likely that diazepines activate the dopamine D1 receptor (D1R) [162]
which would lead to elevated cAMP concentrations and thus, to increased PDE10A activity
or density [161].

Moreover, a positive correlation between the striatal [11C]32 BPND and cortical thick-
ness in the left superior frontal gyrus and the anterior cingulate cortex was observed in all
participants. This outcome indicates an important role of PDE10A in striato-cortical inter-
actions and that striatal dysfunction and cortical thinning are part of the same underlying
pathophysiology in schizophrenia [161]. However, additional studies are required to clarify
whether reduced PDE10A availability is primary or secondary to cortical thinning [161].
In summary, Bodén et al. concluded that the observed lower striatal PDE10A expression
in patients with schizophrenia has to be verified, preferably in longitudinal studies of
treated and untreated patients with early disease stages to elucidate whether this is a
pathophysiological feature or an effect of antipsychotic treatment [161].

In 2019, Persson et al. [163] published a combined [11C]32 PET and functional MRI
(fMRI) follow-up study in the same cohort of schizophrenia patients like Bodén at al. [161].
This study focused on the investigation of the effect of reduced PDE10A levels in the
striatum on the neuronal and behavioral function of striatal and downstream basal gan-
glia regions [163]. FMRI was used to measure striatal function and activity, the latter as
the amplitude of low-frequency fluctuations (ALFF) [163]. PET/fMRI scans revealed a
significant correlation between decreased [11C]32 BPND and increased ALFF exclusively
in the putamen and the substantia nigra [163]. These results indicate a reduced PDE10A
availability and an elevated excitability in the respective brain regions, consistent with
previous findings where a hyperactivity in the putamen of schizophrenia patients was ob-
served [163–166]. The authors suggested that the higher excitability is caused by increased
levels of cAMP and cGMP resulting from the loss of PDE10A [163,167]. The increased
activity in the substantia nigra is supposed to reflect a downstream effect of decreased
PDE10A levels in the striatum [163]. Furthermore, the ALFF in the putamen and substantia
nigra significantly correlated with electrophysical and behavioral measures indicating that
higher ALFF are associated with lower performance and thus, cognitive impairments in
schizophrenia [163]. Regarding the possible indirect effect of diazepine treatment on altered
PDE10A availability discussed by Bodén et al. [161], there was no relation found between
the reduced striatal PDE10A levels and antipsychotic dosage in the present study. This is
reflected by the fact that the ALFF in the putamen and substantia nigra did not correlate
with the olanzapine equivalent dosage [163]. However, the complex functional link of
the dopaminergic and striatal pathways needs to be further investigated. In conclusion,
this follow-up study provided evidence for a relation between decreased PDE10A levels
in the striatum and basal ganglia function, both at the neural and behavioral level, in
schizophrenia [163].

In 2016, another already known PDE10A-specific radioligand, [11C]T-773 [127,128,168]
([11C]33, see Figure 6), was evaluated in a pilot in-human PET study by Takano et al. [169].
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Briefly, the favorable imaging profile of [11C]33 regarding brain kinetics, specificity of
binding and dosimetry has previously been demonstrated in non-human primates [1,127,
128,170,171]. However, blocking studies have shown contrary results due to an unex-
pected decrease of the [11C]33 VT in the non-target regions cerebellum and cortex after
pre-treatment with the PDE10A-specific inhibitor TAK-063 [129] (see Figure 6) but not
with MP-10 [1,170,171]. The aim of the first clinical [11C]33 PET study was to establish an
appropriate method for correct quantification of the radioligand uptake by evaluation of
its distribution in the human brain, the test-retest variability of the PET data as well as
the effect of TAK-063 in blocking and occupancy experiments [169]. PET scans revealed
rapid uptake of [11C]33 in the brain that peaked within 7.5 min, highest accumulation
in the striatum with VT values of 4.4 and 5.5 for the caudate nucleus and putamen, re-
spectively, and a fast washout [169]. Furthermore, good reproducibility of the [11C]33
VT within 123 min scan duration and high time stability in all brain regions with 57 min
shortened PET data were observed [169]. Metabolite analysis exhibited about 64% and
52% of intact [11C]33 in plasma at 30 min and 75 min p.i., respectively, while more polar
radiometabolites were detected, consistent with the in vivo degradation of the radioligand
in non-human primates [127,128,169,170]. Administration of a single oral dose of TAK-063
(3–1000 mg) at 3 h prior to the radioligand injection resulted in a significantly decreased VT
of [11C]33 in the striatum (37–68% in putamen, dose-dependent), as expected, and in the
non-target regions cerebellum (around 64%, independent from the dose), cortex, thalamus
and hippocampus [169]. In all non-target brain areas, a similar blocking effect of TAK-063
was observed, which is in line with previous findings in non-human primates [171]. These
results clearly point to unknown off-target interactions of [11C]33 and TAK-063 due to
their same molecular core structure (Figure 6) and the negligible PDE10A levels in the
respective brain tissues [169,171]. Thus, Takano et al. have previously reported on a novel
approach for the estimation of target occupancies using TAK-063 by correcting the PET
data for cerebral binding of [11C]33 [169,171]. In the present study, the PDE10A occupancy
obtained showed a dose-dependent increase from 3% to 72% at 3 mg and 1000 mg of TAK-
063, respectively, which correlated with elevated plasma concentrations of the blocking
agent [169]. Nevertheless, Takano et al. suggested that a comparative study using MP-10
for the assessment of the PDE10A occupancy in the human brain might be valuable to
understand these outcomes [169]. In conclusion, this first human [11C]33 PET study further
confirmed the promising imaging characteristics of the radioligand in terms of in vivo
quantification of PDE10A in the brain and reproducibility of the PET data [169].

Besides the complex role of PDE10A in the pathophysiology of several brain dis-
orders discussed above, there is strong evidence that PDE10A is involved in the reg-
ulation of whole body energy balance and thus, selective PDE10A inhibitors are pro-
posed as novel therapeutics for the treatment of obesity [1,172,173]. We have previously
demonstrated a significant upregulation of PDE10A in the brown adipose tissue (BAT)
of various mouse models of obesity by PET/MRI using our PDE10A-specific radioli-
gand [18F]AQ28A [130,173,174] ([18F]34, see Figure 6). In a follow-up study [175,176], we
aimed to investigate further the relation between PDE10A activity and the regulation of
energy homeostasis. For that purpose, [18F]34 PET studies were performed in normal
weight (NW), diet-induced obese (DIO) and genetically obese (ob/ob, leptin deficient)
mice [175,176]. In NW mice, an intense symmetric [18F]34 uptake in the interscapular BAT
was observed, which was significantly higher compared to the surrounding skeletal muscle
at 20–30 min p.i. (SUV = 0.55–0.6 vs. 0.3–0.4) [175]. Notably, blocking with MP-10 revealed
a substantially reduced accumulation of [18F]34 in the BAT confirming specific binding
of the radioligand and thus, demonstrating a marked expression of PDE10A consistent
with real-time quantitative polymerase chain reaction (PCR) analysis of mouse and human
BAT depots [175]. In DIO and ob/ob mice, the [18F]34 uptake was significantly increased
by about 80% in the BAT and 25–75% in the striatum compared to NW mice indicating a
noticeably elevated PDE10A availability in obesity [175,176].
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Additionally, [18F]FDG PET was performed to investigate the effect of PDE10A ac-
tivity on the glucose metabolism [175,176]. Acute pharmacological inhibition of PDE10A
using MP-10 (30 mg/kg) revealed a significantly higher [18F]FDG uptake in the BAT of
NW mice (SUV = 0.40 at 55 min p.i.) but not of DIO mice compared to vehicle groups
(SUV = 0.25 at 55 min p.i.) [175,176]. Besides, administration of MP-10 in NW mice pro-
tected against hypothermia during a four hours cold challenge at 8 ◦C while accumulation
of [18F]FDG in the BAT was significantly reduced [175]. Overall, these results suggest a
predominantly peripheral effect of MP-10-mediated inhibition of PDE10A activity on the
metabolic function in the BAT associated with thermogenesis [175,176]. Notably, chronic
administration of MP-10 (10 mg/kg per day for one week) to DIO mice resulted in a
significant weight loss of around 9% and an improved insulin sensitivity compared to the
vehicle group [175]. Moreover, MP-10 treatment of NW mouse adipose tissue depots led
to increased cyclic nucleotide concentrations and reduced PDE10A expression in the BAT
and the visceral white adipose tissue (VAT), as well as browning of the VAT as also shown
in human adipose tissue depots [175].

Furthermore, a retrospective analysis of whole-body PET images from previous human
dosimetry studies using [18F]30 (Figure 6) [122] displayed a noticeable uptake of the
radioligand in the supraclavicular BAT, which was significantly higher in individuals
with a higher body mass index (BMI) [175]. These observations together with the time
quantitative PCR analysis of adipose tissue depots demonstrate for the first time that
PDE10A is expressed in the human BAT and might be upregulated in obesity. However,
further studies in a larger cohort of participants are required to validate this outcome
and draw definitive conclusions. In summary, this follow-up study demonstrated that
PDE10A is an important regulator of at least three major processes in the BAT, namely
thermogenic gene expression, lipolysis, and glucose uptake [175]. In addition, our results
further provide evidence that pharmacological inhibition of PDE10A might be a promising
strategy for the treatment of obesity and diabetes.

7.2. Novel PDE10A Radioligands

In 2018, Stepanov et al. [177] reported on the development of two novel 18F-fluoroalky-
lated analogs of [11C]33 ([11C]T-773, Figure 6), namely [18F]FM-T-773-d2 and [18F]FE-T-
773-d4 ([18F]35 and [18F]36, see Figure 7). Briefly, [11C]33 has already been evaluated
in humans and presented an appropriate imaging profile for in vivo assessment of the
PDE10A availability in the brain by PET although unknown off-target interactions of
[11C]33 under blocking with the structurally related PDE10A-specific inhibitor TAK-063
(Figure 6) have been observed [169] as discussed above. Thus, Stepanov et al. selected 33
as lead compound and replaced the O-methyl group at the pyridazine core with deuterated
fluoromethyl or fluoroethyl chains [177]. The novel ligands 35 and 36 displayed slightly
lower but still high potency and selectivity towards the PDE10A enzyme compared to 33
(Figures 6 and 7) and were proposed as suitable PET radioligands.

The radiosyntheses of [18F]35 and [18F]36 were performed in a two-step approach via
18F-labeling of 1,2-dibromomethane-d2 or 2-bromoethyl-d4 4-methylbenzenesulfonate fol-
lowed by reaction of the resulting [18F]fluoroalkyl synthons with the respective desmethyl
precursor [177] (see Scheme 13).
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and ([18F])40 [123], and ([18F])41 [178].

Baseline PET studies in non-human primates revealed high and heterogeneous accu-
mulation of both radioligands in the brain [177]. The uptake of [18F]35 and [18F]36 was
characterized by peak values of 5.5% ID and 3.5% ID as well as half-lives of 20 min and
30 min, respectively. The binding of [18F]35 and [18F]36 specifically in the putamen reached
equilibrium within 30 min and 45 min while putamen-to-cerebellum ratios of about 3 for
[18F]35 and less than 2 for [18F]36 were observed [177]. Metabolism studies displayed
moderate in vivo stability of both radioligands with 71% and 58% of intact [18F]35 and
[18F]36 in plasma at 90 min p.i., respectively, while no defluorination was observed [177].
Particularly [18F]35 seems to be rather more stable than [11C]33 in non-human primates
and humans (45% and 52% of intact radioligand at 90 min or 75 min p.i. [128,169]). Except
for one lipophilic radiometabolite of [18F]35 that was detected in only negligible amounts,
mainly more polar radiometabolites of [18F]35 and [18F]36 were formed [177], consistent
with the in vivo degradation of [11C]33 [127,128,169–171]. Based on these results, Stepanov
et al. concluded that [18F]35 showed superior imaging features over [18F]36 due to the
higher brain uptake and binding to striatal regions as well as the favorable kinetics [177].

Consequently, [18F]35 was selected for further investigations including blocking and
occupancy studies using the PDE10A inhibitor MP-10 (Figure 6) [177]. Pre-administration
of MP-10 (1.8 mg/kg) revealed significant decreases of the VT and BPND of [18F]35 in the
caudate nucleus (15% and 68%) and putamen (23% and 64%) while no blocking effect in
the cerebellum, thalamus and cortex was observed indicating specific binding of the radi-
oligand [177]. However, it would be of interest to know whether or not pre-administration
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of TAK-063 might cause a reduced binding of [18F]35 in the non-target brain regions due
to off-target interactions as shown previously for the structurally related [11C]33 [169,171].
A PDE10A occupancy of about 60% in the caudate nucleus and putamen was estimated
for MP-10 (1.8 mg/kg) by [18F]35 PET [177]. In conclusion, [18F]35 displayed a promising
imaging profile that is highly comparable with [11C]33 and thus, further evaluation of this
novel PDE10A radioligand in clinical PET studies is planned [177].
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In 2019, four novel 18F-labeled radioligands, [18F]37–40 (see Figure 7), for PET imaging
of the PDE10A enzyme in the brain were published by Mori et al. [123]. This study focused
on the development of a more suitable PDE10A radioligand than the above discussed and
clinically evaluated [18F]30 [122,136,137,140,142,145] ([18F]MNI-659, Figure 6) regarding its
in vivo degradation and the possible formation of a brain-penetrating radiometabolite [123].
Notably, detailed pre-clinical data of the metabolite analysis of [18F]30 in the brain have not
been reported so far [123]. Based on the molecular structure of 30, Mori et al. generated four
novel PDE10A-affine analogs with different fluoroalkoxy side chains (37–40, Figure 7) and
examined the in vivo profiles of the respective 18F-labeled radioligands in rodents directly
compared with [18F]30 [123]. The two-step radiosyntheses of [18F]37–40 were performed
by preparation of the corresponding [18F]fluoroalkylating agents and subsequent reaction
with the phenol precursor in a home-made automated synthesis system [123,139] (see
Scheme 14).

Baseline PET scans with [18F]37, [18F]39 and [18F]40 in rats revealed high initial brain
uptake, a heterogeneous distribution and strongest accumulation in the striatum with
BPND values of 3.8, 5.6 and 5.8, respectively [123]. In contrast, the striatal uptake of [18F]38
was negligible (BPND = 0.6) indicating a limited penetration of this radioligand through
the BBB [123]. Compared to [18F]30 with a striatal BPND of 4.6, the radioligands [18F]39
and [18F]40 displayed a significantly higher binding to the striatum and thus, were further
investigated [123].

Biodistribution studies in mice exhibited similar patterns of [18F]39, [18F]40 and [18F]30
throughout the body with highest accumulation in the small intestine (44–50%ID/g at
5 min p.i.) and the liver (11–13%ID/g at 5 min p.i.) [123]. The activity levels in all tissues,
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except the small intestine, decreased to <1%ID/g within 60 min p.i. while relatively low
uptake in the kidneys was observed pointing to an elimination of all three radioligands
via the enterohepatic circulation [123]. Additionally, defluorination of [18F]39, [18F]40 and
[18F]30 was insignificant as represented by the very low activity accumulation in the bones
(≤1%ID/g over 120 min p.i.) [123]. Based on these biodistribution data and whole body
dosimetry analysis in mice, the same effective dose of around 13–14 µSv/MBq in a standard
human was estimated for [18F]39, [18F]40 and [18F]30 [123].
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Metabolism studies in rats demonstrated low in vivo stability with only 21–24%
of intact [18F]39, [18F]40 and [18F]30 in plasma at 60 min p.i. while two more polar ra-
diometabolites were detected for each radioligand [123]. However, 96% of intact [18F]39
and [18F]40 were observed in the brain at 60 min p.i. indicating that no significant amounts
of brain-penetrating radiometabolites were formed. Interestingly, about 17% of one polar ra-
diometabolite of [18F]30 were detected in the brain at 60 min p.i. [123]. It was supposed that
this radiometabolite represents [18F]fluoroacetate, which is known to enter the brain and to
be frequently formed from radioligands bearing a [18F]fluoroethoxy group [1,18,74,123,179].
Overall, these findings indicate that [18F]39 and [18F]40 might show an improved metabolic
profile compared to [18F]30 in the brain [123].

Out of this series of novel PDE10A radioligands, [18F]40 displayed the highest stri-
atal binding in baseline PET scans in rats as discussed above and was thus selected for
evaluation of the specificity of binding [123]. In chase-blocking studies, the striatal uptake
of both [18F]40 and [18F]30 significantly decreased by 80–90% after administration of 30
(5 mg/kg) at 20 min p.i. of the respective radioligand [123]. Hence, specific binding of
both radioligands to PDE10A in the striatum could be confirmed [123]. In conclusion, Mori
et al. developed two highly potent PDE10A radioligands, [18F]39 and [18F]40, which might
present superior imaging profiles over [18F]30 for the in vivo assessment of the PDE10A
enzyme in the brain by PET. Next, translation of [18F]40 to clinical PET studies and a
head-to-head comparison with [18F]30 in humans are planned [123].

At the virtual meeting of the SNMMI in 2020, Cai et al. [178] reported on the develop-
ment and preliminary biological evaluation of the novel PDE10A radioligand [18F]P10A-
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1910 ([18F]41, see Figure 7). The aim of this work was to identify an aryl 18F-labeled analog
of [18F]30 (Figure 6) that can be prepared by a facile radiosynthetic procedure and dis-
plays high brain uptake as well as excellent in vivo stability and target specificity for the
assessment of PDE10A in the brain by PET [178]. Unfortunately, no data regarding the
inhibitory potency or binding affinity of 41 towards PDE10A were published in that confer-
ence abstract. The aromatic 18F-labeling was described as a Cu-mediated approach [178],
which indicates that the precursor might be a boronic acid or boronic acid ester. In that
regard, there are no details given about the radiosynthesis except of a radiochemical yield
of 28 ± 3% (not decay corrected) and a molar activity of over 37 GBq/µmol [178].

Biodistribution studies in mice revealed high accumulation of [18F]41 in the small
intestine and liver with over 50%ID/g at 5 min p.i. indicating an enterohepatic excre-
tion [178] like described above for the structurally related [18F]30, [18F]39 and [18F]40 [123].
Metabolism studies exhibited about 80% of intact [18F]41 in the mouse brain at 30 min
p.i. [178] pointing to a significant amount of brain-penetrating radiometabolites. Notably,
these radiometabolites might be formed faster and to a higher extent compared to the
degradation of [18F]30, [18F]39 and [18F]40 in mice (83–96% of intact radioligand in the
brain at 60 min p.i. [123]).

However, the first PET studies in non-human primates showed rapid uptake of [18F]41
in the brain with heterogeneous distribution and high accumulation in the striatum that
declined slowly from a SUV of 1.6 at 3 min p.i. to 0.9 at 90 min p.i. [178]. These data
indicate that [18F]41 specifically binds to the PDE10A enzyme in the striatum [178]. Overall,
Cai et al. suggested [18F]41 as a promising novel PDE10A radioligand that will be further
investigated [178].

8. Summary and Concluding Remarks

This follow-up review summarizes the extensive efforts of several research groups in
the field of molecular imaging of cyclic nucleotide phosphodiesterases by PET since 2016.
In fact, a considerable number of pre-clinical and clinical PET studies using already known
and well-established radioligands have been published for the PDE isoforms 2A, 4 (B,D)
and 10A.

Starting with the PDE2A enzyme, the radioligand [18F]4 ([18F]PF-05270430) has been
further evaluated to confirm its suitability for target occupancy examinations in the assess-
ment of novel PDE2A inhibitors as therapeutics for neuropsychiatric and neurodegenera-
tive diseases [21]. Although the possible formation of brain-penetrating radiometabolites
remains still unclear and might require additional investigations, [18F]4 is the most potent
PDE2A-specific radioligand so far.

Particularly for the isoforms PDE4 (B,D) and PDE10A, a lot of new insights have
been reported regarding the complex relationship between altered enzyme density or
activity and the pathophysiology of diseases of the central nervous system. For example,
current PET studies with the well-known PDE4 radioligand [11C]rolipram indicated that
changes in the PDE4 availability might be associated with cognitive impairments and sleep
dysfunctions in Parkinson’st disease (PD) [44,46] as well as with dysregulations in the
disrupted in schizophrenia protein 1 (DISC1) related to the progression of neuropsychiatric
disorders [51].

With regard to the PDE10A enzyme, in vitro and in vivo binding studies using the
radioligand [18F]26 ([18F]JNJ42259152) revealed important findings about the activation
of PDE10A by increased levels of cAMP, which was also observed indirectly via selective
inhibition of PDE2A or PDE4 pointing to a strong correlation between different PDE iso-
forms in the brain [111]. Moreover, PET studies with the PDE10A radioligands [18F]27,
[18F]30 and [11C]31 ([18F]TZ19106B, [18F]MNI-659 and [11C]IMA107) provided further
evidence that PDE10A is a key enzyme in the regulation of striatal signaling not only in
cAMP-dependent but also in dopaminergic pathways. A functional association between
PDE10A and the dopamine D2 and D3 receptors as well as the dopamine transporter in
the striatum was shown under physiological conditions [131,140], in HD [143,145] and in
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PD [155]. Additionally, [11C]31 PET studies indicated that homozygous or heterozygous
mutations in the PDE10A gene are linked with dysregulation and pathological reduced
striatal expression of the enzyme that might lead to the progression of movement disor-
ders [153,154]. Furthermore, preliminary [11C]31 PET data revealed a considerable loss of
PDE10A in extra-striatal brain regions, like the insular cortex and occipital fusiform gyrus,
of patients with early pre-manifest HD demonstrating that dysregulation of PDE10A is an
initial pathophysiological event in the progression of the disease and might be associated
with cognitive and behavioral disorders in manifest HD [150].

Besides the intensively studied role of PDE10A in various brain disorders, we have
shown that this enzyme is highly expressed in the brown adipose tissue by a retrospective
analysis of human [18F]30 PET data and using our PDE10A-specific radioligand [18F]34
([18F]AQ28A) in different mouse models of obesity [175,176]. The preliminary results
clearly point to a relationship between PDE10A activity and the regulation of energy home-
ostasis including thermogenic gene expression, lipolysis and glucose uptake suggesting
that PDE10A might be a suitable target for the treatment of obesity.

During the last five years, an overall number of 31 novel radioligands have been
developed for PET imaging and quantification of PDE1, PDE2A, PDE4 (B, D), PDE5, PDE7
(A, B) and PDE10A (see Table 1).

Table 1. Update of novel radioligands for PET imaging of the PDEs 1, 2A, 4 (B, D), 5, 7 (A,B), and 10A since 2016.

Phosphodiesterase Radioligands
Review Compound No. (Code No. Given) References

PDE1 [11C]1 ((±)-[11C]PF-04822163) [10]

PDE2A [18F]2 ([18F]BIT1) [16,17]

PDE4B [18F]5 ([18F]PF-06445974) [55]

PDE4/sEH [11C]6, [11C]7 [56]

PDE4D
[11C]8, [11C]9, [11C]10, [11C]11

([11C]T1650, [11C]T1660, [11C]T1953, [11C]T2525)
[58]

[11C]12, [11C]13, [18F]14
(and four more 11C-labeled radioligands)

[66]

PDE5

[11C]15, [18F]16 [72]
[18F]17 [73,81]

[11C]19, [11C]20 [75]
[11C]21 ([11C]TPN171) [76,77]

PDE7B [3H]24 [98]
PDE7A/B [11C]25 ([11C]MTP38) [99]

PDE10A
[18F]35, [18F]36 ([18F]FM-T-773-d2, [18F]FE-T-773-d4) [177]

[18F]37, [18F]38, [18F]39, [18F]40 [123]
[18F]41 ([18F]P10A-1910) [178]

For PET studies of the respective PDE isoforms in the brain, application of [11C]1,
[18F]2, [11C]8–12, [18F]14, [11C]15, [18F]16, [18F]17, [18F]36 and [18F]38 is hampered due
to insufficient brain uptake, poor specific binding, formation of brain-penetrating ra-
diometabolites or unfavorable kinetic profiles. Notably, [11C]1 ((±)-[11C]PF-04822163) [10]
is the only further radioligand that has been developed for brain PET imaging of the PDE1
enzyme since the first PDE1 radioligands have been reported in 2011 [8,9]. Furthermore,
the development of a selective PDE4 radioligand that differentiates between the isoforms
PDE4B and PDE4D in the brain is gaining interest. In that regard, the novel radioligands
[18F]5 for PDE4B [55] and [11C]13 for PDE4D [66] are currently the most promising can-
didates and under further investigation. Neuroimaging of PDE5 is challenging due to
the low enzyme expression in the brain, but the radioligands [11C]19 and [11C]20 showed
picomolar potency and excellent selectivity towards PDE5 [75] and thus, in vivo evaluation
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of these will certainly be followed with great attention. Besides, [18F]16 is proposed as
appropriate PDE5 radioligand for the examination of altered enzyme density in heart
failure and for myocardial PDE5 occupancy studies [72]. With that regard, first pre-clinical
evaluation of the probably more potent PDE5 radioligand [11C]21 ([11C]TPN171) [77] will
be anticipated with high interest. For visualization of the PDE7 enzyme in the brain,
only the two novel radioligands [11C]25 ([11C]MTP38) and [3H]24 have been published
since 2016. Pre-clinical and the first-in-human PET studies revealed a promising imaging
profile of [11C]25 indicating that this might be the first suitable PDE7 radioligand [99,100].
Furthermore, [3H]24 seems to be a highly potent candidate for the development of a corre-
sponding PET radioligand [98]. Interestingly, all of the novel PDE10A-specific radioligands
have been developed based on the molecular structures of the already known radioligands
[11C]33 ([11C]T-773) and [18F]30. The most promising candidates thereof are [18F]35, [18F]39
and [18F]40, which showed superior imaging characteristics compared to the former and
well-established analogs.

To the best of our knowledge, out of all the PDE radioligands discussed here the
following have already been evaluated in humans: [18F]4 for PDE2A, [11C]rolipram and
[11C]8 for PDE4 (D), [11C]25 for PDE7A/B as well as [18F]26, [18F]30, [11C]31, [11C]32
([11C]LuAE92686), and [11C]33 for PDE10A.

In conclusion, the comprehensive work on the investigation of PDEs by PET reviewed
here reflects the importance of appropriate isoform-specific radioligands for non-invasive
visualization and quantification of this intracellular enzyme class. In future, growing
understanding of the functional role of PDEs in the pathophysiology of numerous diseases
will certainly set milestones in related clinical research.
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