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Abstract: Robots have begun to populate the everyday environments of human beings. These
social robots must perform their tasks without disturbing the people with whom they share their
environment. This paper proposes a navigation algorithm for robots that is acceptable to people.
Robots will detect the personal areas of humans, to carry out their tasks, generating navigation
routes that have less impact on human activities. The main novelty of this work is that the
robot will perceive the moods of people to adjust the size of proxemic areas. This work will
contribute to making the presence of robots in human-populated environments more acceptable.
As a result, we have integrated this approach into a cognitive architecture designed to perform
tasks in human-populated environments. The paper provides quantitative experimental results
in two scenarios: controlled, including social navigation metrics in comparison with a traditional
navigation method, and non-controlled, in robotic competitions where different studies of social
robotics are measured.
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1. Introduction

We focus on social robots that operate in human-populated environments and can interact with
them. Although it is not yet common to live with a robot every day, this will soon be a reality. However,
there is still much to do to make these robots acceptable in our daily life.

In mobile robotics, the main objective of a navigation system is to allow a robot to move from one
point to another in the environment safely and efficiently. In this work, we focus on cases where the
environment is known a priori, and coded on a map. Having a reliable and stable location is critical to
the success of navigation. Most of the successful navigation approaches divide the navigation modules
into two levels: global planner and local planner.

The global planner calculates the route from the robot’s current position to the final position.
We can use multiple algorithms for this task: A* [1], Dijkstra algorithm [2], Gradient Methods [3], etc.
In our work, we used an A* algorithm for calculating routes on a cost map. A cost map encodes the
obstacles of an environment on a grid. There is a value that indicates that a grid cell is unknown,
a maximum value that indicates that there is an obstacle, and a minimum value that indicates that it
is clear. Intermediate values indicate the cost of going through this grid cell. They do not block but
involve a higher cost when calculating the route.
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The local planner is responsible for following the routes generated by the global planner
generating movement commands. It also has to avoid possible obstacles that are present on the
map. Among the algorithms used in these planners are Dynamic Window Approach (DWA) [4], Elastic
Bands [5], Timed-Elastic-Band [6,7], Trajectory Rollout [8], Genetic approaches [9,10], and mixed
approaches [11–13].

We developed [14] one level above to plan the movement of a robot through indoor environments.
We call it topological navigation. A robot may have to go through doors, climb elevators, or pass-through
access lathes. We used classical PDDL-based [15] planning to divide navigation into actions.
These actions can be simple (move_in_a_room and move_to_accessible_room), which only require
navigation, or more complex (open_door and call_elevator), which may require manipulation
or dialogue.

We integrate this topological navigation module in our cognitive architecture. Our architecture
allows developing software modules, such as the case of topological navigation, which provides
portions of PDDL to the application domain. Each module provides the implementation of each of
the actions, such as the actions described above. In addition, each module implements a set of skills
(perceptual or acting) that may be required to carry out the actions.

The challenges we face in social robotics are numerous. A robot is not perceived in the same way
by all humans. There are people more likely to interact with robots. Furthermore, some people are
bothered to be near a robot. A robot should respect people’s privacy, not accessing places where it
would be annoying for a person to find a robot (in a bedroom or a bathroom). A robot should not
cross areas of high activity of people, because it could be a hindrance (a kitchen, for example). A robot
should not trace routes through groups of people who are interacting, or areas that limit people’s
activities (a robot should not pass in front of the television if people are watching it, for example). If a
robot takes these factors into account when navigating, it will contribute to making people accept the
robot in living with people.

We consider that social navigation is also a robot skill at a higher level than a global planner.
A social robot must trace its routes using a map, but also with certain restrictions. The motivation is
that the robot disturbs people in the environment as little as possible while navigating. It should also
not pass near persons whose attitude towards the robot is not favorable. We develope in this paper a
social navigation module that inserts restrictions to the local navigation planner. We carry out this
duty by modifying the costs of the map cells used by the local planner. These restrictions are made
based on the mood of the people detected by the robot.

We develope our social navigation module as a module within our cognitive architecture.
We mainly implement the social_move action. To carry out this action, we develop several perceptual
skills to detect people, their intentions, and their humor, among other characteristics.

In summary, the main contributions of our work in this paper are:

• We model the area of influence of people based on the perception of their attitude towards the
robot. We code these areas in cost maps.

• We integrate a social navigation behavior in a cognitive architecture.
• We test our approach in a competition environment.

This paper is structured as follows: In Section 2, we present all the works we consider relevant
in the area of social robotics. In Section 3, we briefly describe the cognitive architecture in which our
social navigation system is integrated. In Section 4, we present the complete social navigation system,
which is the main contribution of this work. In Section 5, we show experiments that validate our
approach. Finally, Section 6 contains the conclusions of this work.

2. Related Work

Social robotics is the area that studies the use of robotics technologies in a domestic environment
and research on better ways for the robots to adapt to daily human lives [16]. Within this area is the
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social navigation, a field of knowledge that works on improving the movements of a robot when it is in
a populated environment. This field has attracted broad interest in the last years [17–19]. The primary
motivation of social navigation is to disturb people as little as possible, in addition to following certain
social conventions that will be determined by culture, age, or context. The first works in this area
propose a virtual force model or social force model [20], in which authors model the forces acting on
a person that is walking in a crowded scenario as a combination of three forces, one to describe the
acceleration, another repulsive force to describe the distance to other pedestrian and borders, and the
last one to describe the attractive effects of the pedestrian target. A recent work in this line is in [21],
in which the authors used Social Force Model (SFM) to avoid humans in an urban scenario.

The use of emotions also could be significant in social navigation. The authors of [22,23]
established that emotions, particularly fear, influence the size of our personal space. Taking this
into account, robot navigation must be modified to ensure that they will be accepted by a society in
which many people are afraid or distrustful of robots. Another use of emotions in robotics is in [24],
where the authors proposed that a robot could change its navigation mode according to a collection of
different emotions that the robot could perform.

There are also learning-based methods (e.g., [25–27]), in which the robot learns from the human
behaviors when a person navigates in a populate scenario. It generates a set of parameters that are used
afterwards for planning or following a path in a socially accepted way. Tranberg Hansen et al. [28] used
a learn-based method to estimate if a person wants to interact with the robot. If not, the robot must
respect the personal space of the person and go out if it is invading it.

Other works propose the use of fuzzy logic [29] to achieve that a robot could accompany a person
for a corridor, avoiding cross in front of moving people, or the use of the proxemics theory [30] to solve
the problem of a robot stands in line with humans.

Proxemics theory is the basis of a large number of studies, mainly for its social and human-centered
focus. It defines the space around a person as different zones with different radii: intimate, personal,
social, and public. Some works use the proxemic zones to feed the global planner [31,32], creating
a social path to adapt its behavior to people and the environment. Our social navigation method,
conversely, modifies the local cost map achieving a reactive behavior and allowing that the global
planner could replan.

The proxemics theory does not describe areas with a fixed radius but defines areas that could
change according to the culture or age, among others. Some works address the problem of walking
in a corridor using proxemics theory as a base [33,34]. These works develop methods to follow the
social convention of keep on the right when walking in a corridor. However, our proposal is general to
any scenario.

In [35], the authors proposed an approach where the proxemic zones are dynamic and change
depending on the spatial context and human intention.

This paper focuses on improving the comfort [17] of people creating dynamic proxemic zones
that are modified by different parameters, i.e., attitude towards the robot, age, or presenting behavior
that indicates the intention of interact with it. Furthermore, the proxemics theory is given a similar
approach to Tranberg Hansen et al. [28], who used proxemic zones, not only for creating a forbidden
navigate zone for robots but also under certain conditions that allow human–robot interaction.

3. A Cognitive Architecture for Social Robots

Figure 1 shows the design on layers of our architecture. It is a concentric-layered design, with a
transversal component called knowledge graph. The knowledge graph stores the internal and external
knowledge of the robot, and it is accessible from any layer.

Tiers 1 and 2 mainly use symbolic information. Tiers 3 and 4 use subsymbolic information.
The central part of the architecture, at Tier 2, is a symbolic planner based on PDDL. Using PDDL,
we define what types, symbolic predicates, and actions can be used to solve a problem in a domain.
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This planner has a knowledge base, accessible from other levels, that contains the instances and
predicates of the current problem.

• Tier 1 states the instances and predicates of the problem to be solved. This level contains
hierarchical state machines that define the modes and behaviors of the robot at a high level.
We implement transitions between states by consulting predicates in the knowledge base.
We define goals for the planner in the states.

• When a state machine at Tier 1 establishes a goal, the planner at Tier 2 creates a plan using the
content of his knowledge base. The plan is made up of a sequence of domain actions. The planner
delivers the actions at Tier 3 one at a time. Each time an action indicates that it has been completed
successfully, the next one is delivered until the plan is finished. If an action finishes with error,
it forces a replanning.

• Tier 3 contains the implementation of the actions defined in the PDDL domain. This level is the
bridge between both paradigms. The planner activates actions according to the generated plan.
When activated, the planner passes the parameters to the actions (instances of a type). Usually,
the action must translate symbols into specific data. For example, a move action could receive
kitchen as a parameter. Then, the action must obtain the metric coordinate corresponding to the
kitchen symbol and send it to the navigation module.

On some occasions, the actions receive information extracted from the sensors, and send
commands to the actuators. Most of the time, the actions are too complicated and delegate
part of their operation to skills. The actions activate skills and monitor when they have carried
out their work.

• Tier 4 contains skills that can be activated from actions. The skills can be reused from any of
the actions. This level includes perceptual, attention, dialogue, and manipulation modules,
among others.

• The knowledge graph stores the information relevant to the operation of the robot. We design
this shared representation of data to disengage some components of others, especially between
different layers. An action in Tier 3 uses the result of computing a skill in Tier 4 by reading it from
the knowledge graph. Tier 1 can also use the symbolic information contained in the graph.

Knowledge Graph

Symbolic
Tier 1 

Planning
Tier 2

Actions
Tier 3

Skills
Tier 4

Robot HW
Tier 5

Figure 1. Layered cognitive architecture.

The elements of the graph are nodes and arcs. The nodes represent instances of a specific type.
The arcs can contain a text, or they can provide a geometric transformation.
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The relationship between the symbolic information that contains the knowledge base of the Tier 2
planner and the information of the graph is not direct. A process synchronizes the relevant information
in the knowledge base of the planner and the graph. We previously configure suitable types and
predicates. This process adds nodes to the graph when the knowledge base creates instances of a
relevant type. This process also creates arcs when the knowledge base inserts a relevant predicate. If the
predicate has two arguments of related types, the arc connects two nodes with a text corresponding
to the predicate. If the predicate has only one argument, it is a self arc (need_check arc in Figure 2).
Currently, the updates only go one way, avoiding updates from the graph to the knowledge base.
Figure 2 is the graph of a real application, and all the nodes and arcs (except “ask:”) correspond to
instances and predicates from the planner knowledge base.

leia
(robot)

Restaurant
(world)

Table_1
(table)

Table_2
(table)

Table_3
(table)

Jack
(person)

Mike
(person)

Coke
(drink)

Beer
(drink)

robot_at

sit_
at sit_at

table_at

table_at

table_at

contains

contains

need_check

(10.0, 5.0, 0.0)

(20.0, 5.0, 0.0)

(20.0, 15.0, 1.57)

(2
2.

0,
 1

5.
0,

 1
.5

7)

ask: order

(1
.0

, 0
.3

, 0
.0

)

Figure 2. Knowledge graph representing the internal and external knowledge of the robot. Ellipses
represent nodes with an ID and a type. Black lines are text arcs and blue lines are geometric arcs.

4. Social Navigation

The cognitive architecture just described integrates our navigation system. Figure 3 shows this
integration. Before the development of our approach, there were already actions in which the robot had
to navigate. The move action moves the robot from one point to another in the environment. The guide
action guides a person from one point to another in the environment, using its rear ultrasound sensor
to control whether the person follows the robot. The plans that include these actions also include the
open_door action in the case of going through doors. Both guide and move use the navigation skill,
establishing geometric coordinates as the destination.

We implement our approach through one action and several skills. This new action, social_move,
is available to be included in any plan that requires the robot to navigate between people. When this
action is activated, it also activates two skills: one to detect people, and another to maintain a dialogue
with them, in the case an interaction request occurs. We implement action social_move as a state
machine with two states, as shown in Figure 3 (right):

• In the navigating state, this action sends geometric positions to the navigation skill. In this case,
we activate a social layer, which we detail below.

• In the interacting state, the robot pauses navigation and initiates a dialogue with a person.
The transition to this state occurs when a person asks the robot to initiate a dialogue. The robot
stops and faces the person. Once the dialogue finishes, the robot continues navigating to
the destination.
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Symbolic
Tier 1 

Planning
Tier 2

Actions
Tier 3

Skills
Tier 4

Other 
Mode

Social
Mode

move ?from ?to - location

Navigation

People 
Detector

social_move ?from ?t - location

guide ?from ?to - location ?p - person

Motors

RGB-D Camera

Laser

open_door ?l- location ?d - door

Dialog

social_move ?from ?t - location

Navegating Interacting

Figure 3. The cognitive architecture (Left) and social_move action details (Right).

The above description analyzes how we integrate our approach into our cognitive architecture.
We implement the core contributions in the people detection skill and the social layer implemented
within the navigation skill, shown in Figure 4. Next, we describe in detail the design of both skills.

Global planner

Local planner
Local 

costmap

Map Server

Social
Layer

Robot Actuators

People Detector

Global 
costmap

Mood
Detector 

RGB-D Camera

Person
Detector 

+

laser

Im
ag

e 2
D

Im
ag

e 
2D

P
ointC

loud

Perceived persons
(3D pos and mood)

costmap

costmap

costmap
(with social info)

LaserScan

Costmap

Speed (lin, rot)

Costmap

Figure 4. Functional diagram of the proposed approach.

4.1. People Detector Skill

The people detector skill is responsible for detecting the position of people in coordinates of the
map reference axis. We represent this skill in Figure 4.

Within this skill, there is a component called person detector, which is responsible for detecting a
person within an image using a convolutional neural network. The input of this component is the 2D
image of the camera, and the output is a list of detections. Each detection contains a probability and
the coordinates, in image coordinates, of the bounding box of the detection.

The mood detector component takes the image as input and generates a list of emotions detected
in the faces existing in the image. Each detection contains a mood (positive, neutral, or negative).
It also contains the coordinates in the image of this detection.

Both outputs get combined to label the detected people with a mood. If a person is detected and
there is no emotion associated with it, we label it as neutral. The detected person is tagged as neutral
until this component detects a different mood. This information is persistent in time, and each person
is tagged with the last mood that could be detected of him.

Finally, we transform the bounding boxes in coordinates of the image into bounding boxes in
three dimensions. To carry out this process, we use the point cloud that corresponds to the image used
in the mood detection. The points that make up our point cloud and the pixels of the corresponding
2D image have the same position. An example of this detection is shown in Figure 5.
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Figure 5. Mood detector detecting different attitudes: (Left) positive attitude; (Central) neutral; and
(Right) negative attitude. .

4.2. Navigation Skill

The navigation skill uses the ROS navigation stack [36]. As described above, it consists of two
planners, global and local. The global planner calculates the route from robot current position to
target, and the local planner generates movements to follow this path, avoiding unexpected obstacles.
In addition, this system could be configured by adding new layers [34]. In this paper, we develop a
layer, social_layer. It modifies the local cost map adding the proxemic zones related to people.

Figure 6 shows a graphic comparison of the different proxemic areas and their size. These zones
are coding in the local cost map as Gaussian functions of concentric circles [19,37,38]. The parameter
of these Gaussian functions that changes according to the mood of the people is the covariance.
In summary, the personal zone radius of a person with a positive attitude towards the robot is 0.6 m,
for a person with a neutral attitude is 0.9 m, and for a person with a negative attitude is 1.6 m.
The personal zone radius for people with a positive or neutral attitude remains within the limits
presented in the literature [19] and, for people with a negative attitude, it is expanded further beyond
that limit. In this way, a personal zone is created in line with their negative attitude [22,23] towards the
robot, so that their comfort is not affected.

0'2

0'4
0'6
0'8

1
1'2
1'4
1'6
1'8

Figure 6. Personal zones details (m): red for a negative attitude, gray for neutral, and green for a
positive attitude.

With the proxemic zones added in the local cost map (Figure 7), as described in Algorithm 1,
and a target position established, the global planner will create a new path to reach the goal. The local
planner will generate the correct movements to keep the robot in the cell with less cost, and, because
of this, it will keep out of the personal zones of the people.
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Figure 7. People representation in a local cost map by: default in ROS (left); and using proxemic
zones (right).

Algorithm 1 Proxemic zones to local cost map.

1: while robot_navigates do
2: list People detected_people = get_detect_people_with_mood()
3: for all pi ∈ detected_people do
4: Float covar = get_covar_from_mood(pi.mood)
5: Cell person_cell = worldToMap(pi.position.x, pi.position.y)
6: setPersonalZone(local_costmap, person_cell, covar)
7: end for
8: end while

Using this approach, we can reach that the robot does not invade personal zones. Besides,
we enable the human–robot interaction if a person has a positive attitude. In the same way, we try
not to affect at all a person who is showing a negative attitude towards the robot. Figure 8 shows the
integration of the above two skills to create personal zones.

Figure 8. A person detected and positioned in the map with its proxemic zone.

5. Experiments

We tested the validity of our approach in two ways. First, we performed experiments in a
simulator. Secondly, we tested our approach in a more realistic environment in the SciRoc competition,
in which we participated in Milton Keynes in September 2019.

In the implementation of our architecture, we use ROSPlan [39] and BICA [40].
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ROSPlan is an IA planning framework, which uses popf [41] among other planners, and is
situated in Tier 2 (Figure 1. BICA is a toolbox to create software architectures for robots. Virtually all
the elements of our design are BICA components that perform different functions. A BICA component
is an independent process that can declare that it depends on other BICA components. When a BICA
component is activated, it automatically activates all its dependencies. When all components that
enable a dependency are deactivated, the dependence is deactivated. This mechanism is a simple way
to save computation time when the results of certain computations are not being used.

Finite state machines in Tier 1 are inside BICA components. As each state can declare a dependency
on other BICA components, we can create a hierarchy of state machines. Actions and skills are also
BICA components. An action declares some skills as dependencies. When the planner activates an
action, all its required skills activate.

5.1. Social Navigation in Simulated Scenarios

The tests in simulated scenarios were performed on a computer with an Intel Core i7-8550U 1.8
GHz processor with 16 Gb of DDR4 RAM and Ubuntu GNU/Linux 16.04 using Gazebo as simulator
and ROS as robot framework and a Jetson TX2 256-core GPU. YOLO [42,43] was used as the people
detector and EmoPy [44] was used as the emotion detector.

We used the metrics already established by the scientific community [45–47], formally described
in [48], to ascertain the efficacy of the proposed system: dmin, average minimum distance to a human
during navigation; dt, distance traveled; τ, navigation time; and Psi, personal space intrusions.
The navigation was done at a speed of 0.3 m/s [49].

We compared the proposed algorithm with the ROS traditional navigation since this navigation
system is the most widespread and used by the scientific community, and with the static proxemic
method described in [34].

In the first experiment, the robot started at Waypoint 1 (Figure 9), then it navigated to Waypoint 2,
and it finished going to Waypoint 3. In this case, the robot did not have information about the mood of
the people, so the attitude of everybody was neutral, and the radius of their personal area was 0.9 m.
Table 1 shows a comparison between both navigation systems.

1
2

3

Figure 9. (Left) Experiment 1 setup with the reference waypoints. The robot started at Waypoint 1,
went to Waypoint 2 and finished at Waypoint 3. (Right) Path for ROS traditional navigation in red and
the path followed with our approach in blue.

It can be seen that dt is slightly higher than the ROS default system, and the distance traveled is
longer. This result is justifiable by the social behavior that the robot has with the proposed system.
The robot does not invade at any time the personal area of people. Figure 9 shows the path followed
by the robot with both systems.
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Table 1. Social navigation metrics for Experiment 1: for each parameter its mean and standard
deviation are provided in parenthesis.The bold numbers indicate a better result in comparison with the
other approaches.

Parameter Proposed Approach ROS Traditional Navigation

dt (m) 47 (2.65) 38.67 (2.52)
τ (s) 8.96 (0.58) 8.84 (0.23)

dminPerson1 (m) 1.19 (0.14) 0.57 (0.02)
dminPerson2 (m) 1.05 (0.07) 0.51 (0.03)

Psi(Personal) (%) 0 (0) 15.57 (0.39)

As in Experiment 1, the robot started at Waypoint 1 (Figure 10), it navigated to Waypoint 2, and it
finished at Waypoint 3. Figure 10 shows the different moods of people of the scenario, and Table 2
shows the experiment results.

1
2

3

P1

P3

P2

Figure 10. (Left) Experiment 2 setup with the reference waypoints and people’s attitude: red for
negative attitude, gray for neutral attitude, and green for positive attitude. The robot started at
Waypoint 1, went to Waypoint 2, and finished at Waypoint 3. (Right) Proxemic zones depending on
the people’s mood. The path for ROS traditional navigation is in red, the path for the approach of Lu
and Smart [34] is in orange and the path followed with our approach is in blue.

Table 2. Social navigation metrics for Experiment 2: for each parameter, the mean and standard
deviation are provided in parenthesis. The bold numbers indicate a better result in comparison with
the other approaches.

Parameter Personal Zone Radius (m) ROS Navigation [34] Method Proposed Approach

dt (m) 87.33 (2.69) 104.00 (7.94) 107.00 (7.55)
τ (s) 11.80 (0.42) 11.96 (0.65) 12.58 (0.71)

dminPerson1 (m) 1.6 0.56 (0.04) 1.24 (0.04) 1.62 (0.01)
dminPerson2 (m) 0.6 0.48 (0.04) 1.10 (0.01) 0.85 (0.04)
dminPerson3 (m) 0.9 0.52 (0.05) 1.08 (0.12) 1.11 (0.05)

Psi(Personal) (%) 12.49 (8.99) 5.75 (9.96) 0 (0)

In this case, we can see how the traditional navigation of ROS invades the personal zones of
People 1–3, taking into account that Person 1 has a negative attitude towards the robot. Similarly,
the approach of Lu and Smart [34] invades the personal zone of Person 1, because it does not take into
account the attitude of people. The proposed approach adapts correctly to the environment and does
not invade any personal area.

Results from Lu and Smart [34] and our approach are similar. The main difference is produced
when a person has a negative attitude. For this reason, we evaluated these methods in a real experiment.

The experiment was conducted with real participants to assess their comfort using the approach
of Lu and Smart [34] and our approach. Eighteen people aged 18–30 participated (Figure 11). All of
them assumed the role of a person with a negative attitude towards the robot, who is afraid or who
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thinks that the robot could hit them. In each iteration, the robot performed two navigation rounds
in which it used each of the approaches. During the route, the robot encountered a person who was
obstructing its original trajectory and the robot had to avoid them. After each round, the participant
filled out a questionnaire indicating the type of approach used in each case. This information was
provided by the authors just before filling in the questionnaire. Then, that participant carried out the
second round of the experiment using the approach that had not been used in the previous round.
The measurement was a simple rating on a Likert-type scale [50] between 1 (“Completely disagree”)
to 5 (“Completely agree”). Table 3 shows the mode [51] of each item of the questionnaire and Table 4
shows the quantitative analysis of these results using the t-test method.

Figure 11. The experiment with real participants to measure their comfort.

Table 3. The questionnaire filled out by the participants of the experiment, highlighting in bold
the changes between the approaches. CD (Completely Disagree), D (Disagree), N (Neither agree or
disagree), A (Agree), CA (Completely Agree).

Item [34] Method Our Approach

“I have been comfortable with the presence of the robot.” D D
“The noise produced by the robot has bothered me.” D D

“The distance between the robot and me has been adequate.” CD CA
“The sudden movements of the robot have bothered me.” D D

“The robot has a human-like motion.” N N
“The robot behaves reliably.” N A

Table 4. T-student analysis applied to the results of Question 3 (“The distance between the robot and
me has been adequate.”).

[34] Method Our Approach

Mean 2.33 3.83
Variance 2 1.21

Observations 18 18
Pearson Correlation −0.76

Hypothesized Mean Difference 0
Variance of the Differences 5.56

df 17
t Stat −2.7

P (T ≤ t) two-tail 0.015

In our questionnaire, we asked six questions aimed at the individual’s perception of the robot’s
behavior. Although there are no significant differences between the two samples for five of the
questions (1, 2, 4, 5, and 6), for Question 3, which is related to the proxemics in HRI scenarios,
the results after applying a t-student test (p < 0.05, particularly 0.015 in the two-tail sample, Table 4)
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shows that the application of our approach improves the people’s comfort and how they think that the
distance between them and the robot is more appropriate.

5.2. Social Navigation in Competition Scenario

Robotics competitions are useful because they present a common problem that is addressed
by several teams of researchers. In these competitions, metrics are established to measure the
robot’s performance, which allows comparing the investigations between the teams. In particular,
we participated in the “take the elevator” (https://sciroc.eu/e04-take-the-elevator/) challenge in
which the robot must integrate social navigation with other behaviors, Figure 12:

1. The robot must go to an elevator. On his way, he will meet two people. One does not want to
interact with the robot, and another person actively attracts the robot’s attention. The robot must
maintain a dialogue with this second person.

2. The robot must wait for the elevator to arrive in a position that does not bother the other people
who are waiting and allow the people arriving in the elevator to leave.

3. The robot should navigate to a position in an elevator where it does not bother other people,
and allow people to get off the elevator on each floor.

4. The robot must exit the elevator when its floor arrives. It can face the people in the elevator to
ask for the floor.

The people who judge this test are technical and non-technical volunteers who judge the
performance based on a mixed evaluation taking into account both robot performances and a user
evaluation that includes, among other things, their comfort when sharing their space with the robot.
We, as Gentlebots team and using TIAGo (http://pal-robotics.com/robots/tiago/) robot as robotic
platform, won the “take the elevator” challenge (https://sciroc.eu/winners-2019-edition/) in this 2019
edition of SciRoc.

Figure 12. “Take the elevator” challenge of SciRoc 2019.

6. Conclusions

Nowadays, it is not yet common to live or interact with a robot every day, although the scientific
community is working hard to make this a reality soon. Significant efforts are being made so people
feel comfortable when a robot shares space with them, and the use of proxemic zones to represent
people and their area is the most conventional way.

This work proposes the use of dynamic proxemic zones considering the attitude of people to
change their size. In addition, this skill has been integrated into a layered cognitive architecture to be
used in conjunction with other capabilities, such as the human–robot interaction system, in different
scenarios. Using our approach, the robot behavior when navigating in a social environment is

https://sciroc.eu/e04-take-the-elevator/
http://pal-robotics.com/robots/tiago/
https://sciroc.eu/winners-2019-edition/
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improved. Its performance, compared with a traditional navigation system and a state-of-the-art
method, was demonstrated in the experiments.

Talking about the competition, in this challenge, participated robots such as Pepper (https:
//www.softbankrobotics.com/emea/en/pepper), a more attractive and social robot in aspect than
TIAGo. Our success is based on that; not only is the appearance essential in social robotics, but the
behaviors also play a fundamental role.

Future works include the improvement of the social layer to consider the age or the intention
to interact with the robot. In addition, the ability to recognize different types of humans could be
developed, such as older people with a cane, walker, or wheelchair to create proxemic zones with
different sizes.
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